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QUICKSORT

by Robert Sedgewick

Abstract

A complete study is presented of the best general purpose method for 
sorting by computer: C. A. R. Hoare's Quicksort algorithm. Special
attention is paid to the methods of mathematical analysis which are used 
to demonstrate the practical utility of the algorithm. The most 
efficient known form of Quicksort is developed, and exact formulas are 
derived for the average, best case, and worst case running times. The 
merits of the many modifications which have been suggested to improve 
Quicksort are discussed, with an emphasis on their impact upon the 
analysis. Van Emden's method, samplesort, and the median-of-three 
modification are discussed in detail, and it is shown that the latter 
is the most effective improvement to Quicksort for practical sorting 
applications.

New results presented include: improvements to the algorithm
based on a refined partitioning strategy and a new method of handling 
small subfiles, the best and worst case analysis, contrasting analyses 
of minor variants and the study of the effect of equal keys, new 
implementations of and new approaches to analyzing adaptive partitioning 
and samplesort, the complete general analysis of fixed sample size 
partitioning, and the application of "loop unwrapping" to Quicksort 
and the analysis of the optimized program.

The thesis is presented in an expository fashion so that it may be 
useful as a textbook in the field of "analysis of algorithms". It is 
self-contained, and it includes a complete treatment of a simpler sorting 
algorithm (insertion sorting) as well as three appendices which complement 
the material in the text.

This research was supported in part by The Fannie and John Hertz 
Foundation. The printing of this paper was supported in part by 
National Science Foundation grant GJ 36V73X and by the Office of 
Naval Research contract NR 0Uk-U02.





Preface

The general field of mathematical analysis of algorithms has core t 

encompass two quite different kinds of analysis. One type, more common! 

referred to as "computational complexity", involves the study of entire 

classes of algorithms to solve a particular problem, usually from within 

a fairly general framework. The other, called simply "analysis of 

algorithms", involves the study of the space and time requirements of 

particular algorithms and particular implementations of them. This kind 

of analysis has been popularized by D. E. Knuth in his series of books. 

The Art of Computer Programming. Both of these kinds of analysis are 

challenging, interesting, and useful, but they really are quite differen 

This thesis deals with the complete analysis of one algorithm, Quicksort 

but the subject matter relates as much to the "analysis of algorithns' a 

to Quicksort itself.

Although much of what we know about the analysis of algorithms 

appears somewhere in Professor Knuth's books, there seems to be no 

elementary textbook which introduces this subject. For this reason,

I have tried to write this thesis in an expository fashion, so that a 

newcomer to the field will be able to use it profitably for self-study.

I have assumed some basic familiarity with both concrete mathematics and 

computer programming, but I hope that readers at various levels of 

sophistication in both of these fields will be able to benefit from this 

thesis. Analysis of algorithms really does require competence in both: 

The mathematical analysis often suggests how we might make our programs 

more efficient; and improvements to programs often make their analysis 

more interesting.



The algorithms in the text are all described in a programming language 

similar to Algol, but relatively few of the features of the language are 

used, so that they should be easily understood by anyone who has programmed 

in a high-level language. The programs use an exchange ( : = : ) operator, 
and the control constructs if ... then ... else ... endif and 

loop ... while ... repeat , which are like those described by Knuth in 
Computing Surveys 6 (December 197M• The assembly language programs in 

the Appendices are written in the MIX language defined in The Art of 

Computer Programming, and there is some comment in Appendix C about the 

implementation of the programs in some real programming languages for 

the IBM System 360 computer.

It is customary in a Ph.D. thesis to state explicitly which results 

are original and presented here for the first time. I have refrained 

from including such comments in the text for fear that they would detract 

from the expository nature of the thesis. To the best of my knowledge, 

the following major aspects of this dissertation are new:

(i) The technique of ignoring small subfiles during partitioning, 

then insertion sorting the entire array after partitioning 

(Program 2.b);

(ii) the analysis of the best case and the worst case of the algorithms 

(Chapter U);

(iii) the contrasting analyses of the various different partitioning 

methods for the basic Quicksort algorithm (Chapter 5)>

(iv) the study of the effect of equal keys (Chapter 5)>

(v) "two-part it ion" Quicksort and its analysis (Chapter 5) j
(vi) the careful implementation of van Emden's method and the proof 

that the subfiles are non-random (Chapter 6);



(vii) the analysis of the number of exchanges taken by samplesort, 

and the general method of analysis which can be applied tc the 

other quantities (Chapter 7)j

(viii) the idea of leaving the sample elements out of the partitioning

process in the median-of-three method (Program 8.1);

(ix) the extension of the analysis of fixed-sample size partitioning

to the general case, which leads to the proof that using the 

median is best (Chapter 8); and

(x) the application of "loop unwrapping" to Quicksort, and the

analysis of the optimized program (Appendix A).

I have tried to tell the complete story of the analysis of Quicksort; 

indeed, I feel that this in itself is a major contribution of this thesi 

This has necessitated including many "well-known" results. The origin 

and history of this research is discussed in Chapter 9* Many of the 

results appear in The Art of Computer Programming, and, where possible,

I have tried to maintain consistency with Knuth's notation.

I hope that the example given here of the complete analysis of an 

important computer algorithm will help to stimulate similar intensive 

studies on the performance of other algorithms. This is not to suggest 

that we should submit every algorithm that we use to such a broad analys 

but I would hope that our most important algorithms could be analyzed as 

completely. I can envision a series of monographs similar to this on 

the analysis of, say, the ten most important computer algorithms. Of 

course, we must first decide which algorithms belong on this list; and 

we may not be able to analyze some of them very well. But Quicksort 

certainly belongs; and its analysis is exhibited here.





one good thesis left in Quicksort". Professor Knuth has contributed 

the project in man;.* ways: by encouraging my interest ir. the subject of

analysis of algorithms through his courses and books, by patiently 

monitoring and directing my research with countless helpful suggestions, 

and by carefully reading and annotating early versions of the manuscript. 

Thanks are due also to Peter Wegner and Forest Faskett for reading the 

final copy of the thesis. The professional and consistent style of the 

manuscript is due entirely to Fhyllis Winkler, who can add one more 

title to the impressive list of manuscripts that she has produced.

Financial assistance was provided by the Fannie and John herto 

Foundation. This generous fellowship provided support when none other 

was available to me, and allowed me to pursue this research on a full-t in-, 

basis.

Finally, on a personal level, I must thank mg- Parents, whose example 

encouraged me to begin my work towards a Fh.?., and Ton Knuth, whose 

example inspired me to complete it. Most of all, thanks are due to r.y 

wife Linda, who has shared these years at Stanford with me. We have made 

the "successful completion of the requirements for the Ph.P. degree" not. 

an arduous task, but a great Western adventure.
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CHAPTER ONE

Quicksort is a sorting method suitable for use on computers which 

was introduced by C. A. R. Hoare in i960. Like most good algorithms, 

it is based on an inherently simple idea, and it remains today the best 

general purpose sorting method for computers. However, this simplicity 

is deceiving, and the algorithm has many hidden subtleties. A variety 

of modifications have also been suggested for the purpose of improving 

the performance of the algorithm. The purpose of this thesis is to 

expose the subtleties and study the variations of Quicksort through 

mathematical analysis. The analysis leads to many important methods of 

general interest, so that in the process we will learn as much about the 

analysis of algorithms and concrete mathematics as about Quicksort itself 

We will be analyzing computer programs written for the purpose of 

rearranging a given set of "keys" A[1],A[2],...,A[N] to make

A[l] < A[2] < A[3] < ... < A[N]

The order relation may be numeric order, alphabetic order, or any

transitive relation whatever, which is defined on all the keys (so that 

exactly one of the possibilities A[i] < A[ j ] or A[i] >A[j] or 

A[i] = A[j] holds for all i and j ). Straightforward extensions 

will allow these programs to handle the more practical situation where 

more information is associated with each key.

Many sorting methods can be characterized by the fact that they only

involve a few fundamental operations on the keys, such as "comparisons"

or "exchanges". It is tempting to measure the efficiency of these methods 

by counting the frequency of such operations. However, this can often be

1



misleading, because actual implementations of the algorithms involve 

overhead which can contribute significantly to the running time. The 

goal of our analyses will be the derivation of formulas (depending on N , 

the number of keys) for the total running times of the programs: in the

best case, in the worst case, and on the average. Another temptation in 

working with such formulas is to discard all but the "leading'' terms and 

to present only approximate formulas as a result. This can be very 

dangerous in a practical situation. (For sorting methods the leading 

term may be all Ig 15 and the discarded term 31* for some 3,3 . If, 

for example, 15 < 2.ZZZZ and 3 > ll 2 , then the "discarded" term would 

be larger than the "leading" term.) Although it is generally much more 

difficult to obtain, the derivation of an exact formula provides a far 

more accurate description of the operation of an algorithm.

The rest of this chapter will be devoted to a demonstration of this 

kind of analysis applied to a simpler sorting method, insertion sorting. 

This analysis not only will provide a full introduction to the analysis 

of Quicksort, but also it is very interesting in its own right. In 

addition, the results obtained will be of use to us later.

Insertion sorting is a natural sorting method which is commonly

used, for example, by bridge players when patting their hands into order.

The idea is to consider the elements one at a time, and insert each into

position among the elements already considered, program 1 .1 is a slightly 
more formal description of this method.



Program 1.1 

i := 2;
loop while i < N:

insert A[i] into position among A[1],A[2],...,A[i-l];
1 := i+1 ; 

repeat;

It is not difficult to convince ourselves that this program actually sorts 

the keys A[1],...,A[N] into nondecreasing order. It is easy to prove 

by induction that the loop preserves the condition

2 < i < N+l , A[1] < A[2] < ... < A[i—1]

In general, we will not be concerned with formal proofs that the programs 

we deal with work, but rather with informal arguments which indicate that 

such proofs can be easily constructed.

In order to put the i-th key encountered, A[i] , into position, it 

is necessary to move all of the keys among A[l],...,A[i-l] which are 

greater than A[i] one position to the right. This leads to the followin 

more explicit implementation of the algorithm.

Program 1.2 

i := 2;
loop while i < N:

v := A[i]j j := i-1;
loop while A[j] > v and j > 0:

A[j+1] := A[j ]; j := j-1; 
repeat;
A[j+1] := v; 
i := i+1 ; 

repeat;

The operation of this program, on an arbitrarily chosen set of fifteen



keys, is shown in Example 1.1. The arrangement of the keys is shown after 

each insertion: only those keys that were moved are written, so that the

leftmost key on each line is the one just inserted. For example, the 

line marked with a * shows the situation just after the 08 key was 

inserted. The 26 , 1*1 , and 95 keys were moved to make room for it.

Since sorting programs are most clearly understood through the study 

of such examples, the operation of all the programs ve will study will be 

demonstrated on the same fifteen keys as in Example 1.1. These keys come 
from the fractional part of the number lg e :

A[i] = u101^(lg e - 1)_ mod 101 for 1 < i < 15 .

