Outstanding Dissertations in the

COMPUTER SCIENCES

A Continuing Garland Research Series

Quicksort

Robert Sedgewick

Garland Publishing, Inc.
New York & London, 1980

Robert Sedgewick © 1980
All rights reserved

Library of Congress Cataloging in Publication Data

Sedgewick, Robert, 1946 -
Quicksort.

(Outstanding dissertations in the computer sciences)
"stan-cs-75-492.”

Reprint of the author’s thesis, Stanford University,
1975.

Bibliography: p.
1. Sorting (Electronic computers) I Title.
Il. Series.

QA76.6.544 1980 001.6'425 79-50821
ISBN 0-8240-4417-7

All volumes in this series are printed on acid-free,
250-year-life paper.

Printed in the United States of America

QUICKSORT

by Robert Sedgewick

Abstract

A complete study is presented of the best general purpose method for
sorting by computer: C. A. R. Hoare"s Quicksort algorithm. Special
attention is paid to the methods of mathematical analysis which are used
to demonstrate the practical utility of the algorithm. The most
efficient known form of Quicksort is developed, and exact formulas are
derived for the average, best case, and worst case running times. The
merits of the many modifications which have been suggested to improve
Quicksort are discussed, with an emphasis on their impact upon the
analysis. Van Emden®s method, samplesort, and the median-of-three
modification are discussed in detail, and it iIs shown that the latter
Is the most effective improvement to Quicksort for practical sorting
applications.

New results presented include: improvements to the algorithm
based on a refined partitioning strategy and a new method of handling
small subfiles, the best and worst case analysis, contrasting analyses
of minor variants and the study of the effect of equal keys, new
implementations of and new approaches to analyzing adaptive partitioning
and samplesort, the complete general analysis of fixed sample size
partitioning, and the application of "loop unwrapping” to Quicksort
and the analysis of the optimized program.

The thesis is presented in an expository fashion so that it may be
useful as a textbook in the field of "analysis of algorithms™. It is
self-contained, and it includes a complete treatment of a simpler sorting
algorithm (insertion sorting) as well as three appendices which complement
the material in the text.

This research was supported in part by The Fannie and John Hertz
Foundation. The printing of this paper was supported in part by
National Science Foundation grant GJ 36V73X and by the Office of
Naval Research contract NR OUk-UO2.

Preface

The general field of mathematical analysis of algorithms has core t
encompass two quite different kinds of analysis. One type, more common!
referred to as "computational complexity', involves the study of entire
classes of algorithms to solve a particular problem, usually from within
a fairly general framework. The other, called simply "analysis of
algorithms', involves the study of the space and time requirements of
particular algorithms and particular implementations of them. This Kkind
of analysis has been popularized by D. E. Knuth in his series of books.
The Art of Computer Programming. Both of these kinds of analysis are
challenging, interesting, and useful, but they really are quite differen
This thesis deals with the complete analysis of one algorithm, Quicksort
but the subject matter relates as much to the "analysis of algorithns® a
to Quicksort itself.

Although much of what we know about the analysis of algorithms
appears somewhere in Professor Knuth"s books, there seems to be no
elementary textbook which introduces this subject. For this reason,

I have tried to write this thesis In an expository fashion, so that a
newcomer to the field will be able to use it profitably for self-study.

I have assumed some basic familiarity with both concrete mathematics and
computer programming, but I hope that readers at various levels of
sophistication in both of these fields will be able to benefit from this
thesis. Analysis of algorithms really does require competence in both:
The mathematical analysis often suggests how we might make our programs
more efficient; and improvements to programs often make their analysis

more iInteresting.

The algorithms in the text are all described in a programming language
similar to Algol, but relatively few of the features of the language are

used, so that they should be easily understood by anyone who has programmed

in a high-level language. The programs use an exchange (:=:) operator,
and the control constructs if ... then ... else ... endif and
loop ... while ... repeat , which are like those described by Knuth in

Computing Surveys 6 (December 197Me The assembly language programs in
the Appendices are written in the MIX language defined in The Art of
Computer Programming, and there is some comment in Appendix C about the
implementation of the programs in some real programming languages for
the IBM System 360 computer.

It is customary iIn a Ph.D. thesis to state explicitly which results
are original and presented here for the first time. 1 have refrained
from including such comments in the text for fear that they would detract
from the expository nature of the thesis. To the best of my knowledge,

the following major aspects of this dissertation are new:

O) The technique of ignoring small subfiles during partitioning,
then insertion sorting the entire array after partitioning
(Program 2.b);

(i) the analysis of the best case and the worst case of the algorithms
(Chapter U);

(iii) the contrasting analyses of the various different partitioning
methods for the basic Quicksort algorithm (Chapter 5)>

(iv) the study of the effect of equal keys (Chapter 5)>

~ "two-partition” Quicksort and its analysis (Chapter 5) j

(vi) the careful implementation of van Emden®s method and the proof

that the subfiles are non-random (Chapter 6);

(vii) the analysis of the number of exchanges taken by samplesort,
and the general method of analysis which can be applied tc the
other quantities (Chapter 7)j

(vili) the idea of leaving the sample elements out of the partitioning
process in the median-of-three method (Program 8.1);

ax) the extension of the analysis of fixed-sample size partitioning
to the general case, which leads to the proof that using the
median is best (Chapter 8); and

(69) the application of "loop unwrapping” to Quicksort, and the

analysis of the optimized program (Appendix A).

I have tried to tell the complete story of the analysis of Quicksort;
indeed, | feel that this in itself is a major contribution of this thesi
This has necessitated including many "well-known™ results. The origin
and history of this research is discussed iIn Chapter 9 Many of the
results appear in The Art of Computer Programming, and, where possible,
I have tried to maintain consistency with Knuth®s notation.

I hope that the example given here of the complete analysis of an
important computer algorithm will help to stimulate similar intensive
studies on the performance of other algorithms. This is not to suggest
that we should submit every algorithm that we use to such a broad analys
but 1 would hope that our most important algorithms could be analyzed as
completely. 1 can envision a series of monographs similar to this on
the analysis of, say, the ten most important computer algorithms. Of
course, we must first decide which algorithms belong on this list; and
we may not be able to analyze some of them very well. But Quicksort

certainly belongs; and its analysis is exhibited here.

one good thesis left in Quicksort”. Professor Knuth has contributed

the project iIn mn;*ways: by encouraging my interest ir. the subject of
analysis of algorithms through his courses and books, by patiently
monitoring and directing my research with countless helpful suggestions,
and by carefully reading and annotating early versions of the manuscript.
Thanks are due also to Peter Wegner and Forest Faskett for reading the
final copy of the thesis. The professional and consistent style of the
manuscript is due entirely to Fhyllis Winkler, who can add one more

title to the impressive list of manuscripts that she has produced.

Financial assistance was provided by the Fannie and John herto
Foundation. This generous fellowship provided support when none other
was available to me, and allowed me to pursue this research on a full-t r,
basis.

Finally, on a personal level, | must thank mg- Parents, whose example
encouraged me to begin my work towards a Fh.?., and Ton Knuth, whose
example inspired me to complete it. Most of all, thanks are due to ry
wife Linda, who has shared these years at Stanford with me. We have made
the "'successful completion of the requirements for the Ph.P. degree” rot

an arduous task, but a great Western adventure.

Chapter 1. Introduction: insertion sort
n — Quicks;

Chapter ; Analysis of Quicksort

Chapter - 3est case and worst case

Chapter ¥ Miner variants of Quicksort

Chapter ® Adaptive partitioning

Chapter 7 Samplesort

Chapter 5 Median-of-three modification

Chapter 9 History and 3ibliography

Appendix A. Assembly language programs
Appendix B. Mathematical definitions and identities

Appendix C. Quicksort on real computers

List of Programs

Program 1 . 1 . e e e e e e aaeaaaaaa 3
Program 1 . 2 e e e e e e e e aaaaaaaaa 5
Program 1.3 ... e e e e e e e

Program 2 . 1 o e e e e e e e aaeaaaaaa 25
Partitioning Method 2 . 1 i e e e e e e aaaaan- 28
Partitioning Method 2 . 2 e e eeaaaaan- 31
Partitioning Method 2 . 3 i i e ceaeaaann 3
Partitioning Method 2 . b - i 36
Program 2 . 2 o e e e e e e e e 36
Program 2 . 3 . e e e e e e e e e e 3
Program 2 . U .. e e e aaaaa e k8
Program 5 * 1 . e e e e e e e e 151
Program 6 . 1 .. e e e e eaeaaaaaa 163
Program 7 * 1 e e e e e e e e e aaaaaa 133
Program 8 . 1 .. e e e e e e aeaaaaaa 206
Program 8 . 2 .. e e e e e e e e e aaaaaa 211
Program O * 1 . e e e e e eaeaaaaaa 263
Program 1 . 2A @ e e e e e e e 271
Program 1 .3 A .. e e e e e e aa e 272
Program 2 cUA e e e a e e 279
Partitioning Method 8.1A i e ccacaaaaann 231
Partitioning Method8.1A (Altermate: part 1) 283
Partitioning Method8.1A (Altermate: part 2) _..... 286
Program 8 . 2A see 290
Quicksort In ALGOL W .. i i e i eee e 329 - 332

Quicksort in FORTRAN 33" - 337

CHAPTER ONE

Quicksort is a sorting method suitable for use on computers which
was introduced by C. A. R. Hoare in 1960. Like most good algorithms,
It is based on an inherently simple idea, and it remains today the best
general purpose sorting method for computers. However, this simplicity
IS deceiving, and the algorithm has many hidden subtleties. A variety
of modifications have also been suggested for the purpose of improving
the performance of the algorithm. The purpose of this thesis is to
expose the subtleties and study the variations of Quicksort through
mathematical analysis. The analysis leads to many important methods of
general iInterest, so that in the process we will learn as much about the
analysis of algorithms and concrete mathematics as about Quicksort itself

We will be analyzing computer programs written for the purpose of

rearranging a given set of "keys" A[1].,A[2],---,A[N] to make

A[ll < A[Z] <AI3] < ... < AIN]

The order relation may be numeric order, alphabetic order, or any
transitive relation whatever, which is defined on all the keys (so that
exactly one of the possibilities A[i] < A[J] or A[i] >A[jJ] or
A[1] =A[jJ] holds for all 1 and j). Straightforward extensions
will allow these programs to handle the more practical situation where
more information is associated with each key.
Many sorting methods can be characterized by the fact that theyonly
involve a few fundamental operations on the keys,such as "‘comparisons’
or "exchanges'. It is tempting to measure the efficiency of these methods

by counting the frequency of such operations. However, this can often be

misleading, because actual implementations of the algorithms involve
overhead which can contribute significantly to the running time. The
goal of our analyses will be the derivation of formulas (depending on N ,
the number of keys) for the total running times of the programs: in the
best case, In the worst case, and on the average. Another temptation iIn
working with such formulas is to discard all but the "leading™™ terms and
to present only approximate formulas as a result. This can be very
dangerous in a practical situation. (For sorting methods the leading
term may be alllg®b and the discarded term 3I* for some 3,3 . If,
for exanple, B< 2.zzzz and 3 > 112 , then the "discarded” term would
be larger than the "leading” term.) Although i1t is generally much more
difficult to obtain, the derivation of an exact formula provides a far
more accurate description of the operation of an algorithm.

The rest of this chapter will be devoted to a demonstration of this
kind of analysis applied to a simpler sorting method, insertion sorting.
This analysis not only will provide a full introduction to the analysis
of Quicksort, but also It is very interesting in its own right. 1In
addition, the results obtained will be of use to us later.

Insertion sorting is a natural sorting method which is commonly
used, for example, by bridge players when patting their hands into order.
The idea is to consider the elements one at a time, and insert each into

position among the elements already considered, program 1.1 is a slightly

more formal description of this method.

Program 1.1

1 =2

loop while 1 < N:
insert A[i] into position among A[1],A[2],---,A[i-1];
1 = i1+l ;

repeat;

It is not difficult to convince ourselves that this program actually sorts
the keys A[1],---,A[N] into nondecreasing order. It is easy to prove

by induction that the loop preserves the condition
2 < i <N+l , A[1] < AIZ2] < ... < A[i1]]

In general, we will not be concerned with formal proofs that the programs
we deal with work, but rather with informal arguments which indicate that

such proofs can be easily constructed.

In order to put the i-th key encountered, A[i] , into position, it
IS necessary to move all of the keys among A[l], ---,A[i-1] which are
greater than A[1] one position to the right. This leads to the followin

more explicit implementation of the algorithm.

Program 1.2

1 =2

loop while 1 < N:

v =A[M]) §J = i-1;

loop while A[j] >v and J > O:
AO+ =AL L J = J-1;

repeat;

A[J+1] :=v;

i = i+l ;

repeat;

The operation of this program, on an arbitrarily chosen set of Ffifteen

keys, is shown in Example 1.1. The arrangement of the keys is shown after
each insertion: only those keys that were moved are written, so that the
leftmost key on each line is the one just inserted. For example, the
line marked with a * shows the situation just after the 08 key was
inserted. The 26 , I , and 95 keys were moved to make room for iIt.
Since sorting programs are most clearly understood through the study
of such examples, the operation of all the programs ve will study will be
demonstrated on the same fifteen keys as in Example 1.1. These keys come

from the fractional part of the number 1Ig e :
A[1] = ul0l”™(lg e - 1) mod 101 for 1<i1<15

Although Program 1.2 is a clear and correct implementation of
insertion sorting, Its efficiency can be improved by making two simple
changes. First, the test = j > C = almost always fails: the only time it
succeeds is when A[i] 1is less than all of the keys A[1].A[2], -- -, A[i-I] ,
and then only after they have all been scanned. A standard programming
technique for eliminating such "almost always redundant™ tests is to
arrange things so that some other "necessary) part of the program catches
the condition when it occurs. In Program 1.2, the test “A[j] >Vv "
will do the trick, if we simply make A[C] smaller than all the other
keys. “or this we write " A[C] = -= ") Then, if J becomes zero,
the " A[J] >vVv " test will stop the loop, and the ™ j >0 ™ test is
unnecessary. Although the test ™ j > C " doesn"t involve a key and is
usually not counted as a comparison, It does represent overhead which
should be minimized. The second improvement to Program 1.2 follows from
considering another special case: Klien A[i] 1is larger than all of the
keys A[1].A[2],---,ALi-1. , the loop will never be executed, so there is
no need to set up for it with the statements " v =A[1] Tand "™ j = 1-1 "»

These two improvements lead to a more efficient algorithm.

L

j Example 1.1

sorting the file:

hh 26 95 Oh

bb
26 hh
95
Oh 26 hh 95
* 08 26 hh
3U
07 08 26
2h
10

01 Oh 07 o08

08 88 96
95
88 95
96
hh 88 95
3b hh 88
55 bb
26 3b 55
2h 26 5h
10 2h 26

3b 07 55 99 2b 68 10

96
95 96
88 95 96
99

bb 88 95 96 99

68 88 95 96 99
55 bb 68 88 95 96 99
5h 55 hh 68 88 95 96

01

99

Program 1.;

1 :==2;A0] = —=
loop while i <N: N
if A[i] < A[i-1] then N-1
v =A[i]; J = i-1; D
loop; D+E
Alg+1] =A0) J == J-1; E
while A[j] > v; E
repeat;
A[J+1] :=v; D
endif; N-1
;= 0+l ; N-1
repeat; N-1

This program sorts the keys exactly as in Example 1-1; i1t just does so
more efficiently than Program 1.2. Our analysis will demonstrate this.

To avoid confusion, we will normally try to develop the most efficient
version of a program before analyzing it. The reader will then be able to
look back over the various improvements and see the obvious justifications
given by the analysis for them. (This is not how efficient algorithms are
invented. An analysis must first be performed on some version of the
algorithm to determine which improvements can do the most good.)

Our analysis of the time taken by this program begins by counting
the number of times each statement is executed. These frequencies are
given in the right hand column in Program 1.3- For some statements, 1i.e.,
i =2 we can deduce the frequency immediately. For others, the
frequency analysis may be more complicated, although we may know that
several statements have the same (unknown) frequency. These unknown
quantities are generally related to characteristics of the algorithm,

and it is usually helpful to think of than in such terms. Notice that

.e. ne xeys

assume tnat tre permutations a5 s
to be the input file. This is the model that will be used iIn most of
cur analyses. If the iInput keys are not in this “random™ order, or :u
necessarily all distinct, we will ensure that cur trouram.s run correc:
and we will try to make them run efficiently. However, our analyses will
usually assume distinct, randomly order keys. vir. Chapter 5 we do

consider the effect of equal keys.) Now, Program i.p .and all of the

other programs we will consider) makes its decisions based only on the
relative order of the keys, never on their actual values. This means
that we can further assume that the keys are the numbers {1,2,...,N} <

Example 1.2 shows the values of D and E when the M permutations
of {1,2,3,M are sorted by Program 1.3* Also given are the maximum and
minimum values, as well as the average and variance, assuming that all 2h
permutations are equally likely. The exhaustive treatment of a concrete
example iIn this way is often a useful first step in analyzing such
quantities. Not only does it provide us with a good intuition about the
quantities, but also it provides a simple check on any more general
answers we might derive. Examining Example 1.2, we notice that D and E
both take on their minimum when the keys are already in order, and their
maximum when the keys are in reverse order. In general, the more "out
of order” the keys are, the higher the values of D and E

To analyze these quantities, we need to be able to express more
precisely the degree to which a permutation is "out of order”. To this
end, we will associate with each permutation a*a® ...a of {1,2, ...,n}
an inversion table B1 E_ Bn , Where Bl iIs defined to be the number
of elements to the left of & which are greater than a" . For example,
the inversion tables for all permutations on four elements are given in
Example 1.2, and the inversion table for

10 7 13 2 12 It 8 5 9 15 6 11 5 1

01 0 3 31 Ol t7Uo08U 10 U
Inversion tables have many useful elementary properties which follow
directly from the definition. First, since there are only 1i-1 elements

to the left of & for 1< 1 <n , we must have

Example 1.2

permutation D E inversion table permutation P E 1inversion table
103U 2 ov P 1 u. L] _
o1 1 11 21 Po 2 1u 2 1 1
23 %u 1 2 222y 2y 12 P 3 P21
n311 1 3 PpPo 2uzzl P U 2 >1E
1 2b 11 Po10 i 102 2 2 2 - T .
| 2 b 2 2 0110 ul?z2? 0 2 211L1L
21b 2 3 0120 1213 0 U R1Px
2 b1 2 U 010 u?2gq | 0 5 Pi1r
i b2 1 2 0002 1us52 2 7 Poo1 P
31b2 2 0102 ulpP 0O b 2112
b 12 2 u 0022 b310 z g 19 P
b & 1 2 5 oo2 P b 21 3 o1°
D: max 3 E: max
min 0
avg 23/12 avg 3
var 95/1UU var 1;/K<

There are exactly . different n-tuples of numbers which satisfy these
inequalities. Further, each of these is an inversion table, and
corresponds to a unique permutation of {1,2,...,n} . To construct a
permutation from a given inversion table, start from the right end, and
for 1 =n,n1, ..., 1 write down the (B.+l) -st largest of the numbers
not yet used. For example, the permutation corresponding to the table

0 113 2

52 U 1 3
since 3 is the third largest of {1,2,3,,5} > 1 is the fourth
largest of {l,2,U,5} ; U 1is the second largest of {2,U,5} ; 2 is
the second largest of {2,5} ; and 5 1is the largest of {6} = This is
always possible since B.+l < 1 and there are 1 numbers not yet used.
This one-to-one correspondence between permutations and inversion tables
means that we can treat all inversion tables as equally likely and
analyze the values of our guantities when the program is running on
permutations as defined by inversion tables. This is particularly
convenient for Program 1.3.

We notice immediately from our algorithm that D is the number of
keys which have at least one greater key to the left. But this is
exactly the number of non-zero elements iIn the inversion table. The
maximum value of D is therefore N-1 @B- 1is always 0), and the
minimum value is O . The probability that B* /7 0 is 1-1/i for

all 1 , so the average value of D is

(1-1). (1 -8)+((l (1 -1) = H-H,, ,

10

where iIs the N-th harmonic number.

The quantity E 1iIn Program 1.3 is also related to the inversion
table. Indeed, each element in the permutation must be moved past every
element to the IePfc of it which is greater than it. This is exactly the
number counted by entries in the inversion table, so the value of E
for a given inversion table is

E = Bx + B2 + Bj + ... + Bj,

This sum is also called the number of inversions of the permutation. An
inversion of a permutation a™a" eeea” 1Is a pair (@“,a.) for which
i<j and a" > a . For example, the inversions of 5712 are
G, G2, UD ,and QU,2 . The minimum value of E 1is
therefore 0 @ =0 for all 1); and the maximum value is

@G =1-1 for 1 <1 <N). Also, there is an easy way to determine
the average value of E . This is to notice that for every permutation
ara™e=.a with k inversions there corresponds a permutation

anan-1 "“"a2al ~2)~k inversions. Thus if e” is the

probability that a permutation of [1,2,...,N} has exactly Kk inversions,

and kK = F -k , then

ANk = Nk* 4

The average number of inversions is given by

af<v - Ak =~ ((?) -Ov-

sCCO-0Ov -

so that

11

2 avg(™) - ITC(k+(a) -k) e\k

o a) -
since “edfjc =" iIs a sum of probabilities. Therefore
ic
avg(EN) . ~ -

Now that we have the average values of the quantities D and E ,
we can find the average running time of Program 1.3. In general, the

total running time will be

ab + PE+ 7N+ 5

where the coefficients a , @,y , and 6 depend on the particular
machine and compiller used to run Program 1.3. To provide a concrete
basis for analysis, the programs that we analyze are coded in assembly
language in Appendix A. This will give us representative values for the
coefficients, although they could be higher or lower for particular

machines. For Program 1.3> the running time 1is
3D + 8e+ 7N -6

so that we have shown the average running time to be

3(N-Hn)+8 LIN-1) + 7n - 6
or

2N + 8N -5 -6

This dependence on N2 makes Program 1.3 undesirable for large N ,

but for small N it is very efficient.