Although Program 1.2 is a clear and correct implementation of 

insertion sorting, its efficiency can be improved by making two simple 

changes. First, the test '' j > C '' almost always fails: the only time it

succeeds is when A[i] is less than all of the keys A[1],A[2], .. .,A[i-l] , 

and then only after they have all been scanned. A standard programming 

technique for eliminating such "almost always redundant'' tests is to 

arrange things so that some other 'necessary) part of the program catches 

the condition when it occurs. In Program 1.2, the test '' A[j] > v " 

will do the trick, if we simply make A[C] smaller than all the other 

keys. F̂or this we write " A[C] := -= ''.) Then, if j becomes zero, 

the " A[ j ] > v " test will stop the loop, and the " j > 0 " test is 

unnecessary. Although the test " j > C " doesn't involve a key and is 

usually not counted as a comparison, it does represent overhead which 
should be minimized. The second improvement to Program 1.2 follows from 
considering another special case: kTien A[i] is larger than all of the

keys A[1],A[2],...,A[ i-1. , the loop will never be executed, so there is 

no need to set up for it with the statements " v := A[i] '' and " j := i-1 "•

These two improvements lead to a more efficient algorithm.
L



j Example 1.1

sorting the file:

hh 2 6 95 Oh 08 88 96 3b 07 55 99 2b 68 10 0 1

bb

26 hh

95
Oh 26 hh 95

*  08 26 hh 95

88 95

96
3U hh 88 95 96

07 08 26 3b hh 88 95 96

55 bb 88 95 96

99
2h 26 3b 55 bb 88 95 96 99

68 88 95 96 99 

10 2h 26 5h 55 bb 68 88 95 96 99

0 1 Oh 07 08 10 2h 26 5h 55 hh 68 88 95 96 99

5



Program 1.;

i := 2; A[0] := -= 
loop while i < N :

1

N
if A[i] < A[i-1] then

v := A[i]; j := i-1; 
loop;

N-l
D
D+E

A[j+1] := A[j]; j := j-1; E
while A[ j] > v; 
repeat;
A[j+1] := v; D

E

endif; N-l
i ;= i+1 ; N-l

repeat; N-l

This program sorts the keys exactly as in Example 1-1; it just does so 

more efficiently than Program 1.2. Our analysis will demonstrate this.

To avoid confusion, we will normally try to develop the most efficient 

version of a program before analyzing it. The reader will then be able to 

look back over the various improvements and see the obvious justifications 

given by the analysis for them. (This is not how efficient algorithms are 

invented. An analysis must first be performed on some version of the 

algorithm to determine which improvements can do the most good.)

Our analysis of the time taken by this program begins by counting 

the number of times each statement is executed. These frequencies are 

given in the right hand column in Program 1.3- For some statements, i.e., 

'' i ;= 2 we can deduce the frequency immediately. For others, the 

frequency analysis may be more complicated, although we may know that 

several statements have the same (unknown) frequency. These unknown 

quantities are generally related to characteristics of the algorithm, 

and it is usually helpful to think of than in such terms. Notice that



*3 • ^ . _ e . :ne xeys

assume tnat tr.e permutations ■ t= -r *av 5 5̂."

to be the input file. This is the model that will be used in most of 

cur analyses. If the input keys are not in this 'random' order, or :u 

necessarily all distinct, we will ensure that cur trouram.s run correc:

and we will try to make them run efficiently. However, our analyses will 

usually assume distinct, randomly order keys. vIr. Chapter 5 we do 

consider the effect of equal keys.) Now, Program i.p .and all of the



other programs we will consider) makes its decisions based only on the

relative order of the keys, never on their actual values. This means

that we can further assume that the keys are the numbers {1,2,...,N} •

Example 1.2 shows the values of D and E when the M  permutations

of {1,2,3, M  are sorted by Program 1.3* Also given are the maximum and
minimum values, as well as the average and variance, assuming that all 2h

permutations are equally likely. The exhaustive treatment of a concrete

example in this way is often a useful first step in analyzing such

quantities. Not only does it provide us with a good intuition about the

quantities, but also it provides a simple check on any more general

answers we might derive. Examining Example 1.2, we notice that D and E

both take on their minimum when the keys are already in order, and their

maximum when the keys are in reverse order. In general, the more "out

of order" the keys are, the higher the values of D and E .

To analyze these quantities, we need to be able to express more

precisely the degree to which a permutation is "out of order". To this

end, we will associate with each permutation a^ a^ ... a of {1,2, ...,n}

an inversion table B, B_ ... B , where B. is defined to be the number -------------  1 2  n l
of elements to the left of a^ which are greater than a^ . For example, 

the inversion tables for all permutations on four elements are given in 

Example 1.2, and the inversion table for

10 7 13 2 12 lit 8 5 9 15 6 11 5 1

is

0 1 0 3 3 1  O l t 7 U o 8 U  10 lU 
Inversion tables have many useful elementary properties which follow 
directly from the definition. First, since there are only i-1 elements 
to the left of a^ for 1 < i < n , we must have



Example 1.2

permutation D E inversion table

1 o 3 U 2 0 V* p

o l 1 1 1 2 1 P 0
2 3 TX u 1 2 2 2 2 V

n 3 1 1 1 3 p p .p 2
1 2 b 1 1 P 0 1 0

l 2 b 2 2 0 1 1 0
2 1 b 2 3 0 1 2 0

2 b 1 2 U 0 1 0
i b 2 1 2 0 0 0 2

3 1 b 2 2 0 1 0 2

b 1 2 2 u 0 0 2 2

b o£1 1 2 5 0 0 2 P

permutation P E inversion table
1 U - T 1 -
2 1 u 2 1 1

2 u 1 2 P 3 p 2 1
2 u z 1 p U 2 > 1 ?E

i 1 o 2 2 2 2 - T -

u 1 2 z 0 z 2 1 1 ]_

1 2 1 3 0 U pN» 1 *P X

u 2 1 l 0 5 P i 1 r

1 u 5 2 2 z ,P 1 p

u 1 p p 0 b 2 1 1 2

b 3 l O z 5 r\ 1 OCL p

b 2 1 3 0 1 p

D: max 3 E: max
min 0

avg 23/12 avg 3

var 95/lUU var 1;/<

9



B, = 0 , 0 < B o < l , 0 < B ,  < 2 , ... , 0 < B < n-1 1 — 2 — — 3 — — n —

There are exactly n'. different n-tuples of numbers which satisfy these 

inequalities. Further, each of these is an inversion table, and 

corresponds to a unique permutation of {1,2,...,n} . To construct a 

permutation from a given inversion table, start from the right end, and 

for i = n, n-1, ..., 1 write down the (B.+l) -st largest of the numbers 

not yet used. For example, the permutation corresponding to the table

0 1 1 3  2

is

5 2 U l 3

since 3 is the third largest of {1,2,3,̂ , 5} > 1 is the fourth

largest of {l,2, U, 5} ; U is the second largest of {2,U,5} ; 2 is

the second largest of {2,5} ; and 5 is the largest of {5} • This is 

always possible since B.+l < i and there are i numbers not yet used. 

This one-to-one correspondence between permutations and inversion tables 

means that we can treat all inversion tables as equally likely and 

analyze the values of our quantities when the program is running on 

permutations as defined by inversion tables. This is particularly 

convenient for Program 1.3.

We notice immediately from our algorithm that D is the number of 

keys which have at least one greater key to the left. But this is 

exactly the number of non-zero elements in the inversion table. The 

maximum value of D is therefore N-1 (B. is always 0 ), and the

minimum value is 0 . The probability that B^ / 0 is 1-1/i for 

all i , so the average value of D is

(1-1). (l - § ) + ( l  (l - i )  = H-H„ ,

10



where is the N-th harmonic number.

The quantity E in Program 1.3 is also related to the inversion 

table. Indeed, each element in the permutation must be moved past every 

element to the lePfc of it which is greater than it. This is exactly the 

number counted by entries in the inversion table, so the value of E 
for a given inversion table is

E = Bx + B2 + B j + . . .  + Bj, .

This sum is also called the number of inversions of the permutation. An 

inversion of a permutation a^ a^ • • • a^ is a pair (a^,a.) for which 

i < j and a^ > â  . For example, the inversions of 5 ^ 1 2  are 

(3,1) , (3,2) , (U,l) , and (U,2) . The minimum value of E is

therefore 0 (B̂  = 0 for all i ); and the maximum value is

(B̂  = i-1 for 1 < i < N ). Also, there is an easy way to determine 

the average value of E . This is to notice that for every permutation 

â  a^ ••. a with k inversions there corresponds a permutation

an an-l ' ‘' a2 al ^ 2 ) ~ k inversions. Thus if e ^  is the
probability that a permutation of [1,2,...,N} has exactly k inversions, 

and k' = f - k , then

^ k  = ^k* ’

The average number of inversions is given by

av*<v - ^ kv  = ^ ((?) -Ov-

•sCCO-Ov •
so that

11



2 avg(^) - L  ( k + (a) -k ) eNk
1C

■  ( ! )  \ '»*

• a )  •

since •̂eMjc = ^ is a sum of probabilities. Therefore 
1c

avg(EN) . ^  •

Now that we have the average values of the quantities D and E , 

we can find the average running time of Program 1.3. In general, the 

total running time will be

aD + PE + 7 N + 5 ,

where the coefficients a , (3 , y , and 6 depend on the particular 

machine and compiler used to run Program 1.3. To provide a concrete 

basis for analysis, the programs that we analyze are coded in assembly 

language in Appendix A. This will give us representative values for the 

coefficients, although they could be higher or lower for particular 

machines. For Program 1.3> the running time is

3D + 8 e + 7N - 6 ,

so that we have shown the average running time to be

3(N-Hn) +8 ILLN-1) + 7 n - 6

or

2 N + 8N - 5 - 6

2This dependence on N makes Program 1.3 undesirable for large N , 
but for small N it is very efficient.

12



Program 1.2 is also coded in assembly language in Appendix A, and 

the running time turns out to be

?D + 9E + ?N - 6 ,
*where E is the number of inversions, as before, and D is the number

of keys which have at least one smaller key to the left. This is the

number of entries in the inversion table such that B. ^ i-1 , and the1 '
average value is N -H^ , just as above. Our first improvement makes 

N (N-.1)Program 1.5 x-i— u time units faster than Program 1.2, on the
■*average. The second improvement changes the running time by D-D , 

which doesn't seem to be an improvement at all, since its average value 

is zero. However, this quantity tends to be negative if the file has a 

low number of inversions, so Program 1.3 gains an added advantage if the 

file is approximately in order.

The derivation of the variance of the quantities D and E will 

require more sophisticated methods than we have used up to this point. 

Let d ^  be the probability that D takes on the value k when 

Program 1.2 is sorting a random permutation of N elements, and let

kD^(z) = L  dĵ 2 "be "the generating function for • Then
k >0

Nl d^k is the number of inversion tables for N elements with exactly 

k non-zero entries. If N = 1 , the inversion table is 0 , so that 

D^(z) = 1 . For N > 1 , we will derive a recurrence relation for 

D (z) by defining a correspondence between inversion tables for 

permutations of N elements and inversion tables for N-l elements. 

With each inversion table  ̂ for N-l elements, we

associate the N inversion tables



B1 B2 BN-1 °

B1 B2 BN-1 1

B1 B2 •** ^ - 1  N

The first of these has the same number of non-zero elements in the
inversion table as the original; the other (N-l) all have exactly one

more. This means that

N! d[)k = (N-l)! d(N.1)k + (N-l) (N-l)! V i H k - D  ’

or

* I * ■ N-l „
S k  N (N-l)k N (N-l) (k-l)

Multiplying by z and summing over all k , we get

= N D( N - l ) ^  + I T  z d ( n - i ) ^  ’

which telescopes to

lU



/ \ / \ T T  (k~l) Z + 1D (z) = D (Z) IT 5--- £---
“ 2<k<N

• IT (k-1)̂  .
1 <k<N

(k-1 )This is a product of the probability generating functions d (z) =  f-K K

which have mean d.* (1 ) = 1 - ^ , and variance

d£(l) + i (̂l) “ [d^(l)] = ^ - —2 • The mean of the product is the
k

sum of the means, and the variance of the product is the sum of the 

variances (see Eqs. (U8) and (U9) in Appendix B), so that

avg(D ) = L  ( 1 - |) = N-H ,
N l<k<N K ®

which agrees with our earlier result, and

var<DN) - 1  (5 - 4 )  - v 4 2) •a l<k<N k

The derivation of the variance for E follows exactly the same

method. Let e ^  be the probability that a permutation of (l,2,...,N}

has exactly k inversions, and let E.T(Z) = ^  z • Then, using
k >0

the same correspondence between permutations on N elements and 

permutations on N-l elements as above, we get

e... = i E e
Hk ' N o<j < k (N_1)Ck-o) '

so that

15



V Z) ■ 5 k >0 0 < ? < k  e ( K - l ) t k - 3 >  z

which telescopes to

1 V  ZJy z ) -  TT i  Ew 1 <k <N 0 < j <k-l

This is a product of the probability generating functions
k- 1r

P 9’ = k ' ! “~v'' “ke (z) = 1 + Z-+-f. — — --  > which have mean e (̂!) = ~— ~ + I‘' + -̂k ^

2 i
^2^ and variance + ek ^  ~ = — Tp~ > so that

x v' k-1 N(N-l)avg(Ê ) 2  —  =
a 1 < k <N

as before, and

var(V  . S  4 ^  - .
1 1 <k <N

The fact that the generating functions for both D and E turned 

out to be products of probability generating functions suggests that we 

might have found a simpler derivation, using independent random variables. 

In general, if X and Y are random variables described by the generating

functions X(z) = £  Pr{x * k]zk and Y(z) = E Pr{Y = k}zk ,
k >0 k >0

then
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X(z)Y(z) = T, f  Z  Pr{X = j} Pr{Y = k-j} Jz* 
k > 0 \ ^ C < j < k  J

If X and Y are independent, then Pr{X = j }Pr [Y = k-j ) = Pr{X=j and Y - k-j 

or Pr{X + Y = k} , so X(z)Y(z) is the generating function describing 

X + Y • To apply this to our problem, we consider the inversion table 

entries B^B2 • • • as random variables. Cur assumption that all 

inversion tables are equally likely is equivalent to the assumption that 

these random variables are all independent and that B, takes on each 

of the values 0,1,...,k-l with probability l/k for 1 < k < N • The 

generating function for B, is therefore

r (1+ z+ • • • + z1*"1) for 1 < k < NK — —

Now, by definition, we know that the sum of the 3, ' s is the number cfA
inversions

E = Bl + B 2 + "' + BN

and from the law above, the generating function for this sum is the 

product of the generating functions for the individual terms:

E(z) = U  J Z  zJ ,
1 <k <N 0 < j < k-1

which is what we found before. Similarly, if we define
f"
0 B, = 0 k

xk = < 1 < k < N ,

L1
then

D = Xj.I2* ••• + XN
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1 k-1and the generating function for is ^ z , so that

s tt (k-l)z + lD(z) = IT ---1---  >
1 <k <N

as before. From this function, we can proceed even further, to find

an explicit expression for cL„ . We have

D(z) = TT ((k-l)z + l)
i<k<N 

N r t N
■ 5 r  TT ( i + k )

0 < k<N-i ^ J

r  n  twhere luj ai*e Stirling numbers of the first kind (see Eqs. (26)-(30)

and (37) in Appendix B). Therefore D(z) = Z  | N lzk , sok LN-kJ *

o i r n 1
Nk N! L N-k J ‘ cou-^ now compute our average directly,

avg(V ■ r  = * [A ]

Tn

N . i  f m l
Nt L 2 J

= N ■«N
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but the method that we used before was much simpler. vSee Appendix 3 

for some identities relevant to this derivation: the sums of Stirling

numbers are evaluated from the generating function (?7 ) and its 

derivative.) For many generating functions, it is most convenient to 

compute moments directly from the probabilities; for others (including 

D(z) ) it is easier to work solely with derivatives of the generating 

function; and for still others (including E(z) ) the individual 

probabilities are not available, and it is necessary to use methods 

such as we used above.

Our analysis of the quantities D and E for Program 1.; is now 

complete. We have found their maximum and minimum values, and the 

generating functions, from which we have determined the first and 

second moments. Higher moments could also be derived from the 

generating functions if desired. To summarize, we know that

D„t: max N-lN

min 0 min 0

avg N - Hjj . _ N(N-l) avg ^  '

var «N _HN
(2) var N(N-1)(2N+ 5) 

72

These expressions, for N = U , agree with those in Example 1.2.



From a practical standpoint, of course, we are interested in the

performance of the program as a whole. We have already used the fact

that the average running time of the program can be obtained by adding

the average values of the contributing quantities (with appropriate

coefficients). For the maximum, minimum, and standard derivation,

however, this simple rule may not hold in general because of interactions

among the quantities.
Fortunately, for Program 1.3, the minimum value of D occurs for

the same permutation (12 ... N) as the minimum value of E ; also the

maximum values both occur for the permutation N N-l ...21. This

means, of course, that the minimum and maximum running times of the

whole program must occur for these permutations: the values are JN-6

2and Un + 6n - 9 respectively.
We can also derive the variance of the running time of Program 1.3

in exactly the same way that we found the variance of D and E . If

t , is the probability that Program 1.3 takes time k , namely the

probability that 3D + 8E + 7N-6 = k , and if Tw(z) = Z) t z
k >0

is the associated generating function, we proceed exactly as we did for 

the separate quantities to get the generating function

T (z) = z TT 5 ( 2  * 2  28J+1°)
2<k<N 1 <j <k-l

where the probability generating functions t,(z) = ^ (z^+ S  z )
l<j <k-l

have mean Uk+ 6 - — and variance + . ThereforeK j j k , d.
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mean(TN) = 1 +
2 < k  <N

L. (Uk + 6 -  | ) = 2N2 + 8n -  31^ -  6

as before, and

var(TN)
2 <

This solution for the variance of the total running time was possible 

only because we were able to set up such a simple recurrence on the 

generating function. It is ordinarily very difficult to get the 

variance of the total running time of a program, and we usually must be 

content with the variances of the various contributing quantities.

In summary, we have derived exact formulas describing the total 

running time of Program 1.3:

This analysis, in addition to providing a showcase for many of the methods 

used in analysis of algorithms, represents a goal towards which we work 

when studying programs. For many programs, it is not possible to 

compute exact formulas for the total running time. In fact, it is often 

the case that even approximate formulas cannot be derived. However, when 

analysis does yield exact answers, we have very complete information about

T : N
2

max U N + 6 N - 9 

min 7 N - 6

avg 2 N2 + 8 N - 3 - 6

var | (1 6 n5 + 2Un2+ 17 6N - 336 - 8lH^2  ̂)var
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the program, not only in the results, but also in the clear understanding

of the algorithm required for analysis.
Program 1.3 is a simple sorting method whose performance we completely

understand —  why do we look at other sorting methods? The answer, as we

have already remarked, is that the program takes much too long if N is

very large. If our unit of time is 1 microsecond, then Program 1.3

will take over five hours to sort 100,000 elements. We should expect

to be able to do much better. (On the other hand, for small N ,

Program 1.3 is about the best sorting method known.)

Studies of computational complexity (which comprise another kind

of "analysis of algorithms") show that the sorting problem should

require at least 0(N lg N) operations. The argument goes as follows.

In order to sort every permutation of N keys properly, a sorting program

must be able to "distinguish between" (i.e., operate differently for) all

of the N'. possible inputs. A sorting program which uses only k
kcomparisons in the worst case can only distinguish between 2 input 

permutations. This means that k must be large enough so that

2k > HI
or

k > lg Nl
or

k > N lg N - N lg e , by Stirling's approximation

(Eq. (55) in Appendix B).
/"N "NTherefore, every sorting method requires at least N lg I - 1 comparisons 

in the worst case. A similar but slightly more complex argument says 

that the average number of comparisons must also be about N lg N .

And this lower bound can be achieved -- there are several sorting 

methods which use cNlgN comparisons for some constant c .
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Of course real programs consist of more than comparisons, and

there are other factors which must be taken into account. For example,

we might consider modifying our insertion algorithm as follows: To

find the proper position for v = A[i] among the elements already

sorted (A[1],A[2],...,A[i-l]) , first compare it with the middle

element A[(i-l) t 2] to see if it belongs in the left half or the

right half. If it belongs in the left half, then compare it with the

middle element of the left half, etc., continuing in this manner until

the proper position is found. This "binary insertion" algorithm requires

about N lg N comparisons, but its running time is still dominated by 
1 2^ N "moves during insertion". We might consider using linked list 

techniques to eliminate these, but then we would need an amount of extra 

storage proportional to N , which might be undesirable. Nevertheless, 

there are several sorting methods which overcome such difficulties and 

sort N elements in a total amount of time proportional to N lg N .

One of the most efficient of these, with some qualifications, is 

Quicksort.

Fortunately, the Quicksort algorithm and its best variants admit to 

complete analysis: this will be our concern for the rest of the thesis.

The next chapter will be a careful development of a practical, elegant, 

and efficient program based on the Quicksort algorithm. Of course, the 

program will be much more involved than Program 1.3, and both the results 

and methods of analysis will be more complex and interesting. The average 

running time of the program will be derived in Chapter 3« The following 

chapter considers the performance of the program in the best case and in 

the worst case. Then, after a look at seme minor modifications and 

practical considerations, the three major variants of Quicksort will be
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examined: van Emden's approach; samplesort; and the median-of-three

modification. A complete analysis will be presented for the best of 

these.

Throughout this investigation, we will be interested in learning 

about the effectiveness of the various algorithms, as demonstrated by 

exact analysis. In addition, we will pay attention to the impact of 

the various modifications on the analysis itself. A variety of 

interesting general problems in concrete mathematics are suggested 

by the analysis of Quicksort. We will be studying not only an important 

general-purpose sorting method, but also a family of important general 

methods of analysis.

2k



CHAPTER TWO

The Quicksort algorithm is an application to sorting of the general 

"divide and conquer" principle of solving a problem by dividing it into 

two subproblems, then solving them in the same way, repeating the process 

until the resulting problems are simple enough to solve in some other way. 

The algorithm can be expressed recursively as follows:

Program 2.1

procedure quicksort (integer value f,r); 
if r > t then

partition on A[j]; 
quicksort (I,j-1); 
quicksort (j+l,r); 

endif;

Here the procedure call " quicksort(l,r) " will cause the r-£+l elements 

in the array A[f] ...A[r] to be sorted. In particular " quicksort(1,N) " 

will sort the entire array.

The crux of the algorithm, of course, is the " partition on A[j J " 

process, which will now be defined. Partitioning means to rearrange the 

array so that two conditions are satisfied:

(i) some element, say the j-th smallest, is in its final position in 

the array (A[j]) ;

(ii) all elements to the left of A[j] are less than or equal to it 

and all elements to the right of A[j] are greater than or equal 

to it.

Thus, since A[j] is in position, the original problem of sorting 

the entire array is reduced to the problem of sorting the "left subfile"
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(the elements to the left of A[ j ] ) and the "right subfile" (the 

elements to the right of A[j] ). If a file is of size 0 or 1 , it 

is already sorted. If Program 2.1 works properly for all files of 

size <N , then it clearly sorts N elements. Thus, by induction, 

we see that Program 2.1 is a proper sorting procedure.

There are several methods which have been suggested to achieve 

partitioning, all with the same general structure. As we shall see, 

it is a somewhat delicate process. While the methods seem to differ 

only slightly, the performance of the methods may differ significantly.

One of the most natural partitioning methods is detailed in 

Example 2.1. Suppose that the fifteen keys shown on the top line are 

to be sorted. First the leftmost element of the array, the UU , is 

arbitrarily selected as the partitioning element. It is removed from 

the array, leaving a hole on the left. An element is found to fill 

this hole by scanning from the right for the first element < Uk .

The 01 is found, and moved to the hole vacated by the UU , but 

leaving a hole of its own on the right. Similarly, an element to 

fill this hole is found by scanning from the left to find the first 

element > Uk , in this case the 95 • This leaves a hole on the left 

again, and the process continues until all the elements to the left of 

the hole are < UU and all the elements to the right of the hole 

are > UU . Partitioning is then completed by filling the hole with 
the UU key.

If this partitioning algorithm is used in Program 2.1, then the 

entire file is sorted as shown in the second part of Example 2.1.