12

Program 1.2 is also coded in assembly language in Appendix A, and
the running time turns out to be

?D + 9E + ?N -6 ,

*

where E is the number of iInversions, as before, and D is the number
of keys which have at least one smaller key to the left. This is the
number of entries iIn the inversion table such that B1 2~ 1-1 , and the
average value is N -H™ , just as above. Our first improvement makes
Program 1.5 I“@&iglu time units faster than Program 1.2, on the
average. The second improvement changes the running time by D—[)t:,
which doesn®"t seem to be an improvement at all, since its average value
IS zero. However, this quantity tends to be negative if the file has a
low number of inversions, so Program 1.3 gains an added advantage if the
file is approximately in order.

The derivation of the variance of the quantities D and E will
require more sophisticated methods than we have used up to this point.

Let d”™ be the probability that D takes on the value Kk when

Program 1.2 is sorting a random permutation of N elements, and let

M2 = L oa 2k ‘e "the generating function for e Then
k >0

NI d*k is the number of inversion tables for N elements with exactly
k non-zero entries. If N =1 , the inversion table is 0 , so that
DM2z) =1 . For N>1, we will derive a recurrence relation for

D @ by defining a correspondence between inversion tables for
permutations of N elements and inversion tables for N-1 elements.
With each inversion table ~ for N-1 elements, we

associate the N inversion tables

Bl B2 BN-1 °©

Bl B2 BN-1 1

BLB2 <~ ~-1 N

The Firstof these has

the samenumberofnon-zero elements inthe

inversion table as the original;theother(N-1) allhave exactly one

more. This means that

NI dDk = (N-D)! d(N.Dk + (D) (D! ViHk-D

or

* 1 * m N-1 ,,
Sk N ((N-Dk N WN-D k-D

Multiplying by z and summing over all k , we get

= ND(N -D”* +IT zd(n-i)"

which telescopes to

V)

D& =0l 1T bgr!
“ 2<k<N

- IT kD"
1<k<N

This is a product of the probabilitygenerating functionsd (@ = (Kf_—l)

which have mean d*() =1 - ~, and variance
dae + @) “[aM] =N -2 - The mean of theproductis the
k

sum of the means, and the variance of the product is the sum of the
variances (see Egs. (U8) and (W) in Appendix B), so that

avg@) = L (1 -]) =N-H ,
N I <k<N K ®

which agrees with our earlier result, and

var<D§) _I<k1<N (5 —k4) - v 4 2 -

The derivationof the variance for E follows exactly the same
method. Let e” be the probability that a permutation of (1,2,...,N}

has exactly k inversions, and let ET@Z) = z = Then, using
k>0

the same correspondence between permutations on N elements and

permutations on N-1 elementsas above, we get

i e
No<j<k @©_1)Ck-0) -

so that

15

V 2) m5 k>0 0<?<k e(K-)tk-3> 7

which telescopes to

y z) - 1T i 2
w 1<k <N 0<j<k-I1

This is a product of the probability generating functions

k-1
r I & w
%(5) §1+Z-+—E_——. i which hg\\//emean Qﬁ(!) S I
2 1
2N and variance +ek N ~ = — Tp~ > so that
avg(E’\ﬁ(ﬁ" k-1 _ NQO\-D
a 1<k<N
as before, and
var(V . S 4 N -
1 1<k <N

The fact that the generating functions for both D and E turned
out to be products of probability generating functions suggests that we
might have found a simpler derivation, using independent random variables.

In general, if X and Y are random variables described by the generating

fuctions X2 = £ Ak« and Y@ = E BA{Y=13z ,
k k>0

>0
then

16

X@QY@ = 71, F z Pr{X =33} Pr{Y =k-j} Jz*
k>0\"C<j<k J

If X and Y are independent, then Pr{X=j}r[Y=k-J) = Pr{X=J and Y - k-j
or Pr{X+Y =Kk} , so X(@)Y(z) is the generating function describing
X+Y e To apply this to our problem, we consider the inversion table
entries B/B2 eee as random variables. Cur assumption that all
inversion tables are equally likely is equivalent to the assumption that
these random variables are all independent and that B, takes on each
of the values 0,1,...,k-1 with probability I/k for 1 <k <N e The

generating function for B, is therefore
g (At z+ eeet 711) for 1 <k<N

Now, by definition, we know that the sum of the 3A *s is the number cf

inversions
E = BI+B2+ ™" +BN
and from the law above, the generating function for this sum is the

product of the generating functions for the individual terms:

E@ = U J y4 7
1<k <N 0<j<k-1

which is what we found before. Similarly, i1f we define

xk 1<k<N ,

I
N

then

D = Xj-12* eee+ XN

17

Az k-l

and the generating function for is z , so that

oy = B ezl
1 <k <N

as before. From this function, we can proceed even further, to find

an explicit expression for d,, . We have
D@ = TT (k-Dz+D
i<k<N
N rt N
m5r TT &|+ k)
0 <k<N-i J
where Eﬂl} ai’e Stirling numbers of the first Kkind (see Egs.(26)-(30)
and (37) in Appendix B). Therefore D(z2) = %(II_N—uJM(2 SO
o] irnl
Nk NELN-kJ -« cou-~ now computeour average directly,

agV mr =*[A]

Tn

N.1 Ffml
Nt L 2 J

:NI«N

18

but the method that we used before was much simpler. \See Appendix 3
for some identities relevant to this derivation: the sums of Stirling
numbers are evaluated from the generating function (?7) and its
derivative.) For many generating functions, it is most convenient to
compute moments directly from the probabilities; for others (including
D(2)) it is easier to work solely with derivatives of the generating
function; and for still others (including E(z)) the individual
probabilities are not available, and It is necessary to use methods
such as we used above.

Our analysis of the quantities D and E for Program 1.; is now
complete. We have found their maximum and minimum values, and the
generating functions, from which we have determined the first and
second moments. Higher moments could also be derived from the

generating functions if desired. To summarize, we know that

DNF: max N-I

min 0 min 0
avg N -Hjj aver NQ-)

N(N-1) (2N+ 5)
var N _HN@) var 72

These expressions, for N = U , agree with those in Example 1.2.

From a practical standpoint, of course, we are interested in the
performance of the program as a whole. We have already used the fact
that the average running time of the program can be obtained by adding
the average values of the contributing quantities (with appropriate
coefficients). For the maximum, minimum, and standard derivation,

however, this simple rule may not hold in general because of interactions

among the quantities.

Fortunately, for Program 1.3, the minimum value of D occurs for
the same permutation (12 ... N) as the minimum value of E ; also the
maximum values both occur for the permutation N N-1 __._.21. This
means, oOf course, that the minimum and maximum running times of the
whole program must occur for these permutations: the values are JN-6
and Un2+6n -9 respectively.

We can also derive the variance of the running time of Program 1.3
in exactly the same way that we found the variance of D and E . IFf
t , is the probability that Program 1.3 takes time k , namely the

probability that 3+8E+7N-6 =k , and if Tw®@ = 2 t =z
k >0

Is the associated generating function, we proceed exactly as we did for

the separate quantities to get the generating function

T®@ =2z TT 5 (2 * 2 28J+1°)
2<k<N 1<j <k-I1
where the probability generating functions t,(z) =" (2™ S z
I<j <k-1
have mean Uk+ 6 - K and variance . + . Therefore
i J k ,d

mean(TN) = 1+ L. (Uk + 6 - |) =2N2+8n-31"-6
2 <k <N

as before, and

var(TN)
2<

This solution for the variance of the total running time was possible
only because we were able to set up such a simple recurrence on the
generating function. It is ordinarily very difficult to get the
variance of the total running time of a program, and we usually must be
content with the variances of the various contributing quantities.

In sutmary, we have derived exact formulas describing the total

running time of Program 1.3:

2
TN:nmx UN +6N -9

min 7N -6
avg 2N2+8N -3 -6

var | (6n5+2Un2+ 176N -336 - 8IH"2MN)

This analysis, In addition to providing a showcase for many of the methods
used iIn analysis of algorithms, represents a goal towards which we work
when studying programs. For many programs, It is not possible to

compute exact formulas for the total running time. In fact, it is often
the case that even approximate formulas cannot be derived. However, when

analysis does yield exact answers, we have very complete information about

21

the program, not only in the results, but also in the clear understanding
of the algorithm required for analysis.

Program 1.3 is a simple sorting method whose performance we completely
understand — why do we look at other sorting methods? The answer, as we
have already remarked, 1is that the program takes much too long if N 1is
very large. If our unit of time is 1 microsecond, then Program 1.3
will take over five hours to sort 100,000 elements. We should expect
to be able to do much better. (On the other hand, for small N ,

Program 1.3 is about the best sorting method known.)

Studies of computational complexity (which comprise another kind
of "analysis of algorithms'™) show that the sorting problem should
require at least O(N Ig N) operations. The argument goes as follows.

In order to sort every permutation of N keys properly, a sorting program
must be able to "distinguish between” (i.e., operate differently for) all
of the N. possible inputs. A sorting program which uses only k
comparisons in the worst case can only distinguish between 2k input

permutations. This means that Kk must be large enough so that

2k > HI
or
k > Ig NI
or
k >NIgN -NIge , by Stirling"s approximation

(Eg- &5) in Appendix B).
Therefore, every sorting method requires at least N Ig {1—\”1 compar isons
in the worst case. A similar but slightly more complex argument says
that the average number of comparisons must also be about N Ig N
And this lower bound can be achieved —- there are several sorting

methods which use cNIgN comparisons for some constant c .

22

Of course real programs consist of more than comparisons, and
there are other factors which must be taken into account. For example,
we might consider modifying our insertion algorithm as follows: To
find the proper position for v = A[i] among the elements already
sorted (A[1],.A[2],---,A[i-1]) , first compare it with the middle
element A[(i-1) t 2] to see if it belongs in the left half or the
right half. If it belongs in the left half, then compare it with the
middle element of the left half, etc., continuing In this manner until
the proper position is found. This "binary insertion” algorithm requires
about N Ig N comparisons, but its running time is still dominated by
A N2 moves during insertion”. We might consider using linked list
techniques to eliminate these, but then we would need an amount of extra
storage proportional to N , which might be undesirable. Nevertheless,
there are several sorting methods which overcome such difficulties and
sort N elements iIn a total amount of time proportional to N Ig N .
One of the most efficient of these, with some qualifications, is
Quicksort.

Fortunately, the Quicksort algorithm and its best variants admit to
complete analysis: this will be our concern for the rest of the thesis.
The next chapter will be a careful development of a practical, elegant,
and efficient program based on the Quicksort algorithm. Of course, the
program will be much more involved than Program 1.3, and both the results
and methods of analysis will be more complex and interesting. The average
running time of the program will be derived in Chapter 3 The following
chapter considers the performance of the program in the best case and iIn
the worst case. Then, after a look at seme minor modifications and

practical considerations, the three major variants of Quicksort will be

23

examined: van Emden"s approach; samplesort; and the median-of-three
modification. A complete analysis will be presented for the best of
these.

Throughout this investigation, we will be interested in learning
about the effectiveness of the various algorithms, as demonstrated by
exact analysis. In addition, we will pay attention to the impact of
the various modifications on the analysis itself. A variety of
interesting general problems in concrete mathematics are suggested
by the analysis of Quicksort. We will be studying not only an important

general-purpose sorting method, but also a family of important general

methods of analysis.

2k

CHAPTER TWO

The Quicksort algorithm is an application to sorting of the general
"divide and conquer' principle of solving a problem by dividing It into
two subproblems, then solving them iIn the same way, repeating the process
until the resulting problems are simple enough to solve In some other way.

The algorithm can be expressed recursively as follows:

Program 2.1

procedure quicksort (integer value f,r);
if r > t then
partition on A[j];
quicksort (1,j-1);
guicksort (j+1,r);
endif;

Here the procedure call ' quicksort(l,r) " will cause the r-£+1 elements
in the array A[f] -..A[r] to be sorted. In particular " quicksort(1,N)
will sort the entire array.

The crux of the algorithm, of course, is the ™ partition on A[jJ "
process, which will now be defined. Partitioning means to rearrange the

array so that two conditions are satisfied:

O) some element, say the j-th smallest, is in its final position iIn
the array Q@A[JD
(i) all elements to the left of A[j] are less than or equal to it

and all elements to the right of A[j] are greater than or equal

to 1t.

Thus, since A[J] 1is in position, the original problem of sorting

the entire array is reduced to the problem of sorting the *left subfile"”

25

(the elements to the left of A[J]) and the "right subfile” (the
elements to the right of A[j])- Ifa fileisofsize 0 or 1, it
iIs already sorted. If Program 2.1 works properly for all files of
size <N , then it clearly sorts N elements. Thus, by induction,
we see that Program 2.1 s a proper sorting procedure.

There are several methods which have been suggested to achieve
partitioning, all with the same general structure. As we shall see,
it Is a somewhat delicate process. While the methods seem to differ
only slightly, the performance of the methods may differ significantly.

One of the most natural partitioning methods is detailed iIn
Example 2.1. Suppose that the fifteen keys shown on the top line are
to be sorted. First the leftmost element of the array, the W , is
arbitrarily selected as the partitioning element. It is removed from
the array, leaving a hole on the left. An element is found to fill
this hole by scanning from the right for the first element < Uk .
The 01 1is found, and moved to the hole vacated by the WU , but
leaving a hole of its omn on the right. Similarly, an element to
fill this hole is found by scanning from the left to find the first
element > Uk , iIn this case the 95 < This leaves a hole on the left
again, and the process continues until all the elements to the left of
the hole are < UU and all the elements to the right of the hole
are > UU . Partitioning is then completed by filling the hole with
the W key.

IT this partitioning algorithm is used in Program 2.1, then the
entire file is sorted as shown in the second part of Example 2.1.

Each line shows the result of partitioning the subfile defined by

26

Example 2.1
partitioning: Itt Jo 05 oU 08 8 oo sU 07 *5 00 jit 08 10 Ol
0 20 05 oU 08 8 00 ?2U 07 35 00 -* ~ 10 /'l

01

01 Jt os

01 Jo 10 8 *

INcs*
01 Jo 10 oUu 08 GS
01 Jo 10 OU 08 Jt ")) B 88 os
hoy
01 Jo 10 oUu 08 2U 00 (8 88 05
$ 3
01 20 10 U 08 ju 55 O 00 00 68 88 g5
Et)
0Ol Jo 10 oJ 08 ju 55 U 00 00 VO o5
0Ol 20 10 Qit 08 jit 55 BW 00 06 (8 88 05
sorting

the file: P+ 26 95 OU 08 38 9 5U 00 JU 08 10 O1 tr
01 26 10 adt 08 Jt 55 5+ 00 06 t8 33 05 1 e
@26100U082U555U 1 o
07 10 oU 08 jt@ 5U J o
ou@© 10 08 Jt J o
08 © Jit Do
8 Q
05 00 08 88 © 11 15
38 08 (05) 00 11 it
68 (ss 11 13

the given values of 1 and r . The array is completely sorted in
9 partitioning stages.

This loose description leaves some latitude in implementing this
algorithm: one of the simplest implementations is the following

program.

Partitioning Method 2.1

1 =/; §J =rtlj v = A[£f];
loop until pointers have met:

loop: j := j-1; while A[jJ] > v repeat;
if 1 >j then j := i; pointers have met endif;

Al =AD0L

loop: 1 =1i1+l; while A[i]< vrepeat;
if 1 > j then pointers have met endif;

A0l =ALil

repeat;

Al] =v;

The operation of this program is straightforward except iIn the case

that A[E£] 1islarger than all of the keys A[£+]], -- -,A[r]- Then
the condition A[i] < v will betrueforall 1 £ 1> andthe

I = i+l loop cannot be guaranteed to terminate. If the subfile

being partitioned is within a larger file being sorted, as occurs

in the last partitioning stage of Example 2.1, this may not be a

problem, since there will usually be larger elements to the right. But

it is a problem if it occurs when r =N , as iIn the 7th partitioning

28

stage of Example 2.1. This case is handled with the samp technique
that was used in Program 1.3s the assumption that A[N+1] is larger
than all of the other keys (written A[N+1] =m) is sufficient to
guarantee that the loop always terminates and the program works
correctly. Some partitioning methods have similar trouble at the
left end, and we will assume iIn such cases that A[0] is less than

all of the other keys (A[0] = -®)

The main difficulty with this partitioning method is that the
termination condition can occur either after the 1 pointer has
incremented and stopped or after the j pointer has decremented and
stopped. The two tests required to see whether the “pointers have met”
make this algorithm less efficient than is necessary. The second
partitioning method that we will examine does not have this problem.

The partitioning procedure shown iIn Example 2.2.1is the method used
in the original Quicksort algorithm in i960 by C. A. R. Hoare. His
method is based on exchanging elements. Again, an arbitrary key
is chosen as the partitioning element, this time the element in the
middle of the array, the . Now, we scan from the left for the first
element > »h and from the right for the first element < 3" e These
tw, the U+ and the 01 , are obviously out of place if the file is
to be partitioned correctly, so they are simply exchanged. Continuing
in exactly the same manner, we exchange the 95 and the 10 ; the 88

and the 2U ; and the 96 and the 07 < The next time our scans stop,

29

Kxample 21.2

partitioning:

sorting
the file:

W+ 26 95 OU 08 88 96 (9)

B>

01

01 26 10

Cl 26 10

01 2(. 10

o1 %#4 10

B+ 26 95
01 26 10
01 10

>

ou

Qil
o+
26

07 o

b8

08 2h

08 2+ 07

°7

9C

08 2+ 07 09 9 *

08 88
08 2l
08 2l
26 2h

96 3U 07
07 © gn
07
10
26

H

55

55

99

99

99
99

2
88

88

88

21+
88

NG8L

68

68

68

68
68

99

5 g9 2U 78 10

O

D

95

95

95

10
95

95

99
96

gl

hi

e

01
H+

96

96

=

a1

9 15

10
15

I+

11
11
15
15

on the 07 and the 96 > the pointers have crossed, so that no exchange
IS necessary. The algorithm has ensured that the keys to the right
of the 07 are all greater than JU and the keys to the left of the
96 are all less than . Partitioning is now complete. In general,
we would have to put the partitioning element Into position as shown
in the algorithm below, but we were fortunate in this example: the
partitioning element was already in place.

In this method, the test on whether the pointers have crossed
occurs only after both the left and right pointers have stopped. This
iIs approximately half as often as in the previous method, and the

inner loop is much simpler.

Partitioning Method 2.2

A[0] = -®; AIN+1] := Q0;
1 =£-1;] r+l ; p = (&r) t 2;v = Alpl;
loop:

loop: 1 i+l ;while A[i] < vrepeat;
loop: J == j-1jwhile A[J] > vrepeat;
while 1 < j:

Al = AOL
repeat;
if i <p then A[i] =:APp];i = i+tlendif;
if) >p then A[pl =2Li]; j = j-1endif;

quicksort (£,));
quicksort (i,r) ;_

31

It is iInstructive to note the care which must be exercised after the
pointers have crossed in this method. The object is to get the
partitioning element A[p] into its proper place within the array.

The pointer scans don"t move A[p] , and after the pointers have
stopped, there are three cases: A[p] may be in the right subfile;
the left subfile; or neither. If A[p] 1is in the right subfile, it is
knowmn to be no larger than any of the other elements there, and it can
be put into place by exchanging 1t with the leftmost element of the right
subfile. This occurs, for example, In the second partitioning stage of
Example 2.2. The symmetric argument holds if A[p] 1is in the left
subfile. Finally, if A[p] 1is in neither subfile, as occurred in our
first partitioning stage, it is known to be already in place.