Each line shows the result of partitioning the subfile defined by
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Example 2.1
partitioning:

sorting 
the file:

ltlt Jo 05 oU 08 88 oo sU 07 *>5 00 jit 08 10 01

O  2o 05 oU 08 88 00 ?U 07 35  00 - 1* ^  10 / 'I

01

01 Jt 

01 Jo 10

os

E>
8 *

l ^ c s *

01 Jo 10 oU 08

01 Jo 10 OU 08 Jit
ho y

01 Jo 10 oU 08 2U

01 20 10 OU 08 ju 55
£

01 Jo 10 oU 08 ju 55

V

5U
01 20 10 Qlt 08 jit 55 51+

1*1+ 26 95 OU 08 38 96 5U
01 26 10 oit 08 Jit 55 51+

© 26 10 OU 08 2U 55 5U
07 10 oU 08 Jit© 5U
oU © 10 08 Jit

OS

<a
(^J) t8 88 os

$
O

E t)

3

00 (8 88 05

00 00 68 88 95

00 00 v'' O os

00 06 (-8 88 05

00 JU 08 10 01

00 06 t8 33 05

08 ©  Jit

05 00 08 88 ©  

38 08 (0 5 )

68 (ss
00

t r 
1 lt>
1 o
J 0 

J o 
1) o 
8 Q

11 15
11 it 
11 1J
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the given values of I and r . The array is completely sorted in 

9 partitioning stages.
This loose description leaves some latitude in implementing this 

algorithm: one of the simplest implementations is the following

program.

Partitioning Method 2.1

i := /; j := r+lj v := A[£]; 
loop until pointers have met:

loop: j := j-1; while A[j] > v repeat;
if i > j then j := i; pointers have met endif;
A[i] := A[j];

loop: i := i+1; while A[i] < v repeat;
if i > j then pointers have met endif;
A[j] := A[i]j

repeat;
A[j ] := v;

The operation of this program is straightforward except in the case 

that A[£ ] is larger than all of the keys A[£+l], .. .,A[r] . Then

the condition A[i] < v will be true for all i £ I > and the

i := i+1 loop cannot be guaranteed to terminate. If the subfile 

being partitioned is within a larger file being sorted, as occurs 

in the last partitioning stage of Example 2.1, this may not be a 
problem, since there will usually be larger elements to the right. But 

it is a problem if it occurs when r = N , as in the 7th partitioning

28



stage of Example 2.1. This case is handled with the samp technique 

that was used in Program 1.3 s the assumption that A[N+1] is larger 

than all of the other keys (written A[N+1] = m ) is sufficient to 

guarantee that the loop always terminates and the program works 

correctly. Some partitioning methods have similar trouble at the 

left end, and we will assume in such cases that A[0] is less than 

all of the other keys (A[0] = -®) .
The main difficulty with this partitioning method is that the 

termination condition can occur either after the i pointer has 

incremented and stopped or after the j pointer has decremented and 

stopped. The two tests required to see whether the “pointers have met” 

make this algorithm less efficient than is necessary. The second 

partitioning method that we will examine does not have this problem.

The partitioning procedure shown in Example 2.2.is the method used 

in the original Quicksort algorithm in i960  by C . A. R. Hoare. His 

method is based on exchanging elements. Again, an arbitrary key 

is chosen as the partitioning element, this time the element in the 

middle of the array, the . Now, we scan from the left for the first 

element > J>h and from the right for the first element < 3^ • These 

two, the U1+ and the 01 , are obviously out of place if the file is 

to be partitioned correctly, so they are simply exchanged. Continuing 

in exactly the same manner, we exchange the 95 and the 10 ; the 88 

and the 2U ; and the 96 and the 07 • The next time our scans stop,
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Kxample 21.2

p a r t it io n in g :

sorting 
the file:

1+1+ 26 95 OU 08 88 96

E*>
( g )  °7  .-'5 99 2U 8̂ 10

01
o

1*1*

<D
01 26 10

b8

OS i+i.

C l 26  10 ')!» 08 2h

N681
2UJ
88 68 95 M

01 2(. 10 OU 08 2l+ 07

C3
O

9 C 55 99 88 68 95 hi

01 z-' /■ 10 oU 08 2l+ 07 0 9 * 55 99 88 68 95 1+1*

1+1+ 26 95 Oil 08 88 96 3U 07 55 99 21+ 68 10 01 1 r
01 26 10 ol+ 08 2l 07 ©  9^ 55 99 88 68 95 1+1+ 1 15

01 © 10 26 08 2 l 07 1 7

07 © 26 2h 10
* 7

IO © 26 5 7

1+1+ 55 68 99 95 96 9 15

© 1+1+ 68 9 11

1+1+ 68 10 11

© 99 96 15 15
96 ll+ 15
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on the 07 and the 96 > the pointers have crossed, so that no exchange 

is necessary. The algorithm has ensured that the keys to the right 

of the 07 are all greater than JU and the keys to the left of the 

96 are all less than . Partitioning is now complete. In general, 

we would have to put the partitioning element into position as shown 

in the algorithm below, but we were fortunate in this example: the

partitioning element was already in place.

In this method, the test on whether the pointers have crossed 

occurs only after both the left and right pointers have stopped. This 

is approximately half as often as in the previous method, and the 

inner loop is much simpler.

Partitioning Method 2.2

A[0] := -®; A[N+1] := 00;
i := £-1 ; j r+1 ; p := (£+r) t 2 ; v := A[p]; 
loop:

loop: i i+1 ; while A[i] < v repeat;
loop: j := j-lj while A[j] > v repeat;

while i < j:
A[i] :=: A[j]; 

repeat;
if i < p then A[i] : = : A[p]; i := i+1 end if;
if ,) > p  then A[pl : = : A[,i ]; ,j := j-1 endif;
quicksort (£,j); 
quicksort (i, r) ; _
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It is instructive to note the care which must be exercised after the 

pointers have crossed in this method. The object is to get the 
partitioning element A[p] into its proper place within the array.

The pointer scans don't move A[p] , and after the pointers have 

stopped, there are three cases: A[p] may be in the right subfile;

the left subfile; or neither. If A[p] is in the right subfile, it is 

known to be no larger than any of the other elements there, and it can 

be put into place by exchanging it with the leftmost element of the right 

subfile. This occurs, for example, in the second partitioning stage of 

Example 2.2. The symmetric argument holds if A[p] is in the left 

subfile. Finally, if A[p] is in neither subfile, as occurred in our 

first partitioning stage, it is known to be already in place.

If all of the keys are distinct, as in our examples, then it will 

always be true that i-1 = j+1 = (final position of partitioning element) 

at the end of Partitioning Method 2.2. If, however, there are equal keys 

present, then i-j may be greater than two, and possibly more than one 

key may be known to be in its final position after partitioning. Despite 

this, the method actually tends to perform inefficiently when equal keys 
are present. As we shall see later, Quicksort performs best when the two 

subfiles are approximately the same size. It turns out that stopping the 

pointers on keys equal to the partitioning element tends to bring the 

partition closer to the center. Although this may result in equal keys 

being exchanged, this is more than compensated for by the more balanced 

partitions. Furthermore, this corrects an even more serious defect of 

Method 2.2: the recursive calls " quicksort(£,j) " and " quicksort(i,r) "

might access elements far outside their subscript ranges. For example, 

if a partitioning element equal to r is chosen when the left subfile
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is partitioned, then the left pointer will pass over all the keys in th»- 

partition just made and reach into the right subfile'. We shall study 

the question of equal keys in more detail in Chapter 3*

Example 2.3 shows the result of modifying Hoare's original method 

to exchange on keys equal to the partitioning element. For variety, we 

arbitrarily choose the second element of the file as the partitioning 

element for this example. In the first stage, then, we scan from the 

left for the first element > 26 and from the right for the first 

element < 26 . These two, the Ub and the 01 , are exchanged. The

next element > 26 on the right is the 26 itself. It is exchanged

with the 10 . Two more exchanges are made, and the pointers cross at 

the 96 and the 07 •

There is no efficient way to get the partitioning element into its 

proper place for this method. Unless it is already in place, it is "lost’1 

on an exchange. To keep track of it would require extra overhead in the 

inner loop in the following algorithm. Despite the fact that the method 

violates condition (i) of partitioning in this way, it does sort the 

elements as shown in the second part of Example 3 , and the algorithm is 

very elegant.

Partitioning Method 2.3

i := I-1; j := r*l; p := £+1; v := A[p]; 
loop:

loop: i := i+1} while A[i] < v repeat;
loop: j := j-1; while A[j] > v repeat;

while i < j:
A[i] :=: A[j]; 

repeat; 
f" quicksort (£,i-l);
[_quicksort (j+l,r);



Example 2.5

partitioning:

sorting 
the file:

HH ( P )  95 Oh 08 88 96 3h 07 55 99  2H 68 10 01

01 

|26 

01 10

< 3

01|
un

01 10 2h

26 HU

n68|
2UJ

95 68 26 HU

01 10 2h OH 08 07

07J

88 55 99 95 68 26 UH

HU 26 95 OH 08 88 96 5U

01 10 2h OH 08 07Q96 3h

01 07 08 OH [~\2h 10

01 0UQ08 07

01 ( 2̂ )
07 0 08

1O0 2U

99 95 68 26 HH

99 2h 68 10 01
1

/ r

99 95 68 26 UH 1 15
1 6

1 H

1 2

5 U

5 6

99 95 68 96 HU 7 15

99 95 68 96 HH 9 15
HH 95 68 9 6 (]9 9 10 15

□ 00 00 95 68 96 10 lU

88 6 8 [)9 5 96 11 lH

68 0  88 11 12

95 15 lH



If some element equal to the partitioning element, jc already in position, 

this algorithm could end with i = j , so that the subfiles on the left 

and right of that element can be sorted. Otherwise, the algorithm will 

always end with j+1 = i (there can be no k such that v < A[kJ < v ) 

and the subfiles to be sorted are A[f ], .. .,A[ j J and A[i], .. .,A[r] . 

Notice that the dummy keys A[0] = -00 and A[N+1] = ® are not needed 

in this algorithm, because both pointers must at least stop at p .

Also we cannot have j = r or i =  I , because this would imply

A[i] < v for all i or A[j] > v for all j , which is impossible.

Unfortunately, this very elegant method cannot be recommended for 

partitioning because it introduces a bias into the subfiles. When 

partitioning a random permutation of distinct keys, all of the other 

methods we've seen will produce a random permutation of keys in both 

the left and right subfiles. (This fact is very important to the 

analysis of Quicksort, and it is proved carefully below.) Partitioning 

Method 2.3, however, only produces random subfiles if the partitioning 

element is already in place. If it falls in the left subfile it is the

largest element there; if it falls in the right subfile it is the

smallest element there. In either case, it does not fall into every 

position with equal probability. In Example 2-3, since the partitioning 

element is exchanged with the first or second key from the right that 

has a smaller value, it tends to fall near the right end of the right 

subfile. This bias not only makes analysis of the method virtually 

impossible, it also slows down the sorting process considerably. We 

will study this in more detail in Chapter 5*

We are beginning to face the rather discouraging prospect that we 

might not find a partitioning method which avoids all of the anomalies
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encountered above. Are there methods which put the partitioning 

element in its proper place, produce random subfiles, perform acceptably 

when equal keys are present, and have an efficient inner loop? Fortunate 

there are: for example, the following program satisfies all of these 
requirements.

Program 2.2 ('Partitioning Method 2.1)

procedure quicksort (integer value £,r); 
if r > I then

i := I; j := r+1; v : = A[£]; 
loop:

loop: i := i+1; while A[i] < v repeat; 
loop: j := j-1; while A[j] > v repeat; 

while i < j:
A[i] :=: A[j]; 

repeat;
A[ £ ] : = : A[j]; 
quicksort (I,j-1 ); 
quicksort (j+l,r); 

endif;

The partitioning method used here is detailed in Example 2.1+.

Again the first element of the array is arbitrarily chosen to be the 

partitioning element. But now the idea is to leave that element where 

it is and partition the rest of the array on its value. The left pointer 

therefore starts at the second element of the array. The first element 

> 1+U is 95 y and the first element < U* from the right is 01 , so

that these two are exchanged. IJext the 88 and the 10 , then the 9̂'

and the 2h are exchanged; and the pointers cross on the 55 and 

the 99 • The inner loops have now ensured that all of the elements

to the left of the 99 are < UU ; and all those to the right of the 55



Example 2 . k

partitioning: ^  95 0  ̂ 08 88 96 3k 07 35 99 08 10
g>

sorting 
the file:

a
26 01 35

\ohf

108

|88r

£
h-U 26 01 oH 08 10 88 55

6̂81
2h\

l+u 26 01 Ok 08 10 2k 96 68 88 35

[5jr)
$

22
9

uu 26 01 ou 08 10 2k 3k 07 35 99 96 68 38 95
35 26 01 OU 08 10 2k 3k 07 © 99 96 68 83 95

kk 26 95 OU 08 88 96 3k 07 35 99 2k 68 10 01 I

35 26 01 OU 08 10 2k yk 07 99 96 68 88 °5 1

07 26 01 ok 08 10 2k 3k

©

1

01 ou © 26 08 10 2k 3k 1
3 ) ok 1

2U 08 10 ( 26) 3k 1.
10 08 C o y  

08 (1 0 )

95 96 68 88 (j?3 
68 88 ($ 5)  9c

^T) 88

11 If 
11 it 
11 il
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are > HU . Therefore, the UH is put into its proper position simply 

by exchanging it with the 35 •

If all the keys are distinct, this method performs exactly as 

Hoare's original method (Partitioning Method 2.2) with p := I .

However, the technique used here of leaving the partitioning element 

out of the partitioning process allows this method to perform properly 

and efficiently when equal keys are present.

The proof of the fact that Partitioning Method 2.U produces random 

subfiles after partitioning is not difficult. Suppose that a permutation 

of {1,2, ...,N) is being partitioned with all N'. such permutations 

equally likely, and suppose that the partitioning element is s ,

1 < s < N • Consider the s-1 elements which are less than s . To 

each of the (s-1 )! possible permutations of these in the original file 

there corresponds one and only one permutation in the left subfile.

Since all of the original permutations are equally likely, all permutations 

of the left subfile must be equally likely. The analogous argument holds, 

independently, for the right subfile. This same argument holds for 

Partitioning Methods 2.1 and 2.2, but not for Partitioning Method 2.3.

The fact that partitioning produces random subfiles will be the basis 

for our analysis in Chapter 3-

Program 2.2 is a very elegant description of the Quicksort algorithm 

based on the most efficient partitioning scheme known. However, the 

program as a whole is not a practical sorting method, because of the 

recursion. Recursion makes Program 2.2 impractical not necessarily 

because of the time overhead involved, but rather because of the space 

overhead which could be involved. To illustrate this, we will first 

look at a useful way of describing the operation of Quicksort with 
binary tree structures.
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The binary tree corresponding to the operation of Quicksort on any 

permutation of n elements can be constructed as follows: If n = 0

the tree is empty, and if n = 1 the tree consists of one node with 

that one element. Otherwise, the root node is the partitioning element, 

the left subtree is the tree corresponding to the left subfile after 

partitioning, and the right subtree is the tree corresponding to the 

right subfile after partitioning. For example, the tree corresponding 

to the operation of Program 2.2 on our fifteen keys is

This tree structure is a succinct way of describing the operation of 

the Quicksort algorithm.

Clearly, there is such a tree for each permutation of the keys 

and there is at least one permutation for each tree, though many 

permutations may produce the same tree. We can always work backwards 

to reconstruct a permutation of the keys from a given tree. For 

Program 2.2 the method is to scan the tree in symmetric order, writing
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down the keys as they are encountered, except that the root node of 

a subtree is always exchanged with the first number corresponding to 

its left subtree. This procedure for the tree above is illustrated 

below:

01
Ob

07 0U 01

08 

10 08

2k 08 10

26 08 10 2k

3k

35 0U 0 1 26 08 10 2k 3k 07

UU oU 0 1 26 08 10 2k J>k 07 35

68 
88 

95 88 68

96

99 88 68 96 95

UU oU 0 1 26 08 10 2k 3k 07 35 99 88 68 96 95

The procedure to generate all permutations corresponding to a given 

partitioning tree is more complicated; we have constructed the unique 

permutation, for each tree, such that no exchanges A[i] : = : A[ j ] are

performed during the entire Quicksort operation.

The purpose of the recursion in Program 2.2 is to save subfiles for 

later consideration. The "depth" of the recursion is the number of 

subfiles which have been saved. Fran a practical standpoint, it is 

desirable to minimize the maximum depth that could occur. It is not

difficult to see that the depth of recursion at any point during the
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execution of Program 2.2 is exactly the distance from the current

partitioning element to the root in the corresponding binary tree,

i' (Put another way, it is the number of nodes whose left or right subtree 

contains the partitioning element.) This means, of course, that the 

recursive stack must be as large as the maximum height of any binary

1 tree. If the N keys to be sorted are the numbers 1 2 ... N in

order, then the tree is

and an amount of storage proportional to N must be reserved for the 

recursive stack. This may be unacceptable, particularly if N is 

very large.

This can be alleviated somewhat after noticing that the second 

recursive call in Program 2.2 is not really recursive. Since it is the 

last action in a procedure, it could be replaced by a branch (after the 

parameters have been reset appropriately). If this is done (hopefully by 

a clever compiler), the depth of recursion is the number of nodes whose 

left subtree contains the current partitioning element. This is usually 

smaller than before, but it can still be as large as N , for example if 

the numbers N 1 2 3 ••• N-2 N-1 are sorted:
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These difficulties stem from the fact that Program 2.2 makes an 

implied decision which is arbitrary: it always sorts the left

subfile first. The strategy of always sorting the smaller of the 

two subfiles first, as we will see, will reduce the maximum recursive 

depth to Llg(N+l)j . We cannot expect to do better than this because 

such depth is required by the permutations corresponding to the complete 

tree on N nodes:
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This tree has |_lg(N+l)j "full" levels, and possibly one more 

partially filled level. No matter which subfile is partitioned 

first, the recursive depth when the first node on any level k 

(1 < k < |_lg(N+l)_|) is reached must be exactly k . This means in 

particular that the maximum recursive depth is l_lg(N+l)j •

Program 2.3 is the implementation of this idea of always sorting 

the smaller of the two subfiles first. Because of the effect mentioned 

above, it is ccnvenient to use an explicit stack and to replace the

recursion by an iteration. For clarity, the details of the stack

manipulation and the selection of the smaller subfile have been omitted.

Program- 2.3

procedure quicksort (integer value £,r); 
loop until done:

i := £; j := r+1; v := A[£]; 
loop:

loop: i := i+1; while A[i] < v repeat;
loop: j := j-1; while A[j] > v repeat;

while i < j:
A[i] :=: A[j]; 

repeat;
A[£ ] :=: A[j]; 
if subfiles both empty

then if stack empty then done;
else (£,r) := popstack;

endif;
else if small subfile empty

then (£,r) := large subfile; 
else pushstack(large subfile);

(£,r) := small subfile;
endif;

endif; 

repeat;
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When n elements are partitioned, the smaller of the two subfiles 

can be no larger than f > an*1 it is always "empty" for n < 2 .

Furthermore, the upper bound I ~2~ J ac^ieve<i when s = |̂ ~2~ J + ̂
Therefore, the maximum stack depth for Program 2.3 satisfies the

recurrence

’ n > 2  !
f(n) = <

l o ,  n < 2 .

By telescoping this formula a few times, 

f(n) = i + f Q 2 l ± j )

+*+*(} - )  - 2t f ( | ¥ j )= 1

= 2 +

we are led to the formula, easily proven by induction, 

f(n) = k+fj n+1
«k j->) -  [ j a j -1 > 2

Since f(0) = f(l) = f(2) = 0 , this implies that f(n) = k , where k 

is the smallest integer for which i f J - 1 < 2 , or

<  i *  <  n + 12k ' - 2k-l

This inequality is easily solved for k

2k-l 5  n+1 < 2k



k-1 < ^ ( x )  < k

k = 1 +

= |_lg(n+l)J - 1

Therefore the maximum number of subfiles which can be on the stack at 

any point during the execution of Program 2.3 is Llg(N+l)_|-l .

Although Program 2.3 may be a useful implementation of Quicksort 

in a practical situation, there is one more modification which will 

improve its performance significantly. We notice that Program 2.3 

is not especially efficient for very small files. This is a problem 

because, for any size file, the recursive nature of the algorithm 

guarantees that it will be used for many small subfiles. We know a 

method that is efficient for small files: insertion sorting. This

suggests using insertion sorting within Program 2.3 by simply inserting 

the statements

if r-I < M then insertionsort(£,r) else 

endif

into Program 2.3 where indicated by the asterisks. It is not immediately 

obvious what the precise value of the parameter M should be: in fact

this will be one of the results of our analysis.

Our knowledge of the performance of insertion sorting indicates 

that there is an even better way to proceed. Suppose that small subfiles 

(of size < m ) are simply ignored during partitioning. This can be
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Example 2 .$:
sorting the file (M = *0 •

uu 2 6 95 oU 08 88 96 3U 07 35 99 2U 68 10 01

35 26 01 oU 08 10 2b 3U 07 99 96 68 88 95

© 95 96 68 88 ©
07 26 01 OU 08 10 2b 35

01 0U © 26 08 10 2b 3b

2b 08 10 (26)1 5U
01 OU © 2b 08 10 (26)1 3U© © 95 96 68 88 ©
01 oU 07 08 10 2b 26 3b 35 ^ 68 88 95 96 99



implemented easily in Program 2.3 by replacing the conditions 

"subfiles both empty" and "small subfile empty" with "subfiles both small" 

and "small subfile small". Then the file is only partially sorted by the 

partitioning procedure; but a single insertion sort will complete the job 

quite efficiently.

Example 2-5 shows what happens with our set of keys when M = U .

After partitioning is complete the keys which were used as partitioning 

elements (07 , 36 , 35 , > 99) a^e all in their correct positions;
and in between any two of these are at most M other keys whose values 

also fall between the two partitioning elements. This means that the 

number of inversions in the whole file is the same as the sum of the 

number of inversions in all of these small subfiles. Therefore, it takes 

only slightly longer to insertion sort the entire file than to insertion 

sort all the subfiles. But small subfiles are never put on the stack 

during partitioning, and the overhead of calling the insertionsort 

procedure for every small subfile is eliminated, so this method is much 

more efficient. Program 2.U is the explicit implementation of this method.

Since this program will be the subject of our analysis, the complete 

details of stack manipulation, etc., are included. It may be difficult to 

implement the decision structure following partitioning efficiently in 

programming languages which don’t allow event variables such as "done" 

in Programs 2.3 and 2.U, and an alternate implementation (which uses go to 

statements) may be found in Appendix C. Also, the algorithm is "in-line" -- 

it can easily be made into a subroutine by incorporating the first five 

lines into a procedure in the manner of Program 2.3*
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Program 2.U

integer t,r,p> i> j > 
integer array stack[0:: 2  x f (N)-1 ] ; 

arbmode array A[0 ::1H 1 ); 

arbmode v;
A[0 ] := A [ N + 1 ] := * := 1 ; T '■= N;

p := 0;
loop u n t i l  done:

i := I; j := r+lj v  := A[ / ];

±°°E:
l o o p : i ;= i+1 ; w h i l e  A(i] <  v  r e p e a t ; 

l o o p : j := j - 1 ; w h i l e  A[j] >  v r e p e a t ; 

w h i l e  i <  j :
A[i] :=: A[j]; 

r e p e a t ;

A[f] :=: A[o];
if j-/ >  r-j t h e n  if  M  >  j-/ t h e n  if p  = 0 t h e n  don e  e n d i f ;

p := P-2;
/ := s t a ck[p]; r := sta c k [ p + l ] ;  

el s e  if  r-j >  M  t h e n  stack[p] := /; stack[p<-l] := j - 1 ;
p  := p»-2 ; I := j + 1 ; 

e l s e  r := j - 1 ;

e n d i f ;

e n d i f ;
else id| M  >  r-j t h e n  if p = 0  t h e n  don e  e n d i f ;

P := P-2;
I := s t a ck[p]; r := sta c k [ p * l ] ; 

else if  j-f > M  the n  stack[p] := j + 1 ; stack[p<-l] := r; 

p  := p * 2 ; r := j - 1 ; 
e l s e  I := j + 1 ;

e n d i f ;

e n d i f ;
e n d i f ; 

r e p e a t ; 

i := 2 ;

loop w h i l e  i <  N:

if A[i] <  A [ i - 1 ] t h e n
v  := A [ i ] ; j := i-1 ;

1° £ £ : A[ j + 1 ] := A [ j ]; j := j - 1 ; w h i l e  A [ j ] >  v  r e p e a t ;
At j+ 1 ] := r; 

e n d i f ; 

i := i+1 ; 
r e p e a t ;

1+8

A

C'
C-C'

B

S'

S - S 1

D
E



Before we can run Progran 2.U on an actual computer we will need 

to know the best value of the parameter M , and the amount of storage 

which should be allocated for the stack. The optimum value of M will 

be one of the results of the next chapter. The maximum stack depth f(N) 

is determined exactly as for Program 2.3- For N < 2M+2 there is no 

stack push, since one of the subfiles is guaranteed to be of size 

< M . The solution for N > 21VH-2 is f(N) = k , where k is the largest

This function also depends on M ; but this dependence is left implicit 

since we will later fix M at a value which minimizes the running time.