IT all of the keys are distinct, as in our examples, then it will
always be true that 1i-1 = j+1 = (final position of partitioning element)
at the end of Partitioning Method 2.2. If, however, there are equal keys
present, then i-j may be greater than two, and possibly more than one
key may be known to be in its final position after partitioning. Despite
this, the method actually tends to perform inefficiently when equal keys
are present. As we shall see later, Quicksort performs best when the two
subfiles are approximately the same size. It turns out that stopping the
pointers on keys equal to the partitioning element tends to bring the
partition closer to the center. Although this may result in equal keys
being exchanged, this is more than compensated for by the more balanced
partitions. Furthermore, this corrects an even more serious defect of
Method 2.2: the recursive calls ™ quicksort(£,j) " and ' quicksort(i,r) "
might access elements far outside their subscript ranges. For example,

if a partitioning element equal to r 1is chosen when the left subfile

32

IS partitioned, then the left pointer will pass over all the keys in th»>-
partition just made and reach into the right subfile®. We shall study
the question of equal keys in more detail in Chapter 3*

Example 2.3 shows the result of modifying Hoare®s original method
to exchange on keys equal to the partitioning element. For variety, we
arbitrarily choose the second element of the file as the partitioning
element for this example. In the first stage, then, we scan from the
left for the first element > 26 and from the right for the first
element <26 . These two,the Ub and the 01 , are exchanged. The
next element > 26 on the right iIs the 26 itself. It isexchanged
with the 10 . Two more exchanges are made, and the pointers cross at
the 96 and the 07 <

There is no efficient way to get the partitioning element into its
proper place for this method. Unless it is already in place, it is "lost1l
on an exchange. To keep track of i1t would require extra overhead iIn the
inner loop in the following algorithm. Despite the fact that the method
violates condition (i) of partitioning in this way, it does sort the
elements as shown in the second part of Example 3, and the algorithm is

very elegant.

Partitioning Method 2.3

1 =1-1; J =r*l; p = £+1; v = Alp];
loop:
loop: 1 :=i+l}while A[i] < V repeat;
loop: j :==j-1;while A[J] > Vv repeat;
whille 1 < j:
ALi] = ADOL
repeat;
T'quicksort (£,i-1);
[quicksort (+1,r);

Example 2.5

partitioning:

sorting
the file:

HFH(P) 95 Oh 08 88 96 3h 07

10 2h OH 08 07

96 5SU

10 2h OH 0807Q96 3h

01

126
01 10
01 10 2h
01
H 26 95 OH 0888
01
01 07 08 OHAx 10
01 0uQoO8 07
0L (20)

070 08

1002U

07J
88 55

99

99

99
99

2W

55 99 2H 68

10

<3

68 |

26

95 68 26

95

95

2h
95

95
95
95
95

68

68

68
68

68
68
68
68

68[)95
680 88

95

26

26

10
26

96
96

01

o1]
un

01

HJ
HH

96(]199

96
96

© ~N o1 Ok, P, PPN

10
10
11
11
15

15

o Cc N T o

IT some element equal to the partitioning element, jc already iIn position,
this algorithm could end with i1 = j , so that the subfiles on the left
and right of that element can be sorted. Otherwise, the algorithm will
always end with j+1 = i (there can be no k such that v < A[kJ < V)
and the subfiles to be sorted are A[T], -- .,A[JJ and A[i], -- -,A[r]
Notice that the dummy keys A[0] = -® and A[N+1l] = ® are not needed
in this algorithm, because both pointers must at least stop at p.
Also we cannot have jJ =r or i= | ,because this would imply
A[i] <v fTor all 1 or A[j] > v for all j , which is impossible.
Unfortunately, this very elegant method cannot be recommended for
partitioning because it introduces a bias into the subfiles. When
partitioning a random permutation of distinct keys, all of the other
methods we"ve seen will produce a random permutation of keys in both
the left and right subfiles. (This fact is very important to the
analysis of Quicksort, and it is proved carefully below.) Partitioning
Method 2.3, however, only produces random subfiles if the partitioning
element is already in place. If 1t fallsin the left subfile it isthe
largest element there; if it falls in the right subfile 1t is the
smallest element there. In either case, it does not fall into every
position with equal probability. In Example 2-3, since the partitioning
element is exchanged with the first or second key from the right that
has a smaller value, it tends to fall near the right end of the right
subfile. This bias not only makes analysis of the method virtually
impossible, i1t also slows down the sorting process considerably. We
will study this in more detail iIn Chapter 5*

We are beginning to face the rather discouraging prospect that we

might not find a partitioning method which avoids all of the anomalies

35

encountered above. Are there methods which put the partitioning
element In its proper place, produce random subfiles, perform acceptably
when equal keys are present, and have an efficient inner loop? Fortunate

there are: for example, the following program satisfies all of these

requirements.

Program 2.2 ("Partitioning Method 2.1)

procedure quicksort (integer value £,r);
if r > 1 then

I
(=
I

r+l; v = A[£];
loop:
loop: 1 := i+l; while A[1] < v repeat;
loop: J := j-1; while A[J] > Vv repeat;
while 1 < j:
ATl = AL
repeat;

ALE] =: AlJL:

quicksort (I1,j-1);

quicksort (g+1,r);
endif;

The partitioning method used here is detailed in Example 2.1+.

Again the first element of the array is arbitrarily chosen to be the
partitioning element. But now the idea is to leave that element where

it Is and partition the rest of the array on its value. The left pointer
therefore starts at the second element of the array. The first element
>HJ @Is 95 y andthe first element < U*from the right is 01 , so
that these two are exchanged. IJextthe 88and the 10 , then the 9v
and the 2h are exchanged; and the pointers cross on the 55 and

the 99 <« The inner loops have now ensured that all of the elements

to the left of the 99 are < U ;and all those to the right of the 55

Example 2.k

partitioning:

uu

sorting
the file: kk

o7
01

3)

26 01

26 01

26 01

26 01
26 01

26 95
26 01
26 01

ok

0/\

\ohf

08

108

oH 08

Ok

e e

e e

26

2
10

08 (10)

08

S

37

88 96 3k 07 35

sr

10

10

10
10

88
10
10
10

2k

2k
2k

96
2k
2k
2k

3k
3k

3k
yk
3k
3k

10 (26) 3k
08 Coy

B'19)

07 35
07 ¢

07 35

074
©

99

2h\

08

96 68 88

22

96
96

8 8

2k
96

8 8

8 &
8 8

8 &

10

35

95

01
°5

[L

95 96 68 8 (B 11
68 88 ($5) 9c

~T) 88

11
11

are >HU . Therefore, the UH 1is put into its proper position simply
by exchanging it with the 35 -

IT all the keys are distinct, this method performs exactly as
Hoare"s original method (Partitioning Method 2.2) with p =1
However, the technique used here of leaving the partitioning element
out of the partitioning process allows this method to perform properly
and efficiently when equal keys are present.

The proof of the fact that Partitioning Method 2.U produces random
subfiles after partitioning is not difficult. Suppose that a permutation
of {1,2, ...,N) is being partitioned with all N. such permutations
equally likely, and suppose that the partitioning element is s ,

1 <s <N e Consider the s-1 elements which are less than s . To

each of the (s-1)! possible permutations of these iIn the original file
there corresponds one and only one permutation in the left subfile.

Since all of the original permutations are equally likely, all permutations
of the left subfile must be equally likely. The analogous argument holds,
independently, for the right subfile. This same argument holds for
Partitioning Methods 2.1 and 2.2, but not for Partitioning Method 2.3.

The fact that partitioning produces random subfiles will be the basis

for our analysis iIn Chapter 3-

Program 2.2 is a very elegant description of the Quicksort algorithm
based on the most efficient partitioning scheme known. However, the
program as a whole is not a practical sorting method, because of the
recursion. Recursion makes Program 2.2 impractical not necessarily
because of the time overhead involved, but rather because of the space
overhead which could be involved. To illustrate this, we will first
look at a useful way of describing the operation of Quicksort with

binary tree structures.
33

The binary tree corresponding to the operation of Quicksort on any
permutation of n elements can be constructed as follows: If n =0
the tree iIs empty, and if n =1 the tree consists of one node with
that one element. Otherwise, the root node iIs the partitioning element,
the left subtree is the tree corresponding to the left subfile after
partitioning, and the right subtree is the tree corresponding to the
right subfile after partitioning. For example, the tree corresponding

to the operation of Program 2.2 on our fifteen keys 1is

This tree structure is a succinct way of describing the operation of
the Quicksort algorithm.

Clearly, there is such a tree for each permutation of the keys
and there is at least one permutation for each tree, though many
permutations may produce the same tree. We can always work backwards
to reconstruct a permutation of the keys from a given tree. For

Program 2.2 the method is to scan the tree iIn symmetric order, writing

39

down the keys as they are encountered, except that the root node of
a subtree iIs always exchanged with the first number corresponding to

its left subtree. This procedure for the tree above is illustrated

below:
01
Ob

07 0U 01
08
10 08
2k 08 10
26 08 10 2k

3k

35 OU 0126 08 10 2k 3k oO7
W oU 01 26 08 10 2k Xk 07 35

68

88
95 88 68
96

99 88 68 96 95

W oU 0126 08 10 2k 3k 07 35 99 88 68 96 95

The procedure to generate all permutations corresponding to a given
partitioning tree is more complicated; we have constructed the unique
permutation, for each tree, such that no exchanges A[i] :=:A[j] are
performed during the entire Quicksort operation.

The purpose of the recursion in Program 2.2 is to save subfiles for
later consideration. The "depth” of the recursion is the number of
subfiles which have been saved. Fran a practical standpoint, it is
desirable to minimize the maximum depth that couldoccur. It is not

difficult to see that the depth of recursion at any pointduringthe

0

execution of Program 2.2 is exactlythedistance from the current
partitioning element to the root inthecorresponding binary tree,

I (Put another way, it is the number of nodes whose left or right subtree
contains the partitioning element.) This means, of course, that the
recursive stack must be as large asthemaximum height of any binary

1 tree. If the N keys to be sorted arethe numbers 12 ... N in

order, then the tree is

and an amount of storage proportional to N must be reserved for the
recursive stack. This may be unacceptable, particularly if N is
very large.

This can be alleviated somewhat after noticing that the second
recursive call in Program 2.2 is not really recursive. Since 1t is the
last action iIn a procedure, i1t could be replaced by a branch (after the
parameters have been reset appropriately). If this is done (hopefully by
a clever compiler), the depth of recursion is the number of nodes whose
left subtree contains the current partitioning element. This is usually
smaller than before, but it can still be as large as N , for example if

the numbers N12 3 eee N-2 N-1 are sorted:

ul

These difficulties stem from the fact that Program 2.2 makes an

implied decision which is arbitrary: it always sorts the left

subfile First. The strategy of always sorting the smaller of the

two subfiles first, as we will see, will reduce the maximum recursive

depth to LIg(N+1)j . We cannot expect to do better than this because
such depth is required by the permutations corresponding to the complete

tree on N nodes:

h2

This tree has |_Ilg(\+Dj “full” levels, and possibly one more
partially filled level. No matter which subfile is partitioned
first, the recursive depth when the first node on any level k
A <k< |LlIgD D 1s reached must be exactly k . This means in
particular that the maximum recursive depth is L Ig(\+D)j <

Program 2.3 is the implementation of this idea of always sorting
the smaller of the two subfiles first. Because of the effect mentioned
above, itis ccnvenient touse an explicit stack and to replacethe
recursion by aniteration.For clarity, the detailsof the stack

manipulation and the selection of the smaller subfile have been omitted.

Program- 2.3

procedure quicksort (integer value £,r);
loop until done:

1 =£; J =r+l; v = A[£];
loop:

loop: 1

1+1; while A[i] < v repeat;

loop: jJ J-1; while A[jJ] > v repeat;

while 1 < j:
ALl = ALL;
repeat;
AIE] = AL
if subfiles both empty
then if stack empty then done;
else (E,r) := popstack;
endif;
else if small subfile empty
then (£,r) := large subfile;
else pushstack(large subfile);
(E,r) = small subfile;
endif;
endif;

repeat;

When n elements are partitioned, the smaller of the two subfiles
can be no larger than F > an*l it is always "empty”™ for n < 2 .
Furthermore, the upper bound k2~J acNieve<iwhen s = |~ J+7

Therefore, themaximum stack depthfor Program 2.3 satisfies the

recurrence

By telescoping this formula a few times,

fn) = i+FQ21=%j)

G-) - At(]¥)

1
N
+

we are led to the formula, easily proven by induction,

n+l .,

f(n) = k+fj «K J_:>) _ [j Ei j -1 > 2

Since () = f(l) = f(2) =0 , this implies that f(n) = k , where k

is the smallest integer for which 1 fJ -1 < 2 , or

2k " I 2k-l

This inequality is easily solved for Kk

2k-1 5 n+1 < 2k

k-1 < ~(x) < k

| lgh+DJ -1

Therefore the maximum number of subfiles which can be on the stack at
any point during the execution of Program 2.3 is LIg(N+1)_|-I
Although Program 2.3 may be a useful implementation of Quicksort
in a practical situation, there is one more modification which will
improve its performance significantly. We notice that Program 2.3
iIs not especially efficient for very small files. This is a problem
because, for any size file, the recursive nature of the algorithm
guarantees that it will be used for many small subfiles. We know a
method that is efficient for small files: insertion sorting. This
suggests using insertion sorting within Program 2.3 by simply inserting

the statements

if r-1 < M then insertionsort(£,r) else

endif

into Program 2.3 where indicated by the asterisks. It is not immediately
obvious what the precise value of the parameter M should be: in fact
this will be one of the results of our analysis.

Our knowledge of the performance of insertion sorting indicates
that there is an even better way to proceed. Suppose that small subfiles

(of size <m) are simply ignored during partitioning. This can be

Example 2 _$:

sorting the file M

uu 26 95

35

07
01

01
01

26 01

26 01
oU o

w ©

oU 07

=0

ou
ouU

ouU
26
2b
2b
08

08
08

08
08
08
08
10

88 9 3U 07 35
10 2b 3U 07

10 2b 35 ©
10 2b 3b
10 (26)15U

10 (26)13V @ ©

2b 26 3b 35 ~

99

95

68

2U
96
96

96
88

68
68

68
95

10 01
88 95

88 <:>

88 ©
96 99

implemented easily iIn Program 2.3 by replacing the conditions

"subfiles both empty” and "'small subfile empty' with "'subfiles both small™
and "'small subfile small'. Then the file is only partially sorted by the
partitioning procedure; but a single insertion sort will complete the job
quite efficiently.

Example 2-5 shows what happens with our set of keys when M = U .
After partitioning is complete the keys which were used as partitioning
elements (07 , 36 , 35 , > 99) a”e all in their correct positions;
and in between any two of these are at most M other keys whose values
also fall between the two partitioning elements. This means that the
number of inversions in the whole file iIs the same as the sum of the
number of inversions iIn all of these small subfiles. Therefore, it takes
only slightly longer to insertion sort the entire file than to iInsertion
sort all the subfiles. But small subfiles are never put on the stack
during partitioning, and the overhead of calling the insertionsort
procedure for every small subfile is eliminated, so this method is much
more efficient. Program 2.U is the explicit implementation of this method.

Since this program will be the subject of our analysis, the complete
details of stack manipulation, etc., are included. It may be difficult to
implement the decision structure following partitioning efficiently in
programming languages which don’t allow event variables such as '‘done™
in Prograns 2.3 and 2.U, and an alternate implementation (which uses go to
statements) may be found in Appendix C. Also, the algorithm is "in-line" —
it can easily be made iInto a subroutine by incorporating the first five

lines into a procedure in the manner of Program 2.3*

Program 2.U

integer t,r,p>i>j >
integer array stack[0::2 x F(N)-117;
arbmode array A[O ::1H 1);

arbmode v;

A[O0] := A[N+1] := * = 1; T "=N;
p =0;
loop until done:
i o= 03§ = r+lj v o= AL/ T; A
+°°E:
loop: i ;= i+1; while A(i] < v repeat; C.
loop: j := j-1; while A[J] > v repeat; c-c*
while 1 < j
ALI1 :=: ALil; B
repeat;
A[f] = A[ol;
if j-/ > r-j then if M > j-/ then if p = 0 then done endif;
p =P-2;
/ = stack[p]l: r stack[p+1];
else if r-j > M then stack[p]l] := /; stack[p<-1] := j-1; S'
p p»-2; I = j+1;
else r Jj-1;
endif
endif;
else d| M > r-j then if p = 0 then done endif;
P =P-=2;
1 := stack[p]l; r stack[p*1];
else if j-f >M then stack[p] := j+1; stack[p<-1] := r; S-sS1
p p*2; r = j-1;
else 1 j+1;
endif;
endif;
endif;
repeat;
i = 2;
loop while 1 < N:
if A[i] < A[i-1] then
v = A[i]l; J ::= i-1; D
1°££: A[J+1] := A[3]1: 3 ::= j-1; while A[jJj] > v repeat; E
Atj+1] := r;
endif;
i = i+1;

repeat;

18

Before we can run Progran 2.U on an actual computer we will need
to know the best value of the parameter M , and the amount of storage
which should be allocated for the stack. The optimum value of M will
be one of the results of the next chapter. The maximum stack depth T(N\)
is determined exactly as for Program 2.3- For N < 2vM+2 there is no
stack push, since one of the subfiles is guaranteed to be of size

<M . The solution for N >2M2 1is T(N) = k , where Kk is the largest

N > 2M+2
) =¢(

0 N < 2W+2

This function also depends on M ; but this dependence is left implicit
since we will later fix M at a value which minimizes the running time.
This completes our development of the Quicksort algorithm.
Program 2.U is a very efficient sorting program which can be useful in
a wide variety of applications. This makes the study of the running
time of this program, the subject of the next two chapters, of direct
practical interest. Furthermore, the analysis is very interesting in
its own right, so our attention will turn now from programming to

mathematics.

U9

CHAPTER THREE

The analysis of the average running time of Program 2.U begins,
as with Program 1.5, by counting the number of times each statement
IS executed and relating these frequencies to basic characteristics
of the algorithm. This frequency analysis is most easily doneat the
assembly language level by repeated application of Kirchhoff"s law.
Other characteristics of the algorithm may reduce the number of independent
variables still further: for example the number of stack *pushes'™ must
equal the number of stack "pops'. The running time of Program 2.k turns

out to depend on the six quantities

A — the number of partitioning stages,

B — the number of exchanges during partitioning,
C — the number of comparisons during partitioning,
S — the number of stack pushes (and pops),

D — the number of insertions, and

E — the number of keys moved during insertion.

Each instruction in the assembly language version of Program 2.h (in
Appendix A) is labeled with its frequency. Also Program 2.U itself is
labeled accordingly. Due to symmetries in the algorithm, some of the
quantities, for example C* , cancel out when the total running time
of the program is computed. This cancellation might not occur in some
implementations, and there could therefore be some other gquantities

involved.

50

The last two frequency counts listed above, D and E , are the
same quantities that we analyzed iIn Chapter 1. The analysis in Chapter 1
obviously does not apply because the keys are not iIn random order when
the iInsertion sort program is invoked. However, we know how to describe
the nonrandomness in the keys, and we will still be able to study the
quantities D and E .

To calculate the average values of our quantities A ,B,C, S,

D , and E we adopt the same model as in Chapter 1: we assume that the
keys to be sorted are the numbers {l,2, ...,N} and that all permutations
of these numbers are equally likely as input. The fact that the subfiles
after partitioning also fit this model, a primary concern in our
development of a partitioning method in Chapter 2, makes it possible to
find these average values by setting up recurrence relations.

For example, let C™ be the average number of *‘comparisons during
partitioning,, required by Program 2.b to sort a random permutation of
{1,2,...,N) . Then this is clearly the average number of comparisons
required by the first partitioning stage plus the average number of
comparisons required to sort the two subfiles. But it is obvious from
Partitioning Method 2.h and Example 2.k that the first partitioning
stage requires exactly N+l1 comparisons: There is one comparison each
time the 1 pointer is incremented or the J pointer is decremented.
The pointers start with 1 =1 and Jj =N+l , and when all the keys
are distinct, the pointers stop with i-1 = jJj = s where s is some
number between 1 and N . Therefore, 1 is Incremented s times;

J is decremented N-s+1 times; and the total number of comparisons is

N+l . (Some other methods require a different number of comparisons

51

depending on the partitioning element. For example, Partitioning
Method 2.2 requires N+3 comparisons if the partitioning element is
in place, N+2 comparisons otherwise.) If s is the partitioning
element,the left subfile has s-1 elements and theright subfile

has N-s elements, sowe have established that

C

c N—s)

Prfs isthepartitioning element]j(N+I + C

N~ 15S%N ST

for N >M

But we have assumed random input, so that any particular element s is
the partitioning element with probability I/N . This simplifies the

equation to

for N>M ,
1<s <N

which further simplifies to

C,, = N+1 + £ C for N > M
N t 1<s <y ST
IT a subfile is of size <M , it is not partitioned further, so that

we may define

C, =0 for N <M

These two equations define a recurrence relation which can be solved to
yield an exact formula for . In particular, we can immediatelysee

that =M+2 . To solve for larger values of N , a successful

C’IVI+1
strategy is to eliminate the summation by first multiplying both sides

of the recurrence by N

NC = N(\+D) +2 12 c -, for N>M ;
N I<s<N L

52

and then subtracting from this equation the same equation for (N-1)

NCT-Q@-DCT , = NOWD - (N-DDN+2 L C -2 £ c ,
N N 1 I<s<N S1 1I<s<N-1 S

= 2N+2C ~ , for N-1 > M ;

or

NCh = (WDDCK 142N, for N > M+l

This equation can be divided on both sides by the "summation factor™

N(N+1) to yield

CN CN-1 + 2
N+1 N N+1

which telescopes to a summation

N CMl + y
N+ T
_ 1+aiH+l - a2 © fOT K>M =

(This technique of reducing a recurrence to a summation by multiplying
by a "summation factor™ is analogous to solving a differential equation
by using an "integrating factor’” — see Egs. (@) and (10) in Appendix B.)
Therefore, the exact formula for the average number of comparisons

required by Quicksort is

cn = <"™I>2W - aW +1> > Ffor H>M e
The average values of all of the other quantities are found in
exactly the same manner, although the calculations required are
occasionally more complex. For , the average number of partitioning
stages, the derivation is simpler. The recurrence

1+ S 1<%<N r N >M

reduces, after eliminating the summation, to

\ = \-1 1
N+ N NQ\+1)

or

AN* 1 = AN-1+1
N+1 N

which telescopes to

N+1 w-2
2
M+2
since » =0 “r N<M and = 1 < Therefore, the average number

of partitioning stages Iis
Al =2 “1 » for N >M

The derivation for the average number of exchanges is more complicated,
because the number of exchanges required on the first partitioning stage
is dependent not only on the partitioning element, but also on the

arrangement of the keys. The recurrence relation is

1 £ | average number of exchanges when v
w~N i<s<m \ sis the partitioning element J
+ 1 L @ ,+B,,)
N 1<S<N “-1 *-S

By studying Example 2.U and Partitioning Method 2 U, we can formulate
a more specific expression for the first term in this equation.

We notice that Quicksort is as efficient as we could expect with

respect to exchanges. The only keys exchanged are those which must be
exchanged: If s = A[l] is the partitioning element, then only those
keys among A[2],---,A[s] which are greater than s are exchanged
into the left subfile. The probability that there are exactly t such

keys for a given value of s is

(S1)

so that the average number of exchanges when s is the partitioning

element is
N-s (N-2\
(N-s)(s-1)
N-1
(The identity 2 fs-I-t) = ~s-2) 81 i118™*®106 of

Vandermonde’s convolution —- see Eq. (21) in Appendix B.) The recurrence

for the total average number of exchanges is therefore

B =/1-r Z (N-s)(s-I1) + 8 Z B .
N N(N-1) 1<s <N I<s<N S1

1<s <N S 1

N-2 2
S~ N 1<s<N s1

This is a linear combination of the equations we have just solved, so

that

or

for N >M

Notice that since ~ I and jJ pointers move in
about three elements at a time on the average. This fact is of interest
when we consider the problem of "“timing” the program to highest
efficiency for particular computers (see Appendix A).

The fourth quantity describing the running time of the partitioning
portion of Program 2.h is S , the number of stack pushes. This differs
from the other quantities that we have studied because its value is
always 0 for N < 22 (rather than for N <M). As we noted in
Chapter 2, the algorithm is designed to save a subfile on the stack only
when necessary. If N < 2W2 , then one of the subfiles iIs guaranteed

to be of size <M and will be left for the insertion sort, while the

other 1is usedfor the next partitioning stage. For N > 2W2 ,

there will be no stack push if the partitioning element 1s 1,2,...,M+1
since the left subfile can then be left for the insertion sort;and
there will be no stack push iIf the partitioning element is

N-M, n-m*I, N-I, N since the right subfile can then be left

for the insertion sort. If the partitioning element is in the
raige W2, M3, ..., N-M-2, N-M-1 then both subfiles are bigger
than the threshold, and one must be saved on the stack. This

argument means that the recurrence

average number of stack pushes when
SN N s Is the partitioning element

can be simplified, to

S =Zi(N-2m2) +] L S

, for N > 2W3 e
N N "l<s<N

In particular, since =0 for O <N < 2wW2 , then -

This reduces to thesame equation that we had for

Vi W 1.

N+1

except that the recurrence does not telescope as far:

SN+1 S2M+3+1 W3+ 1 1
N+l 2WmC 2N 2M+3

The solution is therefore

H " *1 7 for N > 2%

Finally we must look at D and E , the quantities describing the

time taken by the insertion sort. We can use the same devices as iIn

Chapter 1 to describe these quantities. The quantity D 1is the number

of non-zero elements in the inversion table of the permutation

remaining after partitioning, and the quantity E is the number of

inversions in the permutation after partitioning.

The definition of partitioning makes the recurrence relations for

these quantities especially simple. Since the partitioning element s

IS put into position, the inversion table entry BS for the permutation

left after partitioning is O . Further, if an inversion table entry

for some element in either subfile iIs non-zero, It must be because there

iIs a larger element to its left iIn the same subfile. The number of
non-zero elements in the inversion table for the whole file is the

sun of the number of non-zero elements in the inversion tables of the
subfiles. Similarly the sum of the inversion table entries for the
whole file (the number of inversions) is the sum of the sums of the
inversion table entries for the two subfiles. Therefore, for N >M ,

we know that

and

1<S<NES¢

These reduce quite simply to

Do Dys1
N

N+1 M2

and

A A i

N+1 N M+2

The subfiles produced of size < M are random by our assumptions, so

that the results of Chapter 1 do apply for N <M

dn -

and

59

We now use these expressions to compute the average values for N = M-I

The telescoped recurrences above will then give the formulas for ail n

First,
DM+1 = M+I 1<SA<W—1 Ds-1
= & o<f<,, (S-H*
. om -m (Owghm-m)

(see Bgs- (U) and (@9) in Appendix B), which simplifies to

~ m+8-"m -

and leads to the solution

DN m N+1-2~1 Vi > for N>M -

Similarly,

+
M+1 0 <s <M T

m 2. (1)

1 F£M+I'\
M+l A~ 3]

MQM-1)

and the average number of inversions left after partitioning is

r n >nm -

We have now found the average values of all quantities upon
which the running time of Program 2.k depends. To summarize, we know

that the Quicksort program requires, on the average,

\ =2si -1 stages>
% = (MDD %+ -JH 2+] -~) +] exchanges,
CN = (N+1) -2H"2+ D) comparisons,
Dn =DM -2 J insertions,
= (\+D) moves during insertion, and
N = "1 Stack ~ b 68-
These formulas all hold for N > 2M+2 . For M <N < 2w-2 ,we know

that SNT: 0 , and all of the other formulas are still valid. For
N<M, we have defined \ =BN =CN =SN =05 DN =N~*N ~~

R = N(N_—I)f— . These definitions made it convenient to solve our

recurrence relations, but the analysis is not entirely accurate if
the initial file to be sorted is of size smaller than M . Since we
are interested primarily in the performance ofthe programfor large
values of N , we will pass over these detailsandwork with the

formulas for N> 2M+2 .

6l

We notice that the largest of these terms are and , the
number of exchanges and comparisons. The harmonic numbers behave like
logarithms, so that these are the " N Ig N ™ terms which dominate the
running time of Quicksort. The assembly language implementation of
Program 2.U, which is given in Appendix A, requires a total time of

2hk + 11B + Uc + 3D+ 8E + 9S + 7N .
Again, these coefficients are only representative, and they may vary from
computer to computer. (Appendix C iIs a discussion of the implementation
on some real computers.) The significant thing about them is that the
coefficients of B and especially C are very small. This is important
because we know that these quantities dominate the total average running
time. It is Important to note that this is what makes Quicksort '‘quick’.
Not only does its average running time depend on quantities that behave
like N Ig N , but also the coefficients of the quantities are small.
The coefficient of the number of comparisons counts a compare, a pointer
increment, and a conditional jump. It is hard to imagine a simpler inner
loop (although the technique of *loop unwrapping” will reduce the overhead
per comparison even further — see Appendix A). This point may seem obvious,
but it is often overlooked when programs are being analyzed. Insertion
sorting is the best method for small files for the same reason: the
coefficient of N2 in the expression for Its running time is small.

Substituting the formulas for the average values of the quantities
A,B,C,D,E, and S into the expression for the total time of

Program 2.U, we get:

¥ >V -¥ +1 71—w0~2 +|Segg) -3)

for the expected running time of Quicksort. From this exact formula,

we can compute the best value of the parameter M . The graph of the

62

function

f(M) . ai+n-70" + (g8+ 3*5 - 3* ~

iIs shown in Figure 3*1 — it takes on 1ts minimum value when M =9 e
Although the value of M does not affect the leading term of the
expression for the total running time, the proper choice of this value
does have a significant effect in practical situations, because when N
is In a practical range fT(M) is the same order of magnitude as -
The graph of the total running time for N= 10,000 1is shown in
Figure 3.2, as a function of different values of M . Theoptimal
value of M results In a 12 to 20 percent savings over the time taken
by more naive implementations of the algorithm. (For example, Program 2.3,
which is essentially Program 2.h with M =1 , is about 18% slower when
N =1000 and 1 slower when N = 10,000 .)

Even if the exact values of the coefficients of the quantities
which affect the running time of a Quicksort program are not known, it
Is wise to avoid the partitioning of small subfiles, for this analysis
shows that the precise choice of the parameter M 1is not highly critical.
For Program 2.h any value of M between 5 and 20 would do about
as well as M =9 e We can expect In general that ifour implementation
involves a large amount of overhead, a larger value of M should be
used, and Figure 3*2 shows that it willnot hurt much to pick a value
of M that is higher than the optimum.

We can cast our result for the average running time of Program 2.4

in more conventional terms by using Eq. (62) from Appendix B,

Figure 3.1. Contribution of M e

Time (4 10)

Figure 3.2. Total running time for N = 10,000

65

in the following asymptotic calculations on our exact formula:

f (N+DHYP* -F + 1 (N+DFW)

AL QD FIN N+T7+ A +0 A A 4 A (WHDFQ)

N (NHDINN + (NFD)™ 7+] FMDI -1T+0Q)

This, after we substitute 7 = -57721 ... and the optimum value
f(O) = -50860... , gives an approximate formula

11-67Q\+D) In N - 1.7UN - 18.7U
or
8 09(N+1) IgN - 1 7UN - 18 7b

for the average total running time of Quicksort. We can have confidence
in this approximation: because we started with an exact formula, we can
carry out the derivation to any asymptotic accuracy we desire.

The calculation of the variance of the total running time of
Program 2.U is far too long and involved to be presented here. Although
it is very important to have an approximate idea of the magnitude of
the standard deviation, the exact value of the variance is, from a
practical standpoint, the least interesting of the quantities we study
in the analysis of algorithms. Moreover, It is the most difficult to
get — the calculations involved in deriving variances are often very
intricate. To illustrate this, we will study the variance of the number
of comparisons required by Quicksort. The derivation of an exact
formula for this involves a variety of sums involving harmonic numbers,

most of which are worked out iIn Appendix B.

66

The most convenient way to set up the problem is in terms of
generating functions. Let c~k be the probability that Program 2.k
uses exactly k comparisons to partition a random permutation of

{1,2, ...,N} ,and let C @ = £ <c¢ zk be the generating function
k >0

for e Suppose that s is the partitioning element for the first
stage , 1 s s N . Then CS"j_'(Z) IS the generating function describing
the number of comparisons Program 2.b uses for the left subfile,

g(®@ is the generating function for the right subfile, and z"+
describes the number of comparisons used in the first partitioning
stage. Since these are all independent, we can multiply them to get

HIC . @ = pi - JProgram 2.b uses exactly k comparisons 1 k
s-1 N-s® " ~ E>q \ when s 1is the partitioning element J

Let us denote the conditional probability on the right hand side by cj”s

Then £ Pr{s is the partitioning element)c =c , so that we
I<s<N

can remove this condition by multiplying both sides of the above equation

by | = Pr{s is the partitioning element} and summing over all s :
1 N+l C .@CT @ = £ £ Prf s i the Sl
i<s<N 3-1 N"'S k>0 1<s <N {-Partitioning elementd Nks
= £ ¢ zk
k>0 Nk
=CN@ *

As before, this will hold for N >M ; for N<M , C @ =1 since no

"comparisons during partitioning” are used:

r
1 M ¢ cs1@Ns®@ , N>M ;
N2 j<s <N

c,(:) - <
N <M

This is a probability generating function for all N , and the recurrence
appears to be difficult to solve explicitly. However, it does provide
enough information to compute the average and variance, since it leads
directly to recurrences in the derivatives of the generating function,
evaluated at z =1 . Since

C"(@ = I!I (NN z c,ml(t)cnmaM
I<s <N

al £\|+I])
N 1<% <N <s-i(2> W 2D+cs-1EzXxn-s@) >

the average is given by

N+1+N S _ €i-i@)+cd-, ()

CN(> - <
0 N <M

This is exactly the recurrence that we have solved already for the
average number of comparisons required by Program 2.U. To simplify
the calculations as much as possible, we will take M =0 , so that

the solution is
CJ(Q) = 2\+D) Hijrl =D .

which holds for all N . To get the variance, we first proceed in the
same manner to calculate CM{1) < The second derivative of the generating

function satisfies

c'@ =1 e8 1(2)cB_s«

+ R D A T<1;<N<T(CS.—I(Z)CN—S) +Cq (A0 _o (D

T N? 1<§ <N (Cs—IV)‘C‘N—sV)'+20's—|§/z)'CN—s(z)'+CN—s(z)')'

so that the recurrence for C (@) is

c'(D) = N(\+D) + jj (D £ Cg @
1<s<N

+ AE (o necir (N + £ c’ ()
I!I1<S <N s—lg N—Ss Ill1<'s <N s—-lg

This iIs essentially the same as, but much more complicated than, the
recurrences that we solved to get our average values. The same method
of solution is appropriate. First we multiply by N and subtract the

same equation for (N-1)

NC" (D) -(N-1)C" 1(1) = N2QWL) - (N-1)2N

+ U(n+i) £ c” (I)-UN £ c O
1<s<N 1<s<N-1

+2 A£ C. Jder M
12%s <N s-1lv Nss

2 £ ¢ L@C ., @D
1<s <K-1 "-1 ~ N-1-S

69

' tar simolift"ing 3™ rearranging sane terns, »e nave

. i - /-* T 1 t-\ fre1 f \ AT AN L p*
= +* n -S1-) ~—S”™ ~--s-i) »
* I1<s <71 — -

into which we can substitute the known expression for C,.°I)

1C"a) -aJ+1/7a) = 17M7-1) + 3/Fi)Th._ 1)+ 2 2s fa -1) tSi..

+2)
1<s <17-1

HF317-1) + 571#DI7H,E ,) + 5 y SHch.t ¢
“ 1<s<17-1

+8 L s H-5 Y SE,t - FA-DI7
1<s<17-1 S 1<s<N-1 K-S

These sums involving harr.onic numbers are tricky to evaluate — symmetry is

used to reduce them to the basic suns given by Egs. () and (23) in Appendix B.

2 Y sHgp, = Y sHy + Y (NesH H
I<s <171 I<s <17-1 1 <S<17-1
] Y H H.
1<s<11-1 S *“*

TNH) GH - H”) - 2ARHii+2N2

Ks1J-1 SHs = (00~ 10 ’

ad

70

E sSw =N E H - E s H
1<s<N-1 1<s<N-1 1<s<N-1

Substituting these expressions gives

NCAD) - (DS 1) = NGBN-1) +8(N+L)N(HN_1) + %h(N+1) (HR - U(2))
- 8N2EL+ 8N2 + SNCN-I) I~ —~AN(N-1)

82h + 8n2-Mn-i)n

= N(3N-1) + UN(H+L)(HY - HA2))

IT both sides of this equation are divided by N(N+1) , the result is

the telescoping recurrence

N M M , R 2
Nl(l) + 1 |I + 1,\,2 w(2)

N+1 N+

which has the solution

- CA(D +
N+1 0 1 <R<N

= 3AN-b ,+¥ E H® - & E h 27~
N*+] 1<k <N Kk 1<k <N k

Using Egs. (B) and (6) from Appendix B, we have

C”(I)
"1t - - >N - % +1+1INHDHY = M2N+1)Hn + 8N - Mk+1)H?) - UIN

71

or

CJ() = 11HN+1D) - -~(N+D (n+3)hn+Uw 4)2G™-h™)

Finally, the variance iIs given by

c"(D+cA() -CA(1)2 = HK(N+1) -U-U(N+1)(2N+3)Hn +UN+1)2(H* - Hj)
+ 2(\NHD) (Hn+l - D)

- Mtf+D2~ - 1) 2

var(CN) = 7N2 + ON - A — IORN+DIA - U(N+1)2

@

Since iIs asymptotically —ngz— , (see Eq. (B3) iIn Appendix B), this

means that the asymptotic formula for the variance is

var(CN) = (=« T 2)N2 + O(N In N)

In principle, we could proceed as in Chapter 1 to find the
variance of the total running time, using exactly the same method.
The exact solution is quite long and involved, but even for general M
we can derive the asymptotic formula above. Also, none of the other
quantities has a variance of the same order as , and so we know that
the standard deviation of the running time of Program 2.h is approximately
.68N . This is enough information to give us confidence in the stability

of the formula that we have derived for the average running time of

Quicksort.

72

CHAPTER POUR

In this chapter we will look at the operation of Program 2_.h in
the best case and in the worst case. Interactions between the quantities
involved make this analysis more complex than was the discussion for the
best and worst case of insertion sorting. As we will see, for Quicksort
the input permutation which leads to the highest possible number of
comparisons requires no exchanges, so that it is not at all clear what
the worst case of the whole algorithm is. Such interference among the
quantities makes It unwise to rely on intuition, and we will try to
develop our results carefully.

Our strategy to solve for the average running time was to set up
a recurrence relation by conditioning on the element used for the first
partitioning stage. This approach is also attractive for the analysis
of the worst case. Let be the time taken by Program 2.U in the
worst case, out of all permuations of {1,2,...,N} = Then we have the

formula

Th = max {time taken |s is used as the partitioning element} .
I<s<N

As before, we will set up a recurrence relation for this quantity by
looking at what happens during the first partitioning stage. Since we
are dealing with the total time taken, It is convenient to subtract
off the time which is independent of how partitioning is done, and to

write the recurrence in terms of the quantity T~ -7N :

Tw-7N = max ({time taken for the first partition, using S}
I<s<N

+ Ts 1-7(s-1)+Tn_s -T(N-S)) > for N >M .

73

After inspecting the program, we are lead to the equation

Tw = max (QUA+11B+UC +9S+7+Tg_1+TN_s) for N>M ,
I<s<N

where A, B ,C , and S denote the contribution of the first
partitioning stage to the quantities we defined in Chapter 3* We found
during our derivation of the average running time that these contribu-

tions, If s 1is the partitioning element, are

A=1 , B=t , C=N+tl ,and S=AgKM , TFfor 1<s<N

Here é\IM iIs defined to bel if there iIs a stack push:

M+2 < s < N-M-1

otherwise ’

and tis the number of keysamong A[2], -.-,A[s] which aregreater
than s. If all of the keysA[2],-.--,A[s] are greater than s, or
if all of the keys greater than s are among A[Z2], -- -,A[s] , then t
assumes Its maximum value, namely min(s-1, N-s) . This occurs
independently of the values of the other guantities, and independently
of what happens iIn the subfiles.

Substituting all of these values iInto our recurrence, we have

TN = . SasX<N QU+ 1Imin(s-1, N-s) + UN-D) +9ASN|V|+ Ts—1+ T,th) “

1@3&,\] (UImin(s-1, N-s) +Ts—1’+-Kr—ts +9A8NM)]+’\N+35 , for N>M-

The contributions of the quantities D and E are accounted for in

our equation for small N :

= max(3D+ 8e + 7N) for N <M

Here the maximum is taken over all permutations of {I>2,...,NJ = Since
Program 2.U will actually make one partition on a file of initial size
<M , this equation is not entirely accurate; but defining it in this
way makes the recurrence for N >M correct. Now, we know from
Chapter 1 that D and E both take on their maximum values when a
permutation in reverse order is sorted, and that these maximum values
are D=N-1 O if N=0 and E = NWN-I) . This leads to a

complete recurrence for the worst case running time:

max (A1 min(s-1, N-s)+Tg_x+T +9A)+ UN+35 , N>M
1<s <N

1<N<M

N=0

The recurrence for the best case is derived in an entirely analogous
manner. Let U, be the time taken by Program 2.U in the best case of
all input permutations of {1,2, ...,N} . Then the same argument as

above says that

min (QUA+1XB+UIC+9S+U ,+U, +7 , N>M;
1<s<N S°1
min(3D+ 8 +7N) , N <M

We know that the best case for subfiles of length < M is to have them

inorder O =E =0) ; and the best case for B 1is to have no exchanges

at fdl (i.e., when all of the s-1 keys A[2].A[3], ---,A[s] are less

than s). This gives, as above,
min (U, +Uy o+ 9AR)+UN+35 > N >M
I1<s <N
7N N <M

Let us now attempt to solve these recurrences. We will begin with
TN , the easier of the two. The quantity to be maximized in the expression

for Tj is symmetric about s = N+l-s , so we need only include the terms

l1<sc< NJ{)! . For all of these terms, we know that s-1 < N-s , so that
max UG-DtTs1 +INstAgn)tw+ss N>M ;
1<s < Nl
- 2
n= {Ub +&-3 . L<N<M; &
(o] N=0 .