This completes our development of the Quicksort algorithm.

Program 2.U is a very efficient sorting program which can be useful in 

a wide variety of applications. This makes the study of the running 

time of this program, the subject of the next two chapters, of direct 

practical interest. Furthermore, the analysis is very interesting in 

its own right, so our attention will turn now from programming to 

mathematics.

r

N > 2M+2

f(N) = (

0 N < 2M+2
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CHAPTER THREE

The analysis of the average running time of Program 2.U begins, 

as with Program 1.5, by counting the number of times each statement 

is executed and relating these frequencies to basic characteristics 

of the algorithm. This frequency analysis is most easily done at the

assembly language level by repeated application of Kirchhoff's law.

Other characteristics of the algorithm may reduce the number of independent 

variables still further: for example the number of stack "pushes" must

equal the number of stack "pops". The running time of Program 2.k turns 

out to depend on the six quantities

A -- the number of partitioning stages,

B —  the number of exchanges during partitioning,

C -- the number of comparisons during partitioning,

S —  the number of stack pushes (and pops),

D —  the number of insertions, and

E —  the number of keys moved during insertion.

Each instruction in the assembly language version of Program 2.h (in 

Appendix A) is labeled with its frequency. Also Program 2.U itself is 

labeled accordingly. Due to symmetries in the algorithm, some of the 

quantities, for example C' , cancel out when the total running time 
of the program is computed. This cancellation might not occur in some 

implementations, and there could therefore be some other quantities 
involved.
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The last two frequency counts listed above, D and E , are the 

same quantities that we analyzed in Chapter 1. The analysis in Chapter 1 

obviously does not apply because the keys are not in random order when 

the insertion sort program is invoked. However, we know how to describe 

the nonrandomness in the keys, and we will still be able to study the 

quantities D and E .

To calculate the average values of our quantities A , B , C , S ,

D , and E we adopt the same model as in Chapter 1: we assume that the

keys to be sorted are the numbers {l,2, ...,N} and that all permutations 

of these numbers are equally likely as input. The fact that the subfiles 

after partitioning also fit this model, a primary concern in our 

development of a partitioning method in Chapter 2, makes it possible to 

find these average values by setting up recurrence relations.

For example, let C^ be the average number of "comparisons during 

partitioning,, required by Program 2.b to sort a random permutation of 

{1,2,...,N) . Then this is clearly the average number of comparisons 

required by the first partitioning stage plus the average number of 

comparisons required to sort the two subfiles. But it is obvious from 

Partitioning Method 2.h and Example 2.k that the first partitioning 

stage requires exactly N+l comparisons: There is one comparison each

time the i pointer is incremented or the j pointer is decremented.

The pointers start with i = 1 and j = N+l , and when all the keys 

are distinct, the pointers stop with i-1 = j = s where s is some 

number between 1 and N . Therefore, i is incremented s times; 

j is decremented N-s+1 times; and the total number of comparisons is 

N+l . (Some other methods require a different number of comparisons
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depending on the partitioning element. For example, Partitioning 

Method 2.2 requires N+3 comparisons if the partitioning element is 

in place, N+2 comparisons otherwise.) If s is the partitioning 

element, the left subfile has s-1 elements and the right subfile

has N-s elements, so we have established that

C„ = 12 Prfs is the partitioning element](N+l + C , + C„ )N 15S$N s-1 N-s'

for N > M

But we have assumed random input, so that any particular element s is 

the partitioning element with probability l/N . This simplifies the 

equation to

for N > M ,
1 <s <N 

which further simplifies to

C„ = N+l + | £  C n for N > M .N N , . s-11 <s <N

If a subfile is of size < M , it is not partitioned further, so that 

we may define

C„ = 0 for N < M .N -

These two equations define a recurrence relation which can be solved to

yield an exact formula for . In particular, we can immediately see

that C„. . = M+2 . To solve for larger values of N , a successful M+1
strategy is to eliminate the summation by first multiplying both sides 

of the recurrence by N :

NC = N(N+1) + 2 12 C - , for N > M ;
N l<s<N L
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and then subtracting from this equation the same equation for (N-l)

NC T - (l'I-l)CTT , = N(N+l) - (N-l)N+2 L  C -2 £  C ,
N N_1 l<s<N S_1 l<s<N-l S

= 2N + 2C ^ , for N-l > M ;

or

NCn = (N+l)CK 1+2N , for N > M+l .

This equation can be divided on both sides by the "summation factor" 

N(N+1) to yield

CN CN-1 + 2
N+l N N+l

which telescopes to a summation

C CN M+l + y
N+l M+2 „ , k+1M+2 <k <N

- 1+aiH+l - aiM+2 ’ fOT K > M  •

(This technique of reducing a recurrence to a summation by multiplying 

by a "summation factor" is analogous to solving a differential equation 

by using an "integrating factor" -- see Eqs. (9) and (10) in Appendix B.) 

Therefore, the exact formula for the average number of comparisons 

required by Quicksort is

cn = <"*1><2!W - aW +1> > for H > M  •

The average values of all of the other quantities are found in 

exactly the same manner, although the calculations required are 

occasionally more complex. For , the average number of partitioning 

stages, the derivation is simpler. The recurrence

= 1+ S . £  ’ f°r N > M1 < s <N
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reduces, after eliminating the summation, to

\  = \-l 1
N+l N N(N+1)

or

AN* 1 = AN-1 + 1
N+l N

which telescopes to

V 1 .  W 1
N+l W-2

2
M+2

since ^  = 0 ôr N < M and = 1 • Therefore, the average number

of partitioning stages is

N+lAj! = 2 ‘ 1 » for N > M

The derivation for the average number of exchanges is more complicated, 

because the number of exchanges required on the first partitioning stage 

is dependent not only on the partitioning element, but also on the 

arrangement of the keys. The recurrence relation is

_ 1 £  | average number of exchanges when v
w ~ N  i < s <m \ sis the partitioning element J

+ i L  (B , + B,, )
N 1<S<N “-1 *-S

By studying Example 2.U and Partitioning Method 2 .U, we can formulate 
a more specific expression for the first term in this equation.

We notice that Quicksort is as efficient as we could expect with
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respect to exchanges. The only keys exchanged are those which must be 

exchanged: If s = A[l] is the partitioning element, then only those

keys among A[2],...,A[s] which are greater than s are exchanged 

into the left subfile. The probability that there are exactly t such 

keys for a given value of s is

(Si)
so that the average number of exchanges when s is the partitioning 

element is

N-s ( N-2 \
■

(N-s)(s-1)
N-l

(The identity 2  f s-l-t ) = ^s-2 ) 8X1 i118'*'®1106 of

Vandermonde’s convolution -- see Eq. (21) in Appendix B.) The recurrence 

for the total average number of exchanges is therefore
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B = / 1— r Z  (N-s)(s-l) + § Z  B .
N N(N-l) 1 <s <N l<s<N S_1

1 <s <N S_1

N-2 2
~S~ N 1 < s <N S_1

This is a linear combination of the equations we have just solved, so 

that

about three elements at a time on the average. This fact is of interest 

when we consider the problem of "timing" the program to highest 

efficiency for particular computers (see Appendix A).

The fourth quantity describing the running time of the partitioning 

portion of Program 2.h is S , the number of stack pushes. This differs 

from the other quantities that we have studied because its value is 

always 0 for N < 2M*-2 (rather than for N < M ) . As we noted in 
Chapter 2, the algorithm is designed to save a subfile on the stack only 

when necessary. If N < 2M*-2 , then one of the subfiles is guaranteed 

to be of size < M and will be left for the insertion sort, while the

or

for N > M .

Notice that since ~ i and j pointers move in
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other is used for the next partitioning stage. For N > 2M+-2 ,

there will be no stack push if the partitioning element is 1,2,...,M+1

since the left subfile can then be left for the insertion sort; and

there will be no stack push if the partitioning element is

N-M, n-M*l, N-l, N since the right subfile can then be left 

for the insertion sort. If the partitioning element is in the 

raige 1W-2, M+3, ..., N-M-2, N-M-l then both subfiles are bigger 

than the threshold, and one must be saved on the stack. This 

argument means that the recurrence

SN N 1 < ___
average number of stack pushes when 
s is the partitioning element
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can be simplified, to

S = i (N - 2M+2) + |  L  S , for N > 2M+3 •
N N " 1 < s <N

In particular, since = 0 for 0 < N < 2M+2 , then '

This reduces to the same equation that we had for ,

V± W 1
N+l N *

except that the recurrence does not telescope as far:

SN +1 S2M+3+1 2M+3 + 1 _ 1
N+l “ 2M+C _ 2M+^ 2M+3

The solution is therefore

SH ' * 1 ’ for N > 2M4-J

Finally we must look at D and E , the quantities describing the

time taken by the insertion sort. We can use the same devices as in

Chapter 1 to describe these quantities. The quantity D is the number

of non-zero elements in the inversion table of the permutation

remaining after partitioning, and the quantity E is the number of

inversions in the permutation after partitioning.

The definition of partitioning makes the recurrence relations for

these quantities especially simple. Since the partitioning element s

is put into position, the inversion table entry B for the permutations
left after partitioning is 0 . Further, if an inversion table entry 

for some element in either subfile is non-zero, it must be because there
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is a larger element to its left in the same subfile. The number of 

non-zero elements in the inversion table for the whole file is the 

sum of the number of non-zero elements in the inversion tables of the 

subfiles. Similarly the sum of the inversion table entries for the 

whole file (the number of inversions) is the sum of the sums of the 

inversion table entries for the two subfiles. Therefore, for N > M , 

we know that

The subfiles produced of size < M are random by our assumptions, so 

that the results of Chapter 1 do apply for N < M :

and

N Es-11 <s <N

These reduce quite simply to

D.N-l
N

D,M+l
Mf2N+l

and

^  ^-1 E,M<-1
M+2N+l N

dn -
and
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We now use these expressions to compute the average values for N = M*-l 

The telescoped recurrences above will then give the formulas for ai 1 n 
First,

DM+1 = M+I ^  Ds-1 1 <s <W-1

= &  o<f<„ (S-H^

■  m  - m  (Owjhm-m)

(see Eqs. (U) and (19) in Appendix B), which simplifies to

*  m+8- ^ m  *

and leads to the solution

DN ■ N+1-2 ^ i V i  > for N > M  •

Similarly,

M+l IT0 <s <M

m 2 (I)0 <s <M V J

1 f M+l "\
M+l ^ 3 J

M(M-l)
-
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and the average number of inversions left after partitioning is

’ f°r n > m •

We have now found the average values of all quantities upon 

which the running time of Program 2.k depends. To summarize, we know 

that the Quicksort program requires, on the average,

\  = 2 s i  - 1 stages>

%  = (N+1) (; % +1 - J H ^ 2 + | - ^  ) + | exchanges,

CN = (N+1) - 2H^2 + 1) comparisons,

Dn = (N+1) ̂ l - 2 J  insertions,

= (N+1) moves during insertion, and

SN = " 1 Stack ^ b 68-

These formulas all hold for N > 2M+2 . For M < N < 2W-2 , we know

that S„T = 0 , and all of the other formulas are still valid. For N
N < M , we have defined \  = BN = CN = SN = 0 5 DN = N ~ **N ’ ^  

N(N-l)R = — ^ — *- . These definitions made it convenient to solve our

recurrence relations, but the analysis is not entirely accurate if 

the initial file to be sorted is of size smaller than M . Since we 

are interested primarily in the performance of the program for large

values of N , we will pass over these details and work with the

formulas for N > 2M+2 .
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We notice that the largest of these terms are and , the

number of exchanges and comparisons. The harmonic numbers behave like

logarithms, so that these are the " N lg N " terms which dominate the

running time of Quicksort. The assembly language implementation of

Program 2.U, which is given in Appendix A, requires a total time of

2hk + 11B + Uc + 3D + 8E + 9S + 7N .