We expect that Quicksort should perform worst for N > M when it
chooses the smallest or the largest element as the partitioning element
(=1 or s=N) . When the partitioning trees are degenerate in this
way we can easily compute the values of the various quantities. Again,
because of symmetry, we will treat the case where the maximum in the
expression above occurs at s =1 : the smallest element is used as the
partitioning element at every partitioning step. Then the recurrence

becomes

Tn_1+Un+35 > N>M ;

TN= <
Uh +6n -3 , 1<N<M ;

76

which is easily solved:

T =T + 1, (1.k+ 55)
1<k<N
= Un2+ 6n -3+ 2N(\+1) - 2M(MH) + 35N - 35M
TN = 2N2+37N+2M2 -3IM -3 > for N>M>1

We can similarly solve for the various quantities, and we find that,
when the smallest element is used as the partitioning element,

Program 2.U requires for partitioning

A = L 1 =N-M stages,
M+1 < k <N

B =0 exchanges,

C = H &t = f I A comparisons, and
M—1< k <N \ dJ V.d J

S =0 stack pushes.

Neither B nor S are maximized in this case (in fact they are both
minimized) so that it is necessary to prove this intuitive result.
There might possibly be a permutation for which Program 2.U requires
slightly fewer stages or comparisons, but many more exchanges or stack

pushes. Fortunately, however, we can prove the following:

Theorem U.l. The worst way to partition is to always choose the smallest

element as the partitioning element.

Proof. This is equivalent to showing that the maximum in the recurrence (*)
always occurs at s =1 . The induction proof of this is more complicated

than seems necessary, because the function T is not quite convex.

77

First, for N =M+l , we have

Tm

max (- +Ts 1+TMFL s)+ HQHD +35 =« IF M- 1,
l1<s<~n

_ i M+2 _
then s =1 1is the only value iIn the range 1 < s < - e Otherwise,
iIT M>2, then since T =0 this expression has the value
TM+U(M+I) + 3 for s =1, so we need only show that

Ty > HGE-D +T for 2<sc<’,

1% Ther-s

We know the values of ™ , Tg 1 , and TM+1 g from (*). Substituting
these expressions gives
Wh2+6n -3 > -1 +UG-1D)2+6(s-1) -3+ Um+1-s)2 + 6(M+1-s) -3
or
8s2 - (Bm5)s +8m-6 < O
This inequality clearly holds because the convex parabola
2
8 - (@itb)s+8n -6 must take on Its maximum in the interval
M+2 _ _
2 <s<-p- at one of the endpoints. For s =2 the value is
-8M+16 and for s = itis 1 (M-2@B-"M) . These are

both <0 , so the theorem holds for N = M+l

ITf the maximum occurs at s =1 for all n <N , then we know

from the discussion above that

78

¥ onZ + 37n + 2% - 31M - 3 n > M
T, =1 *2+6n-3 I<n<M
0 n =0

S

To prove the theorem, we want to show that

max (11 (s-D)+Tg_1+Tn_s+9™sNM) occurs at s =1 . In
1<s<IT

other words, it is sufficient to show that

V1 2 11(5-) +Ts-1+TN-s+9 for 2<s<TT e

We can use the iInductive hypothesis to get expressions for Ts—’ and
g here, hut the proof breaks down into four cases, depending on
whether s-1 and N-s are greater than or <M . The calculations
involved are straightforward algebraic manipulations, so we do only

one as an example. If s-1 <M and N-s >M , then we want to show

that

2(N-1)2+37(N-D) +2M2 -31M -3 > HI(s-D) +~(s-D2+6(s-1) -3
+2(N-s)2+37(N-s)+2M -31IM -3+9
which simplifies to
6(s-1)2 -20(s-1) -U(N-D(s-1) +6 <0

Again we have a convex parabola (in the variable s-1) which takes

on Its maximum in the interval l1<s-1< at the endpoints,
and a quick calculation shows that this maximum is negative iIn both

cases. Similar arguments hold for the other three cases: s-1 <M

79

and N-s <M ; s-1>M and N-s >M ;and s-1>M and N-s <M
D

The worst case running time iIs therefore described by two parabolas:
N +0 -3 for 1<N<M ;and 2N2+37/N+2M2 -31IM -3 . These
curves intersect when (M) BL-2(N+M)) =0 ; that is, when N =M
or N=15g “M e This explains the complication in the proof of
Theorem U.1 —for M >8 , the T,, function iIsnot convex. The
situation is shown in Figure U.l.The heavy dashed line shows the form
of T, for M<7 and the heavy solid line shows that T, is not

N
convex for M > 8 .

2N2+57N+2M2-5JM-5

Id
- = s n 3 N
t T P
/ My (€7) 4, (28) &

Figure L4.1. Worst case running time (exaggerated).

81

Theorem h.1 tells us that Program 2.h performs worst when, for
all N >M , the smallest element is used as the partitioning element,
and when, for N <M , the keys are in reverse order. Put another way,

this means that the worst case partitioning tree is

We can use the procedure described in Chapter 2 to find a permutation
that has this partitioning tree. (The procedure must be modified
slightly to account for the subfile of size <M) It is easy to see

that a worst case permutation is therefore
1 2 3 ... N-M-I N-M N N-1 _.. N-M*2 N-M+I

In fact, symmetry says that the worst case also occurs when the largest

element is used as the partitioning element, so that
N M-I M2 ... 2 1 M ML ... N-2 N-I

also leads to the worst case, as will any permutationwhose partitioning
tree has N-M levels (each node having only one non-empty subtree).
Another surprising example of worst case performance of Program 2.k is

when the keys are in reverse order. The permutation

82

N N-I N-2 ... U 3 2 1

has a ""zigzag'" partitioning tree,

with a file of size M of keys finally occurring somewhere in the
middle. If N-M 1is even, this file will be in reverse order, and
we have a worst case permutation.

In order to study the operation of Program 2_.U in the best case,
we need to refine the above techniques, because the function is
substantially more erratic. It will be convenient to work with binary
tree structures, although the correspondence that we will use will be
slightly different than the one used iIn Chapter 2. First, we have to
extend the correspondence to account for the fact that subfiles of
length <M are not partitioned. For example, the operation of

Program 2.U on our sample of fifteen keys when M =" (see Example 2.5)

can be described by the tree

Here, external U { nodes have been added to indicate the size of
the subfiles not partitioned. If we replace each key by its relative

rank in the file (this is the same as assuming that the numbers 1 to 15

are being partitioned), we get the tree

&h

An important characteristic of this tree is that the numbers assigned
to the internal nodes are redundant -- they can be reconstructed from
the numbers in the external nodes. Recall that each internal node
represents a partitioning phase, and the number assigned is the rank
of the partitioning element used in that partitioning phase. But each
of the elements less than this partitioning element must be represented
somewhere in the le ft subtree. Each internal node represents one, and

each external node O represents x such elements. We have

rank of partitioning element = (number of internal nodes in le ft

subtree} + (sum of weights of
external nodes in le ft subtree]

+ 1

(It is customary to call the numbers assigned to nodes "weights".) Put

another way, this equation means that an algorithm to assign weights to

85

internal nodes is to scan the tree iIn symmetric order (or inorder),
assigning weights fron 1 to N to the internal nodes, but skipping
X numbers when an external node |xj IS encountered iIn the scan.

For studying the best case, it will be useful to put a different
weight on each internal node, namely the size of the subfile represented
by that node (rather than the partitioning element used for that subfile).
We are led to a consistent formal definition of this correspondence
between the operation of Quicksort on a permutation of n elements
and binary tree structures: If n <M , the tree is the single node
jn | - Otherwise, the root node is and the left and right
subtrees are the trees for the left and right subfiles. Our example

for M = U under this correspondence is

The structure of the tree and the weights of the external nodes are

obviously the same as before, by definition. The weights of the internal

86

nodes are again redundant, and can be reconstructed just as above,
except by considering both subtrees. In this correspondence, the weight
of every node is one more than the sum of the weights of Its successors.
Clearly, we can change from this correspondence to the other whenever
convenient. Also, given any binary tree with root node ® and
weights fron 0 to M assigned to its external nodes, we can calculate
weights for the internal nodes. If these are all > M , then we can
also construct a corresponding permutation on N elements.

Using the weights and some other elementary properties, these trees
are easily related to the analysis of the best case. Given a tree with

root node (n) , define the following four guantities:

a = the number of internal nodes;

s = the number of internal nodes whose successors are both
internal nodes;

c = thesum of the weights of the internal nodes; and

C = the sum of the weights of the external nodes.

Now, recall that we developed a recurrence for the best case running time:

Q
min (VI +UN-s+9W +1,N+55 , N>M;
1<s<N
UN "™ \
N N<M .
s

This expression can be recast iIn terms of the binary tree structures.
Essentially we argued that the only *costs™ incurred by Quicksort in
the best case are for comparisons, partitioning stages, stack pushes,

and the insertion sort scan. Everything else can be made to vanish

87

independently of how partitioning is done. This means that for any
given binary tree there is a corresponding permutation for which

Program 2.h will require
9s + Uc + 35&+ 7C*

time units, and all other permutations corresponding to that tree will
take as long or longer. For example, in the tree pictured above, we

have a=5jJ s=1, c=U2, and c" =10 , so that the best case
running time of all permutations corresponding to that tree is h22 time
units. We can slightly simplify this expression by noticing that every
element must either be used as a partitioning element or fall into a
small subfile, so that a+c®™ =N by definition. Our problem is now

reduced to minimizing the quantity
28a+ Uc+ 9s +7N

over all trees with root node ® . Let us refer to this guantity as
the cost of a tree, and let us refer to the minimum cost trees as the
best case trees, leaving implicit the dependence on N and M e

Our method will be to define a sequence of transformations on
trees which leave the weight of the root node unchanged, but which
lower the cost. Any tree to which none of the transformations apply
will be a best case tree. Our transformations may modify the structure
of the tree and change the weights of external nodes — the weights of
the internal nodes can always be computed.

For example, two external nodes which are not M can be merged
so that only one of them is not M A formal definition of a

transformation to do this is as follows:

Transformation 1: Suppose that a tree with root node © contains

an external node JxJ at level p and an external node |yj at

level g with p<qg and X,y £M

. Let z = min(M , xty+1)

O by and £y} by Xty-z (Note that
0

e 0
(i) As described above, assign to each node a weight equal to one more

than the sum of the weights of its immediate successors. [If any

internal node has a weight < M then make it external and delete
iIts successors. Then iIf any node has |-1] as an Immediate

successor, replace it with its other successor and delete the a

For example, the and the

in our sample tree are merged
by Transformation 1 as follows:

89

Transformation 1 can no longer be applied, since there is only one

external node which is not M

It is not difficult to verify that Transformation 1 has the properties
that we desire, iIf we notice that there is another way to compute the
cost of a tree. Specifically, we can find an alternate expression for c ,
the sum of the weights of the internal nodes, because each external node

contributes its weight to all of the internal nodes above It in the tree

90

and each internal node contributes 1 to its own weight and the
weights of all the internal nodes above it in the tree. The number
of internal nodes which appear above a given node in the tree is just

its level in the tree, so we have

c = S e*level([e D + 21 level((®) + a
external internal
nodes [e | nodes

(The second sum is customarily called the "internal path length” of
the tree; and the first is called the "weighted external path length™.)
Now it is easy to see that Transformation 1 does not increase

the cost of the tree. Step (i) simply replaces the terms Xx-p+y*(q
by z-p+ (Xxty-z)*q in the expression for c¢ . The difference between
these iIs (@-X)p+ (X-2)q = zX)(P-q) which must be <0 since X< z
and p <q . Step (ii) cannot increase the cost, since It can only
delete nodes, which might cause a or c to decrease, and obviously
cannot add to the cost of the tree. Therefore, the net cost
28a+ 4c+9s+ 7N cannot be increased by the transformation.
Furthermore, the only internal nodes affected by Transformation 1
are those on the path to the root from |x| and O in the
smallest subtree containing them both. The weight of this root and
the weights of all other nodes in the tree are unaffected by the
transformation. In particular, the weight of the root node of the

whole tree ® IS never changed by Transformation 1.

91

Notice that the application of Transformation 1 always results
in the number of external nodes which are not M being decreased
by 1 . This means that it can be applied again and again until there

is at most one such node, and we are led to:

Theorem k.2. There is always a best case tree in which every partitioning

occurs on an element whose rank is a multiple of M+I1 .

Proof. Given any partitioning tree with root node apply
Transformation 1 to it until all of the external nodes are M
except possibly one node |x [- Then interchange the subtrees of
any node having jx | 1in its left subtree. This obviously has no

effect on the cost. In our example, we have

In gereral, it is a well-known fact that the number of internal nodes
in every binary tree is exactly one greater than the number of external

nodes. Therefore the left subtree of every internal node in our tree

92

contains k internal nodes and k+1 M nodes for some k . We

have found from our definitions that

rank of partitioning element = [number of internal nodes in left subtree}

+ {sum of weights of external nodes in

left subtree}
+1

k+ (kD) M+ 1

GO X (L)

so that the rank of every partitioning element is a multiple of M=l .
Since the above manipulations do not raise the cost of any tree, even
one which purports to represent the best case, Theorem U.2 iIs established.

O

One of the consequences of Theorem h.2 is that we no longer have
to write down the weights of even the external nodes, so long as the
value of M 1is understood. The weights of any tree which could represent
the best case can be reconstructed from the weight of the one external
node j xj which is not M, so that, for example, the following

two trees are equivalent:

If a tree has no external node which is not M, It is convenient
to pick one and call it [x] , so that all of our trees have one
external node |x | with 0 <x <M . Notice that the internal nodes
have weights of the form kQw™*-D+x for some integer k if they are
on the path fron |x [to the root; k(M+D)+M otherwise.

The last step in our derivation of the best case will be to come
to the intuitive result that the best way to choose the partitioning
element is as close to the middle of the file as permitted by Theorem U.2.

This choice will not in general be unique —- for example the two trees

and

both have the same cost, but the partitioning element is 5w5 for
the first and for the second. We will work with a canonical
form from which trees of equivalent cost can be generated. This is

done by the following transformation on trees.

Transformation 2: Suppose that Transformation 1 can no longer be
applied to some tree. That is, It has exactly one external node E
0 < x <M which is not necessarily 0 - I is mot) sit the

deepest level of the tree, interchange O with any M node

95

i =N *>a c—— 4w

vhicii iz a- "she z.eepes's —eve— erj
N\ E —z fever ezerri

root not containing ' |

deeper: Lewel, cf vhe az'Vv 0 0 m
ar._cerfor at — e tue sucrsrees r

1 - c-rc &~

vit: 0

;his transrormtion is to put |z | in the rightn.es:

and deepest position in the tree, and tc pot an least as rm;." extermal,
nodes in the right subtree as in the left, at7 without increasing the
cost. The application of Transformation 2 to a sample tree iIs shewn
beflow. First [z | is interchanged vith -nen tne &.r
nodes are interchanged; and then the subtrees of the three

nodes are interchanged.

Interchanging subtrees or interchanging any two internal nodes at the
same level clearly has no effect on the cost; and by the same argument
as used for Transformation 1, the |x | interchange cannot raise the
cost since it results in the nonnegative quantity M-x being added to
some internal weights, but subtracted from as many or more other
internal weights.

We are now ready to finally minimize the cost of the trees by
"pbalancing” them. The next transformation takes two external nodes
from the "heavy" part of the tree and adds them to the "light" part,

in such a way as to leave the resulting tree iIn the canonical form.

97

transformation is to replace e

LAY, :hi£ only if it does not increase the
y |

cost. ~It almost always decreases the cost — see the discussion below.)

This transformation is not as complicated as it seems. Basically,
it involves subtracting M1 at a deep level in the tree and adding it
back on at a shallower level, without changing the number of external or
internal nodes. The same arguments that we have used before will show
that the cost is decreased, except possibly iIn the case when a new stack

push is introduced. An example of the repeated application of

Transformation 3 follows:

Depending on the value of O , this tree might further be

transformed to

but this transformation introduces a stack push and therefore could
increase the cost.

We are finally ready to discover the best choice of the partitioning
element. It is almost always possible to apply Transformation 3 until
the number of external nodes iIn the right subtree is either the same or
one greater than the number of external nodes in the left subtree.

More precisely, there will be 1 1 O nodes in the left subtree

i IM] nodes and the j xj node in the right subtree,
where N = k(W*-D+x (O <x <M) . From the definition of our tree
structures, this means that the best choice of the partitioning element
is fl I (1) < With this knowledge, we can compute the exact value
of Uj , the running time of Program 2.U in the best case. First,
honvever, we must find the cases where it is not possible to "perfectly”

balance the tree in this way, and prove the following theorem.

Theorem L<3e Let M > 1 . The best case of Program 2.h occurs when, at every

partitioning stage, iIf n is the number of elements being partitioned

100

then the element with rank r 2(WH1) (1) is used as the

partitioning element. There are two exceptions: if N = 3W3 or

3wU , then the (WI) -st largest element is used.

Proof. IT N iswritten as N = k(\+tD)+x with 0 <x <M , then
N+1 - _ 1 k M-x
MDD <21 2 2w |

rrn_Kk mod 2 + M
11

so that 1t will be sufficient to show that any tree with root node O
can be transformed into a lower (or equal) cost tree with root node 00

and with exactly rn nodes iIn its left subtree.

Following the discussion above, we will use Transformations 1, 2,
and 3 to produce such a tree: It remains only to analyze the conditions
muder which Transformation 3 is applicable. If the change stated in
Transformation 3 is made, then the total cost 28a+Uc+9s+ 7N is

changed by

A = U@M+1-r+ (g-D) (WD - (p-1) (M+D))+5 ,
9 1if a new stack push is introduced

where 6 = / -9 1T a stack push is eliminated

0 otherwise.

101

Either r=M+x+1 ,where 0<x <M ,or r =2M+ 1 ,which is the

sane as the case x =M , so the change is
A = M(q-pH)(MH) -x-1)+ & 0<X <M

We are interested in identifying the caseswhere Ais positive. These
are the cases for which Transformation 5 does not apply. Clearly, since
M > 1 > this quantity will be negative for p >qgt2 or xXx >2 no
matter what the value of 6 1is . This leaves two cases: p =q
and p =g+l .

Let Nﬁ , Ng be the number of external nodes iIn the left and
right subtrees. From the stipulations of Transformation 3, we have

the three inequalities

20 <Nt , ND<2P+1 , and NT <N _-2
n— L— 'n

These will be useful in the remainder of the proof.

A typical example where p =q 1Is the tree

102

We know from the first and third inequalities above that NK >27N+2
so that there is another internal node besides +M+ on level
which implies that A = & . For a stack push to be required on the
left side, we must have NI > 2™h+ 28 N A minimal such tree has

alternate M and CL 2M+1~ nodes on level q , as the following

example shows:

But the right subtree has the same number of levels and two more
external nodes, so there must be at least one more internal node on
level q , so a stack push is also required on the right. This implies
that 529, so A <O .

A similar argument holds for p =g+l . If x=0 or 1, then
by the way \(g™) iIs chosen iIn Transformation 3, ~Xx +M+ must
be the only internal node on level p . Using the same argument as
above, there must be a node on level p-"I = g in the right subtree
which can be moved to the left at a cost A <0 <« An example of this

transformation is:

103

p

This argument degenerates i1f it is the root which causes the stack push,

so that the trees

and

are the best case trees for N =3M+3 and N =3M+U .

Strictly speaking, this final argument should be incorporated

into our series of transformations.

Transformation 3a. Under the conditions of Transformation 3: if
P=<1 j N >3M+U ; and the modification stipulated in Transformation 3

woulld increase the cost, then let be the leftmost internal

node on level p-1 1in the right subtree and perform the modification

as stated. O

10U

This completes the proof of Theorem U.3- Our series of

transformations is sufficient to "balance' any tree with root node ©
[

It is important to be aware that this derivation depends completely
on the choice of coefficients for the quantities contributing to the
running time of Program 2.b Most important are the relative values of
the coefficients for comparisons and stack pushes. If the overhead for
stack pushes is relatively high (which could happen in a practical
situation, if a recursive implementation is used), then the best trees
will tend to be more unbalanced, for it will pay to avoid stack pushes.
This effect appears In our derivation as the exceptions for N = 3M+ 3

or 3M+ § . The tree

iIs less expensive than

105

because 1t requires one less stack push. The reader may find more
examples of this effect by looking for counterexamples in the above

derivation for M =0 and 1 .

We are now ready to derive an exact expression for the total
running time of Program 2.b iIn the best case. If all of the external
nodes of the partitioning tree are M , then N 1is a number of
the form kQ\HD) -1 , and Theorem b.2 tells us that both subfiles will
also have this property. Theorem U.3 tells us exactly what the
partitioning element is in the best case. Substituting this information
into our original recurrence for the running time of Program 2.k in

the best case gives the equation

.
U*. . +U - + oM, +UK(M*1)+31 k(NH-1)-I>M
UKQW-D-1 ™ -

TRQH-1)-7 K(MH)-I<M.
V.

Now, IFf k=1 ,we have U, =7M ; if k =2 , then

uaM+1 = UM+UM+8M+59 = 22M+59 5 and if k =3 then
~ = /\ - =
Unft5 Yo gty +12M+ 13 UIM+82 . For k > U , there is always
a stack push, so we have eliminated the term. To
r|"] (W-1)NM
simplify notation we will define T(K) = > so that we now

have the recurrence

106

) = < UM + 82 k =3
20M + 39 k =2

One way to solve this recurrence is to look at the differences between

successive terms. For k > U we have

f(kFD)-f(k) = +fF([NMN1T) + +
mfC rtl)-f(Lid) - te(NH-) - 10

mf(LIJ+d) - fCIid) +Mul) o

This last formula can be verified by observing that P P |' L IJ *1

and =1] 1 Now, let p=|]Ilgkj , sothat 2s < k < 2P+1

Notingthat L U ? J J - L W , we may telescope the recurrence

p times to give

fktl) -f = TI

If k 1is in the left half of the interval, 2p < k<3,2Y) , then

J =2 , and if it is in the range 3*2N'" < k < , then

3 > so that we have

107

e -T@ + 1+(p-DMH) , for 2P < k < 3-2*"

fOH-D-FE) =
& _fR)+k@E-D D) , for 32p_ 1 <k <21*1

After substituting the values for f(2) ,f(3) > and () we can
combine these iInto the single formula
ftl) -FKW = 19M+ B3+ h(| lg kj -D W-D +9v2 (K k>2 |,

where Vp(k) denotes the second most significant bit in the binary

representation of k :

0 for 2LIg kJ < k<3=2LIg kd_1
v2(K) =
1 for 3=2LIg k3“1 <k < 2LIg kJ+1

This recurrence now telescopes into a summation:

f(2)+ X (1I9M+ 13+ k(LIg(J-1)J -1) (W-I) +9v9(j -1))
3<j <k

f(k)

22M+39+ (15M+39)(k-2) +k(w-1) X Lig jJ+9 X
2 <j <k-1 2 <j<k-1

The First sum remaining is a well-known identity (see Appendix B):

£ Llg jJ = kLlg kj -2LIg kI+1+2
2<j<k-1

and the second sum is easily evaluated from the definition of wv2(K)

X j = 2LI k-1"1 -1 - k) + k-3"'2LlI kJ 1 k) .
2 <j<k-1 V=W J vtk 9 kI_1av, (ki

108

vo@®

Substituting these gives the exact formula for the running time of

Program 2_.b in the best case, when N is a number of the form

N = kQWID) -1 :

As we did with the worst case, we can work backwards from the

partitioning trees to generate permutations which lead to the best

case performance. For example, the best case tree for N = 6 (M+I1)-I

IS

109

If we fill in partitioning elements on the internal nodes for M =3 ,

we get the tree

and then we can use the procedure described in Chapter 2 (slightly-
modified to handle M > 1) to get a permutation of (1,2,...,23}
corresponding to this tree:

12 3
Kk 23 1
5 67
8 67 5
9 10 11
1223186759 10 11 h
13 1k 15
16 It 15 13
17 18 19
20 18 19 17
21 22 23
12 23 18 675 9 10 11 H» 16 IU 15 1320 18 19 17 21 22 23

The formula derived above says that Program 2.h will require

2NQ@E2 + 15) +2U*6 - 552 - 0 = 5U6

110

time units to sort this permutation, and no other permutation on 23
elements will require less time.

Finally, we can write down an exact formula which works for all
integers N >M e To keep our notation consistent, it will be convenient
to write N in the form N = k(M+D)+x with -1 <x <M-1 _ Any number
N can obviously be represented in this way. Again, by Theorems t.2
and U.3 we have, after separating out small terms and dealing with the
special cases N = 3M+3 and N = 3M+U , the recurrence

U + U(k(NH-D+) + 35
Q) -1 +X

Ude*—l)+x A Unepax T 3ME 95+ Uxt @0 + 6,0 "X-5)-9&

W x +15M+U5+1,x

(Here 8 represents the Kronecker delta function, which has the value

1 if 1 =jJ, 0 otherwise.) The easiest way to solve this is to

subtract 1t from our original equation for U,k CMH}—I 7 so that the
U term cancels. This results in the equation
rg](w-i)-i
+U(x+1)

[HIW-D+x AJIM+1)-:

Uk(N—I—I)+x_ukCM+I)—I { UW-T+x "7M+ ~x+ 15+ (BOX+61Vv)™X'D) 95

UW-T+x " 7M+U(x+1)

We can telescope this eguation just as before to get
UKW-1)+x " Ak(M+1) -1
=W “7TM+4(L1g kj)x+D) + v2((k)(9(i-6.;bc)+ (6X0 + 6X1)("™X-5))

IT x = -1, the right hand side is of course 0 . If x/-1, then

UW-1+x = Un +Ux+M m+1+x) +35 = H(M+x) +39 , and we can calculate the

final solution

+ (@-»r0)(k +28+v2 (Ei) (9-16rl+5r2)1,r-9))

where r = (\+1) mod M+I

o LHUguuI<[gfl | <3}Sgr-1

— LPH-1J
and V’\g(ﬂJ :\<

13 ligij <gLI®riJH

For exasple, for M =3 aad N =21 the best case tree Is

112

and the permutation

12 2 ;18 7 59 10 11 k 16 1t 15 13 20 18 19 17 2h 22 23 21

takes 632 time units. For AT elerents the tree is

and the permutation

12231867 59 1011 kK 20 1t 15 13 17 18 19 16 2k 22 23 21 25

takes 652 time units when given as iInput to Program 2.t.

We have seen throughout our study of the best case that the best
choice of the partitioning element is not in general unique. Our
transformations on the trees often have no effect on the cost.

Figures k.2 show all choices of partitioning elements for M from O
to 5 and for M+l <N <100 . There is a ** corresponding to each
choice of the partitioning element which leads to the best case. Each
line is centered around the middle of the page. For example, the
circled line iIn Figure k.2a indicates that, if M =3 and N =26 ,
then the elements with rank 11 , 12 , 15 and 16 are equally good
choices for the partitioning element. Our "canonical form and proofs
restricted our attention to only one of these on each line: the element
with rank These are circled, for M =U , in
Figure U.2b. Notice that the patterns for M =0 and 1 are different
this is because, as mentioned above, the relative weight of the stack
push imbalances the trees. We recognize many other aspects of these
complex and intricate designs from the analysis given above. Indeed,
the reason that the analysis itself was so long and difficult is that

it iIs necessary to account for all of the features of these diagrams.

It is fitting to end our study of the best and worst case with these
interesting figures, for they tell us nearly as much about Quicksort

as the involved formulas that we have labored so hard to derive.

]
]
[N
v
L

dah! "4

[T []

] [N} [
L
[
L

[ETR R |

[]

LILLIEIN o
]
[N
]
[
[N
LA
[N
[T

QA a> N

HY) Sweuwspe Buruonyijaed s Isg

3
AL RENTIIE
........ ...53.
NTRELE Y Sl
v aana i '
.............. Vil i h
S
hia it L] Vi
N [[
".".5."..... ..._._.....-_".-.“a....“‘.“..“a....a“
ilf.....
‘NIl [} -
X ETE RN
'y
BEALE
TR
(NN
']
i
[N
]
i
i
[T
) ant
TN
I
i
(RN
il (7)) "
ey o
R ah!
Y
(NIRIN]
[N
' -
A
i
(LN N1
A
" W IERTR R
"taa ...m it
N 1
ikt ...

“eg'n aunbi4

-I--—f-ﬁf-‘f—-\.-
A IRLF AT TN T

- -

Tap gy

anf)

Tan
"erawh!
[[N
e,
hirg,
iy
RTALE]
T
....."....
[R |
TN
i
[
[[

X

ablad

115

INMHWOH MUuol 1 WAL nm bnc <ie K iNA

CHATTER FIVE

Our analysis during the last two chapters has told us a great deal
about the Quicksort algorithm, but we have been so deep into the analysis
that we have nearly lost sight of our original program. Therefore, it
IS appropriate at this time to use what we have learned during the
analysis to study some more practical modifications of the program.

In addition, now that we are competent and confident in the methods of
analysis, we will be able to compare most of the variants of the
algorithm intelligently. This will not be quite as easy as It might seem.
We saw in Chapter 2 that minor changes in the partitioning strategy

can have major effects on the performance of the algorithm — we will

see in this chapter that there may be drastic effects on the analysis

as well.

First, we will look back at the various partitioning methods that
we studied in Chapter 2 and justify some of the arguments made there in
light of what we now know from the analysis. This will include an
attempt to analyze Partitioning Method 2.3, so that we may have some
indication of why it is desirable to have randan subfiles. Next, we

will look at some better methods of choosing the partitioning element,
all designed to make the occurrence of the worst case less likely in a
practical situation. These have little impact on the analysis except
for a modification of Method 2.3 which can be analyzed (an analysis which
iIs quite different from what we have seen so far). Finally, iIn order
to compare Methods 2.2 and 2.h, we look at the situation when equal keys

may be present in the file. This leads us to a "two-partition” Quicksort

117

algorithm, and we will conclude the chapter by studying the very
interesting aspects of the analysis of this algorithm.

The analysis of the average running time of Quicksort using
Partitioning Method 2.1 is essentially the same as the analysis In
Chapter 3* Although the program does two "“half' exchanges (rather
than one full exchange) iIn the inner loop, the same argument that we
used to find the average value of the quantity B holds. However, as
we noticed, the test " i1 > j " is performed twice per exchange, so the
coefficient of B is higher. This is the reason that we rejected this
method. It is possible to improve this method by simply deleting one of
the tests, then repairing the damage outside the inner loop. This results
in a method which is less elegant than Method 2.4, but which could be more
efficient on machines where it is inconvenient to implement full exchanges.
Another difference in the analysis occurs because the algorithm is not
quite symmetric between left and right — a little more overhead is
involved when the left pointer crosses the right pointer than when the
right crosses the left. A new quantity X must be included in the
analysis to account for this. As we might expect, it turns out that

the average value of X 1Is — the average value of A
If all of the keys are distinct, then Partitioning Method 2.2

performs exactly the same as P artitioning Method 2.4 when the leftmost
element is used as the partitioning element. It is not difficult to
see that if this change is made (p := f rather than p := (i+r) -r2) in
Method 2.2, then Example 2.4 describes its performance as well as the
performance of Method 2.4. This means that the average values of all
the quantities we studied are the same and, on inspecting the program,

we see that the coefficients of B and C are not changed and the

coefficient of A is slightly higher for Method 2.2. (Depending on

118

the implementation* come new quantities with aweragr* value ™ — A

may also be involved as in Method 2.1 — see Appendix A.) The main
difference between the methods, of course, occurs when equal keys are
present. We shall defer discussion of this question until later in the
chapter.

In the discussion of Partitioning Method 2.3, we discovered that the
method produces nonrandom subfiles, and therefore it violates one of the
basic assumptions of our analysis. We are now in a position to study more
closely the difficulty of analyzing this method. We shall restrict our
attention to what should be the simplest quantity to analyze: AU , the
average number of partitioning stages required to sort W elements, under
the assumption that all N. permutations of them are equally likely as
input. To further simplify the calculations, we will assume that the
leftmost element is used as the partitioning element at every stage
(@ =1 1In Partitioning Method 2.3)* To begin, we notice that the
subfiles are almost random —- only the smallest element in the right
subfile is iIn a nonrandom position after partitioning. Therefore it is
appropriate to begin the analysis by conditioning on the first partitioning
element and setting up a recurrence, in the same way as before. Again we
assume that the numbers 1,2,...,N are being sorted, and at the first
stage each element s, I1<s<N, is equally likely to be used as the
partitioning element (i.e., each number s is equally likely to be
leftmost in the file). If s =1, then it stays where i1t is and a
random subfile of length N-1 is left after partitioning. Otherwise,
if s>1 , then the first exchange wil] put it into the right subfile,
and all positions are not equally likely. The left subfile, on the

other hand, will be random. We have the following situation:

119

s+k-1 N

2 s-1 N-s+1

The left subfile consists of (s-1) randomly ordered keys; and the
right subfile consists of (N-s+l) keys which are randomly ordered
except for the smallest key s which does not fall into each position
with equal probability. We need to find the probability that s Tfalls
into position k in the right subfile. This is the probability that,
in the original file, all of the N-stl-k keys at the right end of the
file (A[stK] ,A[s+k+l] , --.,A[N]) were >s and that A[s+k-1]

was < s . This leads to the expression

s-1 VN-s+l-ky Gl @-s7F (stk-3)! (s2]!
N-1. (C N-2 > O-1;1 Tkl ((Z2 (s231!
V N-s+l-k J

TKI

for the probability that s Tfalls into position Kk in the right subfile.

Now, if we define A~ to he the average number of stages to sort a file

120

of N elements which is randomly ordered except for the smallest

element, which is in position Kk , then the above discussion leads

to the recurrence

% - 1+ h(Vi-+ 28VI +

Also, directly from the definitions, we know that

Theseequations hold for N M and we will simplify things by taking

M =0 and d\ :Aé‘k = 0. From these equations we see that in order

to solve for A™ , we need to have a formula for A~ (or one the

sums involving A ™).

We can use the same method to set up a recurrence relation for A"

We start with a permutation of {l,2,...,n} , with the 1 1in position

k

and the rest randomly arranged. Let us call the leftmost element in this

permutation t , so that we may examine the result of partitioning this
fileon t . If t =1 , then by our definitions k =1 also, so that

a random file of size N-1 is left after partitioning. In other words,
N1lo= 1 +1

If Kk <t , thenwe havea slightly more complicated situation:

121

t-1+ ;

I-t+1

Is net moved, because the exchanges only

It is easy tt see that the 1
The left

moe elements which are not initially in the proper subfile.

subfile still has its smallest element the 1) in position Kk , soO

f£taSes will te required, on the average, to sort it. The right

Aft-1)>
subfile, by the same argument as used above, has its smallest element
"the t) iIn position j with probability

t2 ontblj) fy

n-2 (¢ u-1I \
n-t+i-.j j

that an average of

(W)
1 1)

stages will be required to sort the right subfile.

The remaining case, when k >t , is the most complicated, since

both the 1 and the t are moved by partitioning:

122

1 2 t-1+i N

1 2 t-1 1 2 k-t+1 N-t+1

Again we need to compute the probability distribution for the smallest
element iIn both of these subfiles. For the right subfile, the probability
that the t falls into position 1 1is zero for 1 < 1 < k-t+1 , since
we know that the t must at least switch with the 1 . For i1 = k-t+1 ,
we aredealing with the case when the t andthe 1 areexchanged, which
canoccur only ifallof the elements A[k+1] ,A[k+2] , --.. , A[N] 1inthe

original file are >t . The probability that this occurs is

N-t"N

m-_I 3 Or 1t-?;
/ N-2 \ r N-2'\
N-k J -2 j

For 1 > k-t+1 , we have the same situation as above, and the t will

fall in position 1 with probability

Ctt)
CE)

Therefore an average of

“li-tilj Tk=t+j

partitioning stages « e needed to sort the right subfile. All that
remains to consider is the left subfile for the case k >t . llo,
the 1 Tfalls iInto position j if and cnly if: fi) the key A[j]
in the original file is >t ;and (@i1) the k-j-1 keys

Al.Jjtl> == A[k-1] comprise exactly t-jJ-1 keys which are <t

fwhich will fall to the right of the 1 in the left subfile) and k-t
keys which are >t “which will fall to the left of position k-t+1

in the right subfile). This occurs with probability

or

Putting this all together, we have our recurrence for A"

when k >1

12U

-1+ Yy J avg. no. of partitioning stages if

Nk N-1 g <w | t is the partitioning element
1+ - Yy 1 y ~N* o \ J+ vy «
N1 2<t<k\ 1<j<t-I f N'2~"
f N-t » ft+tj -n
+ U-k J \% V t-3)

(5) (N-t+1)(k-t+D) 2 <i<N-t.x (?-)

+ - z [a + r N2) A
n k<t<N~”™ (t"1)k 1<j<N-t+l (N-t+1)j
f k-j-1V N-k+j-2 ~
a _ 1xA. y L t-j-iA g4 3)
v LN 2<t<k I<3<t-I ftN—_g)\ _____ AED.-J
, (ND |

N1 2 <t <k (kzj\ (N-t+D) (k-t+D)

(17)
i<tN kE2<GNEE TATY ey
h-1 k<?<N A@-1>k

_ Z Z A~ d A
N_1 Nty idjicpeed AR2Y (D]

125

This recurrence appears impossible "to solve* mainly because of the first
term™ which involves summing over the lower index of a binomial coefficient
appearing iIn the denominator. We can* of course, use this equation to
compute the values of . Such a computation leads to values of
for this method which are significantly higher than for all the other
methods that we have S;en. This can also be verified by "simulation™*
i.e.* running the methods on a varietyof "random™ files, and for allNt
files when N is small. Thus we have good reason to believe that the
maintenance of random subfiles is as desirable from a practical stand-
point as it is necessary for thorough analysis.

In Chapter 3 we found that Quicksort takes time proportional to
N In N on the average, and in Chapter U we saw that the algorithm takes
time proportional to N2 in the worst case. Furthermore* we saw that
the standard deviation is lov* so that in the probabilistic sense* this
worst case is not very likely to occur. However, from a practical
standpoint* the worst case (or close to it) is very likely to occur, for
the algorithm performs very badly when the keys are already in order.
Unfortunately* we are rarely faced with a truly "random™ set of keys to
sort. On the contrary, iIn practical applications it is common to find
some natural order in the keys. Some sorting methods* such as insertion
sorting, take advantage of this and run more efficiently when such order
is present. Program 2.U, on the other hand* is handicapped by this: any
long run of keys already in their proper position will eventually span
a whole subfile, for which the program will run very slowly. This effect
should clearly be avoided if possible — 1t iIs somewhat embarrassing to
have a sorting method which iIs slowest when sorting a file that is already

in order™. Fortunately, it is not difficult to determine the cause of

126

this problem. The culprit is the "arbitrary” choice of the first
element as the partitioning element, which was done as a matter of
convenience iIn specifying the algorithm. We will now investigate some
more intelligent ways to choose the partitioning element.

First, we might consider choosing some other fixed element from
the subfile, as we did in some of the methods in Chapter 2. The last
element would be as bad a choice as the first: a more logical candidate
iIs the element in the middle. In order to avoid the various difficulties
that we encountered in Chapter 2, we will implement this idea by simply
interchanging the first element with the one we have chosen, then using
Partitioning Method 2.h as before. In other words, we insert the
statement A[£] := A[(E+r) 2] into Program 2.b just before the statement
v = A[£] - This will not affect our analysis, because if the file is
randomly ordered, any fixed element is a random choice from the file.
The average running time will be increased because of a slight increase in
the coefficient of A (we have added one exchange for each partitioning
stage), but it is a small price to pay since it results in much faster
running times for many input files which might occur in practice. It
is obvious that this algorithm performs very well for the "worst case"
permutations that we saw for Program 2.h. For example, for N = 15 >

the partitioning tree for

12 3 U567 8 9 10 11 12 13 1™ 15

127

as opposed to the worst case tree for Program 2.U,

In fact, files which are already in order lead to the best case for this
choice of the partitioning element. However, partial order in the input
can s till cause this method to perform badly. |If we think of a very large
file, with the smallest or largest elements occurring in order near the
middle, then we see that it is a mistake to partition on the middle
element, for the first several partitions w ill be degenerate. |If there

is any order whatever in our original file, then it is not unlikely that
this unfortunate situation w ill occur in one or more subfiles during the
sorting process. Also, similar difficulties arise if any fixed element

is used as the partitioning element.

128

A more attractive method, which was suggested by Hoare in his original
paper, is to use a "‘random” element from the file as the partitioning

element. As above, we can implement this by iInserting the statement
A[f] :=: A[random(f,r)]

Jjust before the statement v = A[f] 1in Program 2 .U, where random(£,r)
is a procedure which returns a random integer between 1 and r . This
approach is attractive for two reasons: First, it will help make the
worst case less likely, in the same way as above. Second, if a good
random number generator is used, It makes our analysis of the average
running time much more realistic. |If our file is already random, this
modification, like the last, has no effect. However, even if biases do
appear in the file, this method ensures that every element is equally
likely to be the partitioning element, so that the analysis in Chapter 2
remains valid. We will not concern ourselves with the details of
implementing random number generators here, except to note that they are
relatively expensive, and would result in the coefficient of the quantity
A in Program 2.U being increased by 100 to 200$. Again, this is a price
worth paying if It is known that there will be extreme biases iIn the
files to be sorted. |Increasing M will reduce some of this cost.
Another approach, which may be more efficient in some situations,
stems from the observation that we don"t really require numbers having
all of the characteristics of truly random numbers. We certainly can
expect to find some randomness in our files —- otherwise it would not be
necessary to write a sorting progran. It is therefore reasonable to
consider, for example, a simpler method, where the same relative position

is chosen for all subfiles of a given size, as in the following

129

procedure random (£,r);

1+ L(r-F+D{I0r",+1 n}j ;

Here the braces ({ }) &re meant to indicate the "fractional part':

) =x-|>x for x >0 . On a binary computer, 2" hould be
used, so that the inner multiplication can be implemented as a "‘shift".
The use of it as the multiplier is arbitrary — any other irrational
number would do as well. The computation of this kind of function is
more efficient than the generation of random numbers, and it adequately

serves our purposes for many applications. For this particular function,

the small values are

r-f+1 2 3 b5 6 7 8 g 10 11 12 13 WU 15

L (r-f+1) (I0r'*+1J ° 3 1 33 2 5 8 10 8 12 b 3

H

From this table, we can find the partitioning tree when this modification

of Program 2_U is used on the keys 1 to 15 in order (with M =1):

This is a typical partitioning tree, far from the worst case. Our
analysis does not te |l us exactly how this method performs on the average
unless we assume that the input file is random (in which case it is
unnecessary). However, this method requires less overhead than random
number generation, and may, in some situations, represent an appropriate
balance between practical and theoretical considerations in choosing
the partitioning element.