Again, these coefficients are only representative, and they may vary from

computer to computer. (Appendix C is a discussion of the implementation

on some real computers.) The significant thing about them is that the

coefficients of B and especially C are very small. This is important

because we know that these quantities dominate the total average running

time. It is important to note that this is what makes Quicksort "quick".

Not only does its average running time depend on quantities that behave

like N lg N , but also the coefficients of the quantities are small.

The coefficient of the number of comparisons counts a compare, a pointer

increment, and a conditional jump. It is hard to imagine a simpler inner

loop (although the technique of "loop unwrapping" will reduce the overhead

per comparison even further —  see Appendix A). This point may seem obvious,

but it is often overlooked when programs are being analyzed. Insertion

sorting is the best method for small files for the same reason: the
2coefficient of N in the expression for its running time is small.

Substituting the formulas for the average values of the quantities 

A , B , C , D , E ,  and S into the expression for the total time of 
Program 2.U, we get:

¥ <N+1>Vl - ¥ + I 71 - 7 0 ^ 2  + |§ ♦ ggj - 36 ̂  )
for the expected running time of Quicksort. From this exact formula, 

we can compute the best value of the parameter M . The graph of the
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function

f(M) . a i + n -70^  + (g§+ 3 * 5 - 3* ^

is shown in Figure 3*1 —  it takes on its minimum value when M = 9 • 

Although the value of M does not affect the leading term of the 

expression for the total running time, the proper choice of this value 

does have a significant effect in practical situations, because when N 

is in a practical range f(M) is the same order of magnitude as •

The graph of the total running time for N = 10,000 is shown in

Figure 3.2, as a function of different values of M . The optimal

value of M results in a 12 to 20 percent savings over the time taken

by more naive implementations of the algorithm. (For example, Program 2.3, 

which is essentially Program 2.h with M = 1 , is about 18$ slower when 

N = 1000 and 1 slower when N = 10,000 .)

Even if the exact values of the coefficients of the quantities 

which affect the running time of a Quicksort program are not known, it 

is wise to avoid the partitioning of small subfiles, for this analysis 

shows that the precise choice of the parameter M is not highly critical. 

For Program 2.h any value of M between 5 and 20 would do about 

as well as M = 9 • We can expect in general that if our implementation

involves a large amount of overhead, a larger value of M should be

used, and Figure 3*2 shows that it will not hurt much to pick a value

of M that is higher than the optimum.

We can cast our result for the average running time of Program 2.14- 

in more conventional terms by using Eq. (52) from Appendix B,
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Figure 3.1. Contribution of M • 
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Time ( 4- 10 )

Figure 3.2. Total running time for N = 10,000 .
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in the following asymptotic calculations on our exact formula:

f  (N+DHĵ  - f  + I (N+l)f(M)

= ^  (N+l) fin N + 7 + ^  + 0 ^ ^  + ^  + I (N+l)f(M)

= ^  (N+l)In N + (N+l)(^ 7 + | f(M)J -IT + o Q )

This, after we substitute 7 = -57721 ... and the optimum value 

f(9) = -50.860... , gives an approximate formula 

11-67(N+l) In N - I.7UN - 18.7U
or

8.09(N+1) lg N - 1 .7UN - 18.7b 

for the average total running time of Quicksort. We can have confidence 

in this approximation: because we started with an exact formula, we can

carry out the derivation to any asymptotic accuracy we desire.

The calculation of the variance of the total running time of 

Program 2.U is far too long and involved to be presented here. Although 

it is very important to have an approximate idea of the magnitude of 

the standard deviation, the exact value of the variance is, from a 

practical standpoint, the least interesting of the quantities we study 

in the analysis of algorithms. Moreover, it is the most difficult to 

get —  the calculations involved in deriving variances are often very 

intricate. To illustrate this, we will study the variance of the number 

of comparisons required by Quicksort. The derivation of an exact 

formula for this involves a variety of sums involving harmonic numbers, 

most of which are worked out in Appendix B.
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The most convenient way to set up the problem is in terms of

generating functions. Let c^k be the probability that Program 2.k

uses exactly k comparisons to partition a random permutation of

{1,2, ...,N} , and let C (z) = £  c zk be the generating function
k >0

for • Suppose that s is the partitioning element for the first

stage , 1 < s < N . Then C -.(z) is the generating function describing“ “■ S" J.
the number of comparisons Program 2.b uses for the left subfile, 

g(z) is the generating function for the right subfile, and z^+ 

describes the number of comparisons used in the first partitioning 

stage. Since these are all independent, we can multiply them to get

sN+1C . (z)C (z) = pj. J Program 2.b uses exactly k comparisons 1
s-1 N-s' ' ~ jc>q \ when s is the partitioning element J

k

Let us denote the conditional probability on the right hand side by cj^s

Then £  Pr{s is the partitioning element)c = c , so that we 
l<s<N

can remove this condition by multiplying both sides of the above equation 

by | = Pr{s is the partitioning element} and summing over all s :

1 N+l
i <

£  C ,(z)C.T (z) = £  £  Prf S. is. the ,'I c
s <N 3-1 N"S k>0 1 <s <N {.Partitioning elementJ  Nks

= £  c zk
k >0 Nk

= CN(Z) *

As before, this will hold for N > M ; for N < M , C (z) = 1 since no

"comparisons during partitioning" are used:
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r

c,(.) - <

1 N+l 
N 2

£  Cs_1(z)CN_s(z) , N > M  ;
l<s <N

N < M

This is a probability generating function for all N , and the recurrence 

appears to be difficult to solve explicitly. However, it does provide 

enough information to compute the average and variance, since it leads 

directly to recurrences in the derivatives of the generating function, 

evaluated at z = 1 . Since

C'(z) = i (N+1 )2N Z  c,ml(t)cnmaMN l<s <N

a. 1 N+l + — z N 2  <c s-i(2> W z) + c s-:l(z)cn -s(2)) >1 <s <N

the average is given by

CN(1> - <

N + 1 + N S  (ci-i(1)+cJ-,(1)) 1 < s <N

0

N > M

N < M .

This is exactly the recurrence that we have solved already for the 

average number of comparisons required by Program 2.U. To simplify 

the calculations as much as possible, we will take M = 0 , so that 

the solution is

CJ(1) = 2(N+1) (Hjj+1 • 1) ,

which holds for all N . To get the variance, we first proceed in the 

same manner to calculate C^(l) • The second derivative of the generating 

function satisfies
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c"(z) = I e8_i(z)cB_s«

+ 5 (K+l) zN T, (C' ,(z)C„ (z) + C ,(z)c' (z))N n .«T s-1 ' N-sv ' s-1 ' N-sv ''1 < s <N

+ - z  £  (C ( z )C._ ( z ) + 2 C '  ( z ) C ( z ) + C  ( z ) )N , __ s-lv ' N-sv ' s-lv ' N-s ' N-s ''1 <s <N

so that the recurrence for C (1) is

c"(l) = N(N+1) + jj (N+l) £  Cg (1 )
1 < s <N

+ | £  c' ,(i)c'T (i) + | £  c" _(i)N , ^ s-lv ' N-sv ' N , . s-lv '1 <s <N 1 <s <N

This is essentially the same as, but much more complicated than, the 

recurrences that we solved to get our average values. The same method 

of solution is appropriate. First we multiply by N and subtract the 

same equation for (N-l) :

NC"‘(1) -(N-1)C" 1(1) = N2(N+1) - (N-1)2 N

+ U(n+i) £  c' (l)-UN £  C' (1)
1 < s <N 1 < s <N-1

+ 2 £  C . l e i  (1), ^ s-lv ' N-sv '1 <s <N

2 £  C' ,(1)C; , (1)
1 <s <K-1 "-1 N-1-S

+ 2
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■ •"ter simolift'ing 3^* rearranging sane terns, »e nave

. i • / - * 7̂" I t - \ f r* 1 f \ ^ T ' ̂  \ . r» *
= + * ^  -s_i -) ~-_s ^  ~ --s-i c) »*’ 1 <s <17-1

into which we can substitute the known expression for C,.'l) :

17C"a) - aJ+l/^a) = 17̂ 17-1) + 3/':7+i):7'h.._1) + 2 2s fa -1) t Si.. _ + 2)
1 <s <17-1

Hf 317-1) + 5/'I7+1)I7(H,t ,) + 5 y  S Hc h.t c
“ 1 < s <17-1

+ 8 L  s H - 5  Y s E , t - I*fl7-l)l7 
1 < s <17-1 S 1 < s <N-1 A‘-S

These sums involving harr.onic numbers are tricky to evaluate —  symmetry is 

used to reduce them to the basic suns given by Eqs. (5) and (23) in Appendix B.

2 Y s H c H. = Y sH L  + Y (N -s)H  H 
l<s <17-1 “ “ l<s <17-1 “ 1 <s <17-1

II Y  H H.. 
1 < s <11-1 S “

17 ̂II+l) (hH - H ^ )  - 2II2Hii+2N2 ,

Ks^IJ-1 S Hs = ( 0 0 ^  l O  ’

and
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E  s w = N E  H - E  S H 
1 < s <N-1 1 < s <N-1 1 < s <N-1

Substituting these expressions gives

i2 u(2)N C^(l) - (N+l)C^_1(l) = N(3N-1) +8(N+1)N(Hn_1) + %(N+1)(H^ - )

- 8N2EL+ 8N2 + SNCN-l)!^ - ̂ N(N-l)

8n2 h + 8n2 - M n -i)n

= N(3N-1) + UN(N+1)(H^ - H^2)) .

If both sides of this equation are divided by N(N+1) , the result is 

the telescoping recurrence

_ ^ i(1) + i i  + 1,,,2 . w(2)
N+l N N+l \

which has the solution

- C"(l) +N+l O' , ,1 <k<N

= 3N - Uh , + 1* E  H® - It E  h[2  ̂
^*+1 1 <k <N k 1 <k <N k

Using Eqs. (5) and (6) from Appendix B, we have 

C ” (l)
"It - - >N - % +1+ll(N+l)H^ - M2N+1)Hm + 8 N - M k+1)H^) - Ul^
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CjJ(l) = 11H(N+1) - - ̂ (N+l) ( n+3)hn + U(w -i)2(h^ - h^  )
or

Finally, the variance is given by

c"(l)+c^(l) -C^(l)2 = HK(N+1) -U-U(N+1)(2N+3)Hn +U(N+1)2(H^ - Hj^)

+ 2(N+l) (Hn+1 - 1)

- Mtf+D2^ - ! ) 2

var(CN) = 7N2 + 9N -  ̂- lOfN+l)!^ - U(N+l)2 .

(2) n2Since is asymptotically -g- , (see Eq. (53) in Appendix B), this

means that the asymptotic formula for the variance is 

var(CN) = (7 ■ T Jf2)N2 + 0(N In N)

In principle, we could proceed as in Chapter 1 to find the 

variance of the total running time, using exactly the same method.

The exact solution is quite long and involved, but even for general M 

we can derive the asymptotic formula above. Also, none of the other 

quantities has a variance of the same order as , and so we know that 

the standard deviation of the running time of Program 2.h is approximately 

.68N . This is enough information to give us confidence in the stability 

of the formula that we have derived for the average running time of 
Quicksort.
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CHAPTER POUR

In this chapter we will look at the operation of Program 2.h in 

the best case and in the worst case. Interactions between the quantities 

involved make this analysis more complex than was the discussion for the 

best and worst case of insertion sorting. As we will see, for Quicksort 

the input permutation which leads to the highest possible number of 

comparisons requires no exchanges, so that it is not at all clear what 

the worst case of the whole algorithm is. Such interference among the 

quantities makes it unwise to rely on intuition, and we will try to 

develop our results carefully.