It is interesting to notice that the same effect as choosing a
random partitioning element can be achieved by randomly "scrambling”

the entire array before sorting it, as in the following

procedure scramble;
begin i = 1;
loop:
A[1] = A[random(i,N)];
while 1 <N:
o= i+l
repeat;

end;

This method is usually less efficient, since it always requires N

exchanges and random number calculations, while these operations are

performed only 2 1 times on the average in choosing random

partitioning elements. As above, we might improve this by not scrambling

the file randomly, but rather scrambling it systematically; but to

compete with other methods, we would s till need a procedure which runs
re2

about — times as fast as the random number generator, which

might be difficult to devise.

131

We have seen several simple methods to make the worst case of
Program 2.U less likely in practical situations, and we will not dwell
further on the relative merits of these methods. Of course, none of
the suggestions above will eliminate the worst case — we can always
find a permutation for which a method makes the worst choice for the
partitioning element at every stage.

IT this idea of choosing a random partitioning element is applied
to Partitioning Method 2.3, then we get a method which, although it
does not always put the partitioning element Into position, does produce
random subfiles, and so should submit to analysis as do our other
methods. We expect this method to be slightly less efficient than our
other methods because of the fact that the partitioning element usually
falls into one of the subfiles, making it one larger than in the other
methods. The analysis which proves this is of a quite different
character than we have seen before, so we will now pursue it further.

We are mainly interested iIn methods of analysis, so we will
restrict our attention to finding an expression for , the average

number of partitioning stages taken by the program

132

procedure quicksort (integer value 1,r);
if r-£ > M then

I

K
=
-

I

r+1; p := random(1,r); v = A[p]l;

loop: 1 = i1+l; while A[i] < v repeat;
loop: j = j-1; while A[J] > Vv repeat;

while 1 < j:
Al = AL

repeat;

quicksort (£, i-1);

quicksort (J+l ,r);

endif;

under the assumption that all of the N. permutations of the integer
{1,2,...,N} are equally likely as input. The same methods can be
extended to find the number of exchanges, comparisons, etc., and to
find the exact running time of a practical version of this program

as iIn Chapter 2 and 3- In order to simplify our calculations somewhat,
we will take M =0 in our analysis, even though this magnifies
differences between methods. For reference, we may compare our

result with

the number of stages required by our other methods when M =0
As always, we begin by conditioning on the first partitioning

stage, so that we have the recurrence

average number of stages required for the \
1< subfiles when s is the partitioning element

133

Complications arise because the sizes of the subfiles vary depending on
the position, p , of the partitioning element. We noticed in Chapter 2
that If p = s (the partitioning element is already in place) then the
pointers will meet at A[s] and the subfiles will have s-1 and N-s
elements, as iIn our other methods. If p < s , then the partitioning
element will be encountered by the 1 pointer before the pointers have
met, and therefore exchanged into the right subfile, so the subfiles
after partitioning will have s-1 and N-s+1 elements. Similarly, if
p > s , then the partitioning elementwill end up in the left subfile,

so the two subfiles will have s and N-s elements. Unfortunately, for
fixed p and s , we cannot always say that the two subfiles produced
will be random. For example, 1f p =s-1 , then s will be the smallest
element of the right subfile, and it will tend to bevery near the left
end of that file. However, the subfiles are random for fixed s , and we
can develop a recurrence by considering separately the three cases p < s,
p=s,ad p>s. IT p=s, the subfiles are random by the same
argument that we used iIn Chapter 2, since we never know anything about
the relative order of the other elements. If p < s , which occurs with
probability s-1 , then s 1is equally likely to be involved in any one
of the exchanges which occur during partitioning. In other words, it is
exchanged with a random element from the right subfile, so It is equally
likely to fall iIn each of the N-s+l1 positions in the right subfile.
This is sufficient to show that the subfiles are random, since our previous
argument clearly holds for the other elements iIn the subfiles. A similar

argument holds for the symmetric case p > s , so we are left with the

recurrence

= 1+N 1<~<n (17T Ms-1+\-S+I™ + N (As-1+AN-s) + I T (As + AN-s

13U

which holds for N > 1 , with =0 . This can be simplified through

a series of straightforward algebraic manipulations,

**om 1+|\? T<'S<N (S'l)(VI+'WI)+ﬂ] |<{§<N AS-1+Vs>

+ 4 2 s s)

N I <s<N S ™S

= N2+ 2 s(A +/L)+2 2 As
] 0<s <N-1 0<s<N-1
+ L N-S)(A + ajj -N(A+A

0 <s<N-1 (N=s)(s AJIJI S) (n oq)

= IT+N E A+ N L AN —-NA+ 2 £ A
O<s<N-1 s 0<s<N-1 O<s<N-1 s
= N2 +2(N+1) L A s
O<s <N-1 S

to the formula

AI-H “ 2 £ Ag
0 <s<N-1

As we have done before, we can eliminate the summation by subtracting,

from this last equation, the same equation for (\-1) , leaving

I\%' - 5,2

N+1
which can be rewritten as

Am' 1 -G - 1 AAm-i-1 , 2
N+1 "V n2J k N2 -

We are now very close to having a recurrence which telescopes into a sum.

Multiplying both sides of this last equation by the "‘summation factor™

135

_IT f1+x N, we get
J>N+1vy, Jd J

ThT . M .1 1 'S | * — S— A -1 ¢ i > w <

which telescopes to yield
YTt (%) - FoiTe Sudftt?
J >N+1 4§ 2<k<N k J >’k§rl i

It remains only to evaluate this sum and product. Unfortunately, there

seems to be nosimple "closed form" expression for fT (1+~p J ,
Pk+lV 3

and we must becontent with an asymptotic result.The Firststep is to
notice that this product isvery close to 1 forlarge k , so it is

convenient to separate out the "dirty” terms by defining

f(ky = TT (i+V) -1
j>M\ 3J

which, when substituted into the recurrence, gives

1

UORD S Z -% + Z -3F(K)
N+ 2 <k<N k% 2 <k <N ki

= 2(H2)-1)+ z -1 T
2<k <N k

Next, we notice that this sum certainly converges to some constant

c Az G W
k>2 kc

136

so that we can further isolate the small terms iIn out formula by

separating out the "tail” of the summation:

%ACF(N) +) = 2@/ -Ly+c - L K
N1 kK>N+1 Kk

At this point it is necessary to resort to asymptotic estimates of the
small terms (see Egs. (s0) - (5u) in Appendix B). First, from the three

basic formulas

In(+x) = x - If e ___ + — Xk + O(xk+1) ;
2 k
€ = ex+ X+ 0+ 2 +0(xk+|5(;
and
E a7 4 a1l Jat 0 —an
I>n I (a-hHn 2n n

we can derive an asymptotic formula for our product:

157

This implies that

f® = i *0(7)

Se)
k>N+1 k k>N+1 k V (?))
= n2+°(no
and
fo\) +1 1“N+N2+O(?O
Substituting all of this iInto our equation for gives the answer
*fl | H n2

By multiplying this out and simplifying, we can get a formula for

towithin O —p J < In fact, with the methods we have used, we could
vn J

derive a formula to any asymptotic accuracy. For now, we will be

content with 0O~~~ | so, using the formula above, we get

2n(h<2> - 1e¢ 8)e¢ 1 +0(1)

158

Finally, applying Eq. (53) in Appendix B, we get the final answer

\ -n(~-2+c¢c) -1 +0(8)

The constant cevaluates t0.3862 ... , so K, M(1*677)N > which
is significantly higher than for our other methods. Ofcourse, we
expect this difference to be smaller for larger M, andindeed, we

can use the same methods as above to show that

S mir - 2+0(;?) + 0(Ci) *
|
which is fairly close to our previous result of AN = ZW-I-?) ok
until N gets very much larger than M . Also, we can use these

methods to get asymptotic formulas for all of the other quantities.

For example, when M =0 , the average number of comparisons is

CN = H@V=") -1+ °(t) g

where

c= E (] f(k) --5 - — (i+f(k))) * . 923...

139

Although this method is always slightly less efficient than the others,
it Is interesting to see the radical effect of such a minor perturba-
tion on the analysis.

It has been convenient in our analyses to assume that all of the
keys A[l] ,A[Z] , --- ,A[N] are distinct. Of course, this may not
always occur in practice, so we now will study the operation of
Quicksort when equal keys are present. In some applications it is
important that the sorting algorithm not change the relative order
of equal keys. This property iscalled stability. Unfortunately,
Quicksort is not a stable algorithm, nomatter how we treat keys equal
to the partitioning element. For example, suppose that a file consists
only of I°s , 2" ,and 3" ; 2 isthe partitioning element; and

the file contains the pattern

Then the relative order of both the 3"s and the 1’s must be disturbed
by any of our normal partitioning methods. An easy way to make any
sorting algorithm stable is to force all the keys to be distinct before

sorting, by appending each key"s index to itself:

1U0

i =1;
loop:

A[i] :=A[1] *N+ 1 -1;
whille 1 < N:

I = i+l
repeat;
This transformation, iIn addition to making all the keys distinct,
preserves the relative order of the keys. We have A[i] < A[j] before
the transformation if and only if A[i] < A[j] after the transformation,
except for the equal keys: if 1 < jJ and A[i] = A[jJ] before, then
A[1] < A[J] after. We now achieve a stable method by sorting the file

and then transforming back to our original keys:

i =1;
loop:

A[1] = LALiI/NJ
whille 1T < N:

1 = i+l
repeat;
Of course, this method is costly in terms of both time and space (each
key must be a little bigger), so that it should not be used unless
stability is important and even then it may not be practical.

The main reason that we assume distinct keys in our analyses is
that it is difficult to model the situation simply when equal keys are
present. However, we can feel somewhat justified in treating only
distinct keys, because in most practical situations the "key space"
(all possible key values) is very large, so that the probability that
a significant number of equal keys will be present is very small. This
means that the effect of equal keys, when dealing with the average

performance, can generally be safely ignored. If it is known that only

vl

a small number of key values are possible, then a method which takes
advantage of that fact should be used. (One example of this, when the
range of keys is known to be small, is a method called "distribution
counting”, which involves making two passes through the file: one to
count the number of occurrences of each key, and a second to move the
keys into place according to the counts.)

However, equal keys do occur in many applications, and even though
we have ignored them in our analysis, there is no reason to ignore them
in our programs. We have seen that Partitioning Methods 2.2 and 2.h
perform almost exactly the same for all permutations when the keys
are distinct, but when equal keys are present they perform quite

differently. For example, given the input file

222211122333333

Partitioning Method 2.2 will produce the partition

(and when the left subfile is partitioned, the left pointer will cross

over into the 3 "s), while Partitioning Method 2.b results in the less

balanced partition
1221 1()2 22333333

On the other hand, Method 2.2 performs worse for the input file
233333321112222

since It produces the partition

211 1@3 333332222

102

while Method 2.b partitions the fTile perfectly:
1222211@2 333333

It is dangerous to attempt to draw conclusions from such anomalous cases,
but they do help to illustrate differences between the algorithms.
Fortunately we can prove that Partitioning Method 2.b will always result
in a partition closer to the center, on the average, iIf It Is assumed
that all of the NI arrangements of the N (hot necessarily distinct)
input keys are equally likely. This is a direct consequence of the

following:

Theorem 5.1. When Partitioning Method 2.2 (with p = r) operates on
a file A[l],---,A[N] , it produces a partition no closer to the center

than Partitioning Method 2.U operating on the reverse of that file.

Proof. Specifically, let j and 1 define the position of the partition
after Method 2.2 (with p :=r) 1isused on A[l],---,A[N] , so that after
partitioning we have A[1].A[2].---,A0] < A[J+1] =A[g+2] = ... =

A[1-1] < A[i].A[i+1],---,A[N] ; and let j* define the position of the
partition after Method 2 .b is used on A[N],e===,A[1] , so that after
partitioning we have A[1],A[2], -- -,A[J°-1] < A[J”1< A[J"+I1], ==-,A[N]

In both cases, the file is partitioned on the value of A[N] < Call

that value v and let t be the number of keys inthe file which are

< Vv . Our goal will be toshow that the inequality

. < tk -V holds for jot <k < i-t

First we notice that since Method 2.2 does not move keys which
are =vVv , we can have j = t+k only if exactly k of the keys

A[l],==-,A[t+K] were originally =v . In fact, this must be true for

1uU3

all k 1iIn the range j-t < k < i-t-1 since A[j+1], .. ., A[i-2] are
all =v and are not moved. (When k = i-t-1 , we know that k-1 of
the keys A[l], ---,A[1-1] were = v , since the last exchange must have
been A[i-1] =2 A[N] . Similarly, since Method 2.h always moves keys
which are = v , thenj = t+k* for some fixed k* only if there

were exactly k"-1 K'is= v in the last N-t-k"+1 positions of the
reverse file: A[N-t-k*+1], ... A[l]

To complete the proof it iIs necessary to consider three cases

depending on the relative values of k and k™ . If k =kl , then
the inequality y - M3V < ok -1 obviousty holds. 1

k > k* , then the discussion above saysthat A[1], - - A[t+k] has more
keys =v than A[1], -..,A[N-t-k"+1] , which can only be true if

t+k > N-t-k*+1 , or j* > N-t-k+1 . (Note that this argument holds even
when k= i-t-1) Now, if j° V5_is >0 , then k* < k inplies

that 0<j - "V < ek =MV L and i 81 - i so

then j* > N-t-k+1 implies that 0 < -J" < t+k - - In
either case, taking absolute values gives the desired result,

y - 5 < t+k - n'21

The argument for the third case, k™ > k , is slightly more complex.
First, if k = i-t-1 , then k-1 of the keys A[1], --.,A[t+k] were
= v for Method 2.2, which is fewer than the k"-1 keys of
AIN-t-k"+1], .. .,A[1] which must have been = v for Method2.b, so
t+k < N-t-k"+l , or y < N-t-k+1 . For other values of k , Wwe can only
say that the number of keys = v iIn A[N-t-k*"+I1], ...,A[l] is greater than

or equal to the number of keys =v in A[l], --.,A[t+k] . This would not

Ibk

imply anything about the array bounds, were it not for the fact that

A[t+k] =v for jJ-t < k < i-t-1 , so now we must have N-t-k*"+1 > t+k ,

or Jj* < N-t-k+1 . Finally, an argument symmetric to that in the above
shows that j-_ ~y <tk -l and we have

shown that this holds for all k 1in the range jJ-t < k < i-t .

The theorem follows immediately from this inequality. If the first

partition is to the left of center (i-1 < 2) then the second

is at least as close | -jol < | -i] ;and the
symmetric argument holds for the right. |If the first partition straddles
the center, or J+1 < < i-1, then It+k - < N for some Kk

+ - -
and therefore NO"‘ < % , or the second partition must also be

at the center. 0O

Theorem 5*1 establishes a one-to-one correspondence between permutations
of keys used as input to Method 2.2 and permutations of keys usedas input
to Method 2.1*. The same result holds for general p : let
Alp],AIN],A[N-1], ==.,A[p*1], Alp-1]. -- -,A[2].A[1] be used for Method 2.U
when A[1], -.-.,A[N] 1is used for Method 2.2. (The examples given above
fit into this construction for p = (£+r) +2) Therefore, if we average
over all such permutations, Method 2.17* will result iIn an average partition
at least as close to the center. This does not necessarily mean that it
will always run faster, but the intuition that we have gained from our
study of the best case in Chapter U tells us that it isdesirable to
have the partition as close to the center as possible.

Of course, Method 2.2 could still yield smaller subfiles iIn some
cases, since Its partition might include more than one element. (In
fact, if all the keys are equal, it requires only one stage to sort the

entire file.) However, this sometimes turns out to be a liability, as we see

IH5

when we examine Example 5*1* The effects are intentionally exaggerated
in this example through the use of binary files. (The particular pattern
used iIs from the binary representation of e .) Also, to make things
easier to follow, it is assumed in Example 5*1 and in the arguments below
that p := 1 1is used in Partitioning Method 2.2. The behavior for
Method 2.2 as it stands is similar. Now, when O 1is the partitioning
elerent, the left pointer stops at the first 1 andthe right pointer
scans the whole file (no element is < 0) inMethod 2.2. In Method 2.h,
the left pointer stops at every position and the right pointer stops at
each 0 . The pointers behave similarly when 1 1is the partitioning
element. The most glaring defect of Method 2.2 is that one of the pointers
therefore goes all the way to the end of the file on every partitioning
stage, even when an interior subfile is being partitioned. This can be
corrected, iIn a less efficient algorithm, by testing for the conditions
1>1 and J < r during the pointer scans rather than using -® and

®@ keys to stop the pointers, but even this does not reduce the number
of comparisons sufficiently, as we shall now see.

Suppose that C,, 1is the average number of comparisons required by
Method 2.2 to sort a binary file of N O *s and 1 "s under the
assumption that all é\l such files are equallylikely, and that no
comparisons are made outside the range [£,r] . Let and be
the averages for files that begin with O and 1 . First, we will find a
recurrence for by noticing that the situation after the first stage

of Partitioning Method 2.2 is as follows ('x ™ denotes keys which may be

Example 5-1

Method .2 (p = 1)
010101101111 11000010 10 10
(0) 10101101111 112000010 10 10
00101101111 11000010 10 1©
(cTo)l 01101111 11000010 10 1
001101111 110000101(0)
0)1 10 1111 110000 10 1
010 1111 110000 j.qg>
(00101111 121200001
001111 11000¢(0)
(0)1L 111 110 00
0111 11001
©111 1100
Oil 110w
® 11110
0114
o1 11

Method hi

010101101111

ooo(0)o 0O
0(0)0
000

11000010 10 10
000000 001111 2120 2120 1110 11

0110110 1(1)1111111
000)1 1111

o®

11(1)1 1

17

1®

1110(1)1 11

101

101

Partitioning required N+ktl comparisons, and all that is left to be
sorted is a file of size N-k , random, except for its first key, which
is 1 . Ifthe fileisall 0" (k =N) , this iIs not quite correct,

since 2N comparisons are required and the file iIs sorted. This leads

us to the recurrence

By a similar argument, we can show that

CH1) s QSI* I<k§N—I 'JZ' <H+k+C5kl—|g) 7

and therefore CK = | + N satisfies

'_\

— _ N ~ —
ON = A1+ 5 feneg 3K (NFR+ 2+ G 0

We can use the same methods that we have used before to solve this

equation. Multiplying by ﬂ\‘ , we have

2KCn = UN + z NK(N+ K + | + CH k)
1<k <N-1
= N + L 2k(2N-k + \ + C,) ,
I<k <N-1 d k

and subtracting the same equation for N-1 gives

20C -2""1C = k+ +] +C)+ z 2k+1
1 <k <N-2

This simplifies to give the recurrence
CN ” CN-1 *1*1> for N >2
with the initial condition C. =2 , which immediately telescopes to

the solution

CN =J Q-1 +2N

11"8

We might have expected that this average number of comparisons would
be proportional to N2 if we had noticed that two successive stages
simply exchange the leftmost 1 with the rightmost O .

On the other hand, we can show that the number of comparisons
required by Partitioning Method 2.U is proportional to N Ig N in the
worst case. This iIs suggested by an examination of Example 5*1*

Notice that each partition results in one subfile with all keys equal
and one "unsorted" subfile. The subfiles with all keys equal are
clearly processed in a logarithmic number of stages, since they are
always split iIn the middle. Now consider the unsorted subfile. After
each partitioning stage, at least half of the keys equal to the
partitioning element must be removed. Therefore, the unsorted part

of the file cannot last through more than [Ig N partitions, and every
element in the whole file is involved in at most [Ig N partitioning
stages. We may count the total number of comparisons by noticing that
each partitioning stage contributes one comparison to the total for
each element involved plus one extra comparison when the pointers cross.
By these arguments, the total number of comparisons taken by Method 2.t
on binary files can be no more than N Ig N+N . This is substantially
better than the quadratic performance of Method 2.2.

Although it is interesting to consider the problem of sorting
binary files, the results should not be taken too seriously, since the
effects are so exaggerated. We have plenty of other evidence to
convince us that Method 2.h is preferable when equal keys are present.
Theorem 5*1 shows that the partitions are no farther from the center
on the average, and whatever advantage is gained by the fact that

Method 2.2 may have more than one key in the partition is lost because

1U9

the pointers may scan past the bounds of interior subfiles. OFf course,
this does not represent a complete argument that Method 2.h is more
efficient (since we have not considered exchanges and other overhead),
but we will not dwell further on this subject.

An important practical reason to stop on equal keys is that it makes
easier the definition of the —» and * keys that we use to stop the
pointers. For example, suppose that our numbers to be sorted can take on
any value which we can represent in one word on our computer. By definition,
we can"t represent a key larger than all of these numbers in one word, but
if we use Program 2.h, we only need a key larger than or equal to ail
of these numbers: i.e., the largest representable number can serve as
the ® key, and the smallest representable number as the -® key.

IT this i1s still inconvenient, the need for the -® can be eliminated
by switching the direction of the insertion sort (cf. Appendix A). The
sentinels can be eliminated altogether, iIn a slightly less efficient
partitioning method, by exchanging the first two keys If necessary before
partitioning to put them out of order; then correcting the situation
afterwards.

Ideally, when equal keys are present, we would like to have a
partitioning method which puts all of the keys equal to the partitioning
element iInto position. Such a method really results in the establishment
of two partitions: all elements to the left of the first will be less
than the partitioning element; all elements between the two will be
equal to the partitioning element; and all elements to the right of the
second will be greater than the partitioning element. But if we are
going to have three subfiles, why not try to make them all about the
same size? A more general, "two-partition™ Quicksort is suggested,

which puts two partitioning elements into position:

150

Program $.1

procedure quicksort (integer value f,r);

if r-f > M then A
iT A[J] > A[r] then A[1] = A[r] endif;
i =il =i;vl =A[i];
J =31 =r; v2 :=A[r];
loop until pointers have met:
loop: 1 = i+l ;
while A[i] < v2: cr
if A[i] < vl then
Alil] =A[i]; B1
il = 11+1 ;
A[i] =A[il];
iT 1 > jJ then pointers have met endif;
endif;
repeat;
loop: j := j-1;
while A[j] > vi: c-c
ifA[J] > v2 then
Al =AL1; B
Jjl =jlI-1;
A0l =AL1];
iIT 1 > jJ then pointers have met endif;
endif;
repeat;
ALl =AJ1; BI*
A1l :=A[i];
il = il+;
JjlI =ji-1;
A[i] :=ALil];
A1 = A0l
repeat;
A[il] = vI;
A[JI] =v2;

quicksort (1, il-1);

quicksort (il+l , jI-1);

quicksort (l+1,r);
endif;

151

This program is much more complicated than the others we have
studied, hut it is based on many of the same ideas. Example 5*2 shows
the operation of the method on our set of fifteen keys — it can be
described in a manner similar to Partitioning Method 2.1, except that
there are two ""holes™ to be filled, initially at the left and right
ends of the file. The partitioning elements vl and V2 are picked
from the first and last elements, such that vl <v2 . The pointers

il and jl keep the current positions of the holes. The "invariant”

at the main loop is the following situation:

< vl vl and < w2 > vl and < V2 > v2

-
- D

Both of the pointers 1 and J scan over keys between vl and W2

When the left pointer, 1 , encounters a key < vl , it is put into the

left hole, and the hole iIs moved one position to the right (by incrementing
il and putting that element into A[i]). Similarly, when the right
pointer, J , encounters a key > \2 , It is put into the right hole, and
the hole is moved one position to the left, (in Example 52 the 68 ,
the 99 >the 96 > and the 95 are moved in this way.) Finally,

when the 1 pointer has stopped on a key > w2 and the Jj pointer

on a key < vl , then each is put into the hole on the other side, and

the holes moved appropriately. (This does not occur in the first stage

in Example 5*2, but it does occur at the second partitioning stage.)

152

Clearly, these manipulations maintain the invariant conditions sketched
above, and when the 1 and j pointers meet, then vl belongs in

the il hole; v2 in the jl hole; and three subfiles are clearly
defined. The partitioning tree is therefore a ternary tree: for

Example 5.1 the tree is

155

Example 52

partitioning: M 26 950U 08 8 96 3k 07 35 99 2« 68 10 Ol
Cox) 26 950 08 88 96 3k 07 35 99 2k 68 10 (C:)

126

168
10 (3 68
10 2k 99 68

\96J
2k 3k 07 35 100 96 99 68
<88)
10 2Uu 3 07 350 88 96 99 68
<93
35 0OU 08 10 2k 3k 07 88 96 99 68
88 96 99 68
sorting

the file: 2k 68 10 01

88 96 g9 68
oU (07) 2k 08 10 (26) 35 3k

08 (1°) (2§
GDdD

68 }88 93) 96 99

15U

Unfortunately, as we will soon see, this method cannot compete
with our other partitioning methods. However, the method is based on
an intriguing idea, the analysis iIs interesting, and it will serve as
a good introduction to the more significant variants of Quicksort to
come in the following chapters. For brevity, we will ignore such
practical improvements as sorting the shortest subfile first (actually
for this method it suffices to avoid sorting the longest subfile first),
and concentrate on the "leading term” in the running time: the number
of comparisons and exchanges (by "‘exchange™ iIn this context we mean
"move a hole™ which requires the same amount of work). As we have done
before, iInstructions whose frequencies represent these quantities are
labelled in Program 2.h. Upon inspecting the program, we find that the

number of exchanges is given by
B = 2B"" + B" + B*

IT the partitioning elements are s and t ,with 1 <s<t<N,
then by counting the number of times the 1l pointer is Incremented
and the jl pointer is decremented we find that the quantity

B*"+B"” contributes (s-1) to the first partitioning stage, and
B"+B™M contributes ((\N-t) . Averaging over all partitioning elements
s and t , assuming all pairs equally likely, we see that the average

contribution of B"+B'” to the first partitioning stage is

155

-2 z £ s-1 = IJINTT £ s-1) (N-s
N(W-1) 1<S<N.1 s<t<N S J(J 1<S<N-1 D)

vaey (3) (e El. @ in
Appendix B)

N-2

Similarly, it turns out that the contribution of B"+B"* 1is also

N2 . The number of exchanges is obtained by simply summing these:

since B = B"+B"*+BT+B"1 , the average contribution of the first
partitioning stage to B is 12: (N-2) . It is convenient to modify
this slightly by adding the two "‘exchanges' needed to get the partitioning
elements into place, giving t () as the average contribution of
the first stage to the number of exchanges.

Now we can, as we have before, set up a recurrence for the total

average number of exchanges taken by Program 5*1:

2
with =0 for N<M, so that 1in particular bm+i = 3 MFf2)
2
and BM+2 = 4 (W3) = Not surprisingly, after manipulating indices,

these three sums all turn out to be the same (this is because the

partitioning elements are random), and we have

- 1 QWD +n7M3] by (FS-DB

156

(5)v

As before, we will try to eliminate the summation by subtracting this
formula from the same formula for (\N+I) < This can be succinctly

expressed with the difference operator A , defined by AXx = Xn+"-Xxn e

Notice that for binomial coefficients A(O - W - O O - W

for any k Applying A to our recurrence, we get

= 2fNpL) +3__ L (N-s)B -3 Z (N-s-DB

\dJ 0 <s <N-1 0 <s <N-2

N J 0 <s <N-1

In the same way, the remaining sum can be eliminated:

*20 0 bn - 2<+i)+% .

Expanding the A , we have

(N22) BN+2 - 2(N21) w (")BN - 2(»+1) +;BN

(N+2) (N+1)Bn+2 -2(N+1) NBn+1+ (N(N-1)-6)B* = U(\+1)

\+H2) -2(N+1) N Bn+1+ (\+2) (N-3)Bn =MN+1) -
The next stepis a "magic” rearrangement of the termswhichwill lead to

a solution, (indeed, much of this derivation may seem “magic'’”, though

we could easily get this far with the use of generating functions.) We

157

will see a more important example, and some theoretical justification
for this, in Chapter 8. The idea is to break up the middle term as

follows:
N+D)((N+H2)BN+2 - (-2)Bpj+1) - (W-2)(OFFH)B™M+1 - (N-3)7) = U(N+D)

After dividing by O(+D(\N+2) , we now get a recurrence which telescopes:

PNV CiVi - it
N+2 N+1 + N+2

= frgdy 2-M2)Vj.

M+l <k <N k+2

T + A%+2 "A2A

This equation is the same as
m (*-*0VI+l,» V " (f -V 2)

and we can make this recurrence telescope by multiplying through by

N-DO-DN-3) =

------------ , gTving

)=>»*(T)w*(Ov(0(¥ -0

Both of these sums are easily evaluated (see Egs. (19) and (23) in

Appendix B), giving the result

158

CK +K " >'((*“ X'W-IH"?2)O w -j))

*(t--w)(C;,)-(?))

so that our final answer is

fw-2A
Bi = ~ (WD HFL-HMG) -~ QD+~ o»

U;
This is asymptotically ~ (\+1) In” N, nearly 27 times

worse than the ~ (M) Inf J exchanges required hy our other

algorithms. We need go no further with the analysis, for we can never

hope to recoup this loss. (It does turn out that C\. 1is asymptotically
(D InA J , and that the total overhead due to comparisons is

slightly lower than for any other method that we have seen so far.)

Our analysis up to this point has been concerned mainly with time
and not space, since we showed in Chapter 2 that the strategy of sorting
the small subfile first limits the space requirements to Ig
stack entries. However, as we have noted, It is somewhat iInconvenient
to implement this idea in a high-level language, \onless recursion 1is
handled properly by the compiler. Since Program 2.2 is much shorter

and simpler than Program 2 .U, we might legitimately ask just how much

159

space it wastes. As always, we begin by conditioning on the first
partitioning stage, so that the average maximum stack depth required
by Program 2.2 on a random permutation of [1,2, ...,N} is described

by the recurrence

— * 1 ces
DN—1+|1<S<Nma(DS|DN N2 1

(with D_ =0) since the maximum stack depth needed is 1 plus the
maximum stack depth needed for the subfiles. If we assume that <D.

for i1 < j then this simplifies to

N odd
ND,, = N+2
1
|"ir] <s<N]
N even
Subtracting the same formula for N-l1 gives
ND - (W-DDD -D +1 N>1

L ™ j

This recurrence appears very difficult to solve explicitly, but an easy
computer calculation shows that i1t grows slowly with respect to N
D;(bbv\m °nly about 28 . Therefore Program 2.2 will require less
than 28 stack entries to sort less than 10000 elements on the
average, and even fewer if it is extended to insertion sort small
subfiles. Of course, the worst case may still occur — if Program 2.2
as It stands is used to sort the file 12 3 e« 10000 , it will
require 10000 stack entries. But this is the worst case, and we have

looked at several techniques to make unbalanced partitioning trees very

160

unlikely. If the worst case does occur, then space overflow is a
convenient ""alarm that tells us that the program might take much too
long to sort the given file. On balance, Program 2.2 with
" ALT] A[lrandom(i,r)] ™ (or even " A[E] = A[(F+r) 2] ') inserted
just before " v = A[f] " will perform very well as a "quick and dirty"
sorting program when space is not a pressing constraint. The extension
to insertion sort small subfiles is probably worthwhile, and of course
Program 2.b is always preferable if the program is to be used often.

We have seen a variety of simple modifications to Quicksort- in
this chapter, and we should suspect that there may be more sophisticated
variants which may significantly improve the performance of the algorithm.
But we also should expect that care should be exercised, since improvements
in one part of the program may be offset by extra overhead in another.
In the next three chapters we shall examine three strategies designed

to improve Quicksort, and we shall analyze their effects on its performance.

161

CHAPTER SIX

Everything that we have learned about the Quicksort algorithm tells
us that the algorithm performs best when the partitioning element is
close to the middle of the file being partitioned at every stage. Yet
the methods we have seen for choosing the partitioning element simply
involve picking one element and relying on the randomness of the files
to ensure that, on the average, the partitions will be near the center.
We should expect to be able to do better than that, but we must be careful
to balance out the costs involved. Indeed, there are algorithms which
will find the median of n elements iIn time proportional to n : 1if we
were to use such an algorithm to find our partitioning elements, we
would have a Quicksort with a worst case running time of O(n Ig n) .
However, such a method is not practical because of the comparatively
high overhead required to find the median at each partitioning stage.

We would like to examine methods somewhere between these two extremes:
methods which tend to partition close to the center, but at relatively
low costs. Such methods may compete, on a practical basis, with the
best sorting algorithms that we have seen.

The method that we will study in this chapter is based on a technique
introduced by M. H. van Eraden in 1970. The idea is to delay, as long as
possible, the decision on what should be the partitioning element. As
the left and right pointers move in, we keep track of the largest element
found so far in the left subfile and the smallest element found so far iIn
the right subfile. The partitioning element might turn out to be any

element between these bounds. Elements outside these limits are scanned

162

over or exchanged just as iIn our normal methods, and the bounds are
adjusted when new elements within them are encountered. The following
program is a more complete definition of this "adaptive” partitioning

scheme:

Program 6.1

procedure quicksort (integer value t,r);
if r-i > M then

I I=1i; J I=r; vmax = -°°; vmin = @;

if A[1] >A[J] then A[i]
if A[1] > vmax then maxi
if A[J] < vmin then minj

2 Alj1J endif; B
I; vmax = A[maxi]; endif;

J; vmin = A[mini]; endif;

loop: 1 := i+l; while A[i] < vmax repeat; c*
loop: j := j-1; while A[jJ] > vmin repeat; c-Cc-
while 1 < j:
repeat;
ifi=jJtheni =1+l; j = j-1; endif;
A[J] =: Almaxi];
A[1] :=: A[minj];

quicksort (1, j-1);
quicksort (i+l ,r);
endif;

During the innerloop of this program, we always have A[K]< vmax for
k <1 and vmin< A[K] for k > j , with the interval [vmax , vmin]
containing the partition. The operation of the program on our set of
fifteen keys is shown in Example 6.1. The interval containing the
partition shrinks from [O01,UU] to [10,26] to [2h,26] . After the
pointers have met, at 07 and 96 , it is known that all of the elements
to the right of the 07 are > 26 and all of the elements to the left

of the 96 - This means that the final position of both the

163

Example 6.1

partitioning:
01 (10)
01 10 ©
01 10 ©
sorting
the file:
01 CoH 07

bb 26 95 OU 08 88 96

Ob 08 07

<33
08 07

08d U

08 88
08

16U

9% 3U
2037

96 5U
203U

370

88

55

8 &

35

Up

99

99
99

99
99

£8

3 07 35 99 2b 68

<33

10 01

©

107
2?75 W

95 68 (26) W

95 68 (26) W

95 68 p uu

95 68

2b 68
o5 68

95 68
68C85
881

96 bb

10 01
96 bb

96 88
2E>99

2b and the 26 are known, and they both are exchanged into position.
IT some element of the array is already in position, the pointers might
meet at that elanent, and three elements are then put into position by
partitioning. This occurs, for example, iIn the second partitioning
stage in Example 6.1. The nodes of the partitioning tree now may

contain more than one partitioning element — for Example 6.1 we have

As we have done before, we will restrict our attention to this recursive
program, while recognizing that all of the improvements that we saw
between Program 2.2 and Program 2.b can be applied to make Program 6.1
much more efficient.

In order to be able to analyze the performance of Program 6.1 we
first need to determine the exact probability distribution for the

position of the partition in the file at each stage. As always, we assume

165

that the numbers being sorted are the integers {1,2, ...,N) . For example,
the position of the partition for all of the permutations of four elements
iIs showmn in Example 6.2. By simply counting in this table, we can
determine the frequencies of all of the ""two-partitions™ and "three-
partitions”. In general, let

number of permutations of {1,2,...,N} for which the
partition falls on s and stl }

and

f number of permutations of {1,2,...,N} for which the

bNs | partition falls on s, st1 , and s+2 }

From our algorithm, we can begin to determine some basic properties of
these numbers, and then we can try to derive formulas for them. First,
since we have one of these kinds of partition for every permutation of

{1,2, ...,N} we obviously have
L + £ b = NI
. AT B

Also, there is a symmetry property: if the partition falls on s and

stl for a permutation cpc2 **cn then it falls on
N-s and N-s+1 for the permutation d~d" eeed™ , where

a™ = N+l - N e For example, the permutation

10 7 13 2 nh 12 IU 8 3 9 15 6 11 5 1
IS partitioned to

1 53 2 h 8 129 15 13 11 IU 10

166

(this corresponds to our Fifteen sample keys and Example 6.1), while the

"symmetrically corresponding’” permutation

5 11 5 10 1 7 13 8 2 U 12 WU 3 9 6
IS partitioned to

6 25317 7~8 (910)12 1k 13 11 15

which "symmetrically corresponds" to the result of partitioning the

original. This symmetry means that

and, similarly, we have

bNs = bN(N-I-s)

167

Example 6.2

2 h 3

1

U

1 F~"

23 b

1
2

N

13

DU

1 (2

h

2 31

1

2 W 3

2 3

1

1 (2-3) U

h

3 2

1 ©
2 (3

iog

)
<czz2>U
a

1

U

u 2 3 1

b

1372

* 3 2
1

1

2>U 3

3 2

1

1 (2 3 U oy
1

3 1"~ 2

=

2
1

¥ 3

1+12

= 3 2

1 @2) N

3 1+21

12

aks

bks

168

The tables below, obtained empirically, show the values of a™g and b”"g

for small values of N and s :

2 2
3 2 2 ns 3 2
g b ¥ 12 b G r o2 2 bNs
5 12 38 38 12 5 k 12 b
6 Us 150 2P 150 U8 6 12 38 38 12
7 2m0 732 1238 1238 732 2W0 2 b 150 22U 150 b

As we expect, these tables are symmetric, and they indicate that the
partition tends to be near the center. However, the most obvious feature

of these tables is the relation between the two frequencies:

Ns “ b(N+HDs

It is not too difficult to prove that this relation holds, now that we

have guessed it. Suppose that we form all permutations of [1,2,.. _,N,N+I}
from permutations of {l,2,...,N} using the same kind of correspondence
that we used in Chapter 1: with each permutation of N elements we
associate the N+1 permutations of N+I elements defined by:

(1) incrementing each item > s+t1 by 1 ; (i) inserting (stl)

into each of the N+1 possible positions between elements. Then the
partition will fall on s, stl , and s+2 1In one of these permutations
of N+l elements, if and only if the partition falls on s and s+l 1in

the corresponding permutation of N elements.

169

We can therefore concentrate on finding an expression for a” ,
and because of symmetry we can assume s <N-s . To begin, we might
notice that the only way that the partition can fall on the elements 1
and 2 is if they are initially at the left and right ends of the
array. This is easy to verify by examining the algorithm. First, the
variable wvmax cannot decrease during the execution of the program,
so that if it is not initially 1 , it can never be. If vmax Iis
initially 1 and wvmin is not initially 2 , then the pointers must
stop at least once (since there are elements between wvmax and wvmin
within the array) with A[i] and A[j] both > 1 , which must result
in vmax being increased. Therefore, the initial values of wvmax
and vmin must be 1 and 2 if the partition is to fall on 1 and 2 .
There are exactly 2(N-2)I permutations of {1,2,...,N) with 1 and 2

at the ends, so we have shown that
V - 2(N-2)*

In fact, a, > 2(N-2lI for all s , since the 2(0N\-2)". permutations
with s and s+l at the ends will result iIn the partition being at s
and s+l . However this type of argument does not generalize nicely

to yield an exact expression for a™g for all s , so that we will

have to resort to a more complicated argument.

First we consider the left subfile after partitioning but before
the s key has been exchanged into position. This is a permutation of
the elements {1,2, ...,s] - Some of these elements were brought in by
exchanges during the partitioning process. By knowing these and
examining the left subfile after partitioning, we can determine how
many times the pointers must have stopped during partitioning. For
example, i1f we have the left subfile

170

© 0 ©[20 7 ®

where the Q " s indicate left-to-right maxima and Q ’s mark elements
brought in by exchange, then we can tell that the pointers must have
stopped 6 times during partitioning: 3 for the exchanges and 3 for
the left-to-right maxima not brought in by exchanges. Now, the number
of left-to-right maxima in a permutation of (1,2,...,N} 1is N-D , where
D is the guantity we studied in Chapter 1. From the analysis in
Chapter 1, we know that the number of permutations of {l,2, ...,s}
with exactly k-x+j left-to-right maxima is [, ©] < We can
therefore generalize our observations to say that the number of possible
left subfiles after a partition during which the pointers stopped k
times and Xx exchanges were made (hot including the first element) is
y r S 1 fKk-x+tJ-1"\f s-k+x-j N
t U-x+jJv. J A X-J]
Here, the index of summation J is intended to count the number of
left-to-right maxima brought iIn by exchanges, i1.e., the number of
elements both O Id and in the example above. This expression
can be verified by considering the number of ways of distributing the

- O es among the s elements in the left subfile. The number of

left-to-right maxima (the number of O »s) is k-xtj : J Q fs

can be distributed among the Kk-x+j-1 O (not counting the first)

in (kxr) ways, and the remaining x-jJj O Ts can be distributed
£ S-K+Xx-14

among the remaining s-k+x-jJ elements Iin (X-j) ways* We no™
count exchanges involving the first position because it can only be
exchanged with the last element in the right subfile — we will double

our final answer to account for this.

171

Similarly, for the right subfile we have the expression

v T ns %1 ¥ k-x+i-1 \r n-s-kfx-i1 >
t lkx+igv. j yv. xi J

for the number of possible right subfiles after a partition during which
the right pointer stopped k times and X exchanges were made. Now, an
obvious feature of the algorithm is that not only must the number of
exchanges counted be the same for the lefl and right subfiles, but also
the number of times the pointers stop must be the same. If this were

the only requirement, then we could make some progress by multiplying