Our strategy to solve for the average running time was to set up 

a recurrence relation by conditioning on the element used for the first 

partitioning stage. This approach is also attractive for the analysis 

of the worst case. Let be the time taken by Program 2.U in the

worst case, out of all permuations of {1,2,...,N} • Then we have the 

formula

Tn = max {time taken | s is used as the partitioning element} . 
l<s<N

As before, we will set up a recurrence relation for this quantity by 

looking at what happens during the first partitioning stage. Since we 

are dealing with the total time taken, it is convenient to subtract 

off the time which is independent of how partitioning is done, and to 

write the recurrence in terms of the quantity T^ - 7N :

Tw - 7N = max ({time taken for the first partition, using s} 
l<s<N

+ Ts_l-7(s-!)+Tn _s -T(N-S)) > for N > M .
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After inspecting the program, we are lead to the equation

Tw = max (2UA+11B+UC +9S + 7 + Tg_1+TN_s) for N > M ,
l<s<N

where A , B , C , and S denote the contribution of the first 

partitioning stage to the quantities we defined in Chapter 3* We found 

during our derivation of the average running time that these contribu

tions, if s is the partitioning element, are

A = 1 , B = t , C = N+l , and S = AgKM , for 1 < s < N .

Here A is defined to be 1 if there is a stack push:sNM

{1 M+2 < s < N-M-l

0 otherwise ,

and t is the number of keys among A[2], ...,A[s] which are greater

than s . If all of the keys A[2],. ..,A[s] are greater than s , or

if all of the keys greater than s are among A[2], .. .,A[s] , then t 

assumes its maximum value, namely min(s-l, N-s) . This occurs 

independently of the values of the other quantities, and independently 

of what happens in the subfiles.

Substituting all of these values into our recurrence, we have

T = max (2U+ 11 min(s-l, N-s) + U(N-l) + 9A _  + T , + T„ +7)N , sNM s-1 N-s "1 < s <N

max (11 min(s-l, N-s) + T , + T.t + 9A „.) + ̂ N + 35 , for N > M -1<g<N s-1 N-s ' sNM7
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The contributions of the quantities D and E are accounted for in 

our equation for small N :

= max(3D+ 8e + 7N) for N < M

Here the maximum is taken over all permutations of {l>2,. ..,NJ • Since 

Program 2.U will actually make one partition on a file of initial size 

< M , this equation is not entirely accurate; but defining it in this 

way makes the recurrence for N > M  correct. Now, we know from 

Chapter 1 that D and E both take on their maximum values when a 

permutation in reverse order is sorted, and that these maximum values 

are D = N-l (0 if N = 0) and E = N(N-l) . This leads to a 

complete recurrence for the worst case running time:

max (11 min(s-l, N-s)+Tg_x+T +9A )+ UN+35 , N > M
1 <s <N

1 < N < M

N = 0

The recurrence for the best case is derived in an entirely analogous 

manner. Let U„ be the time taken by Program 2.U in the best case of 

all input permutations of {1,2, ...,N} . Then the same argument as 

above says that

min (2UA + 1XB + UC + 9S + U , + U„ +7 , N > M ;
1 < s <N S‘1

U.N

min(3D+ 8e + 7N) , N < M .

We know that the best case for subfiles of length < M is to have them 

in order (D = E = 0) ; and the best case for B is to have no exchanges



at ftl 1 (i.e., when all of the s-1 keys A[2],A[3 ], ..., A[s ] are less 

than s ). This gives, as above,

N > Mmin (U + U„ + 9A-m ) + UN + 35 >. v s-1 N-s sNM1 <s <N

7N N < M

Let us now attempt to solve these recurrences. We will begin with 

TN , the easier of the two. The quantity to be maximized in the expression 

for Tjj is symmetric about s = N+l-s , so we need only include the terms 

N+l1 < s < -p- . For all of these terms, we know that s-1 < N-s , so that

max
N+l 

- 2
(U(s-l)+Ts_1+TN_s+9As,m) + '‘W + 5 5 ,

l<s <

rN =  { Un + 6n - 3 ,

o

N > M ;

1 < N < M ; (*)

N = 0 .

We expect that Quicksort should perform worst for N > M when it 

chooses the smallest or the largest element as the partitioning element 

(s = 1 or s = N) . When the partitioning trees are degenerate in this 

way we can easily compute the values of the various quantities. Again, 

because of symmetry, we will treat the case where the maximum in the 

expression above occurs at s = 1 : the smallest element is used as the 

partitioning element at every partitioning step. Then the recurrence 
becomes

N > M ;Tn_1+Un+35 >

TN =  <
Un + 6n - 3 , 1 < N < M ;
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which is easily solved:

T = T + I, (l.k+ 55)
1 < k <N

= Um2+ 6m - 3 + 2N(N+1) - 2M(MH) + 35N - 35M

TN = 2N2 + 37N + 2M2 - 31M - 3 > for N > M > 1 .

We can similarly solve for the various quantities, and we find that, 

when the smallest element is used as the partitioning element, 

Program 2.U requires for partitioning

A = L  1 = N - M stages,
M+l < k <N

B = 0 exchanges,

C = H  (k+1) = f "1 “ f " ") comparisons, and
M+-1 < k <N \ d J  V. d J

S = 0 stack pushes.

Neither B nor S are maximized in this case (in fact they are both 

minimized) so that it is necessary to prove this intuitive result.

There might possibly be a permutation for which Program 2.U requires 

slightly fewer stages or comparisons, but many more exchanges or stack 

pushes. Fortunately, however, we can prove the following:

Theorem U.l. The worst way to partition is to always choose the smallest 

element as the partitioning element.

Proof. This is equivalent to showing that the maximum in the recurrence (*)

always occurs at s = 1 . The induction proof of this is more complicated 

than seems necessary, because the function T is not quite convex.
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First, for N = M+l , we have

Tm = max (ll(s-l) + Ts_1+TMfl_s) + i+(NH-l) + 35 • If M - l ,
1 < s < ̂

M+2then s = 1 is the only value in the range 1 < s < — • Otherwise,

if M > 2 , then since T = 0 this expression has the value

T + U(M+l) + 35 for s = 1 , so we need only show thatM

Tm > ll(s-l) + T . + T ,M — s-1 M+l-s for 2 < s < M+2
- - 2

We know the values of TM , Tg 1 , and TM+1_g from (*). Substituting 

these expressions gives

Um2 + 6m -3 > ll(s-l) + U(s-1)2 +6(s-l) -3+ U(m+1-s)2 + 6(M+1-s) -3

or

8s2 - (8m+5) s + 8m - 6 < 0

This inequality clearly holds because the convex parabola 
28s - (8m+5)s + 8m - 6 must take on its maximum in the interval 

M+22 < s < -p— at one of the endpoints. For s = 2 the value is

-8M+16 and for s = it is i (M-2)(3-^M) . These are

both <0 , so the theorem holds for N = M+l .

If the maximum occurs at s = 1 for all n < N , then we know 

from the discussion above that
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r 2 2 2n + 37n + 2M - 31M - 3 n > M

T = I *+n2 +6n-3 l < n < Mn — —

0 n = 0
s.

To prove the theorem, we want to show that

max (ll(s-l)+Tg_1+Tn _s + 9^sNM) occurs at s = 1  . In
1 < s < I T

other words, it is sufficient to show that

V l  2 11(S-1) + Ts-1 + TN-s + 9 for 2 < s < T T  •

We can use the inductive hypothesis to get expressions for T , ands—
g here, hut the proof breaks down into four cases, depending on 

whether s-1 and N-s are greater than or < M . The calculations 

involved are straightforward algebraic manipulations, so we do only 

one as an example. If s-1 < M and N-s > M , then we want to show 

that

2(N-1)2+ 37(N-1) + 2M2 - 31M - 3 > ll(s-l) + ̂ (s-l)2 + 6(s-l) - 3

+ 2(N-s)2 + 37(N-s) + 2M - 31M - 3 + 9

which simplifies to

6(s-l)2 - 20(s-l) - U(N-l)(s-1) + 6 < 0  .

Again we have a convex parabola (in the variable s-1 ) which takes 
on its maximum in the interval 1 < s-1 < at the endpoints,

and a quick calculation shows that this maximum is negative in both 

cases. Similar arguments hold for the other three cases: s-1 < M
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and N-s < M ; s-1 > M and N-s > M ; and s-1 > M and N-s < M .
D

The worst case running time is therefore described by two parabolas:

UN + 6n - 3 for 1 < N < M ; and 2N2 + 37N + 2M2 - 31M - 3 . These

curves intersect when (N-M) (31 - 2(N + M)) = 0 ; that is, when N = M

or N = 15 g “M • This explains the complication in the proof of

Theorem U.l —  for M > 8 , the T„ function is not convex. The

situation is shown in Figure U.l. The heavy dashed line shows the form

of T„ for M < 7 and the heavy solid line shows that T is notN — N
convex for M > 8 .
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Theorem h.l tells us that Program 2.h performs worst when, for 

all N > M , the smallest element is used as the partitioning element, 

and when, for N < M  , the keys are in reverse order. Put another way, 
this means that the worst case partitioning tree is

We can use the procedure described in Chapter 2 to find a permutation 

that has this partitioning tree. (The procedure must be modified 

slightly to account for the subfile of size < M .) It is easy to see 

that a worst case permutation is therefore

1 2 J ... N-M-l N-M N N-l ... N-M*2 N-M+l

In fact, symmetry says that the worst case also occurs when the largest

element is used as the partitioning element, so that

N M-l M-2 ... 2 1 M 1VH-1 . . . N-2 N-l

also leads to the worst case, as will any permutation whose partitioning

tree has N-M levels (each node having only one non-empty subtree). 

Another surprising example of worst case performance of Program 2.k is 

when the keys are in reverse order. The permutation
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N N-l N-2 ... U 3 2 1

has a "zigzag" partitioning tree,

with a file of size M of keys finally occurring somewhere in the 

middle. If N-M is even, this file will be in reverse order, and 

we have a worst case permutation.

In order to study the operation of Program 2.U in the best case, 

we need to refine the above techniques, because the function is 

substantially more erratic. It will be convenient to work with binary 

tree structures, although the correspondence that we will use will be 

slightly different than the one used in Chapter 2. First, we have to 

extend the correspondence to account for the fact that subfiles of 

length < M are not partitioned. For example, the operation of 

Program 2.U on our sample of fifteen keys when M = ^ (see Example 2.5) 
can be described by the tree
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( □ )Here, external r i i i  nodes have been added to indicate the size of 

the subfiles not partitioned. If we replace each key by its relative 

rank in the file (this is the same as assuming that the numbers 1 to 15 

are being partitioned), we get the tree
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An im p o r ta n t c h a r a c te r is t ic  o f  t h is  t r e e  i s  t h a t  th e  numbers ass ig n e d  

to  th e  in t e r n a l  nodes a re  redun dan t - -  th e y  can be re c o n s tru c te d  from  

th e  numbers in  th e  e x te rn a l nodes . R e c a ll t h a t  each in t e r n a l  node 

re p re s e n ts  a p a r t i t io n in g  phase, and th e  number ass ig n e d  is  th e  ra n k  

o f  th e  p a r t i t io n in g  e lem ent used in  t h a t  p a r t i t io n in g  phase. B u t each 

o f  th e  e lem ents le s s  th a n  t h i s  p a r t i t io n in g  e lem ent must be re p re s e n te d  

somewhere in  th e  l e f t  s u b tre e . Each in t e r n a l  node re p re s e n ts  one, and 

each e x te rn a l node □  re p re s e n ts  x  such e lem e n ts . We have

ra n k  o f  p a r t i t io n in g  e lem ent = (number o f  in t e r n a l  nodes in  l e f t

s u b tre e }  + (sum o f  w e ig h ts  o f  
e x te rn a l nodes in  l e f t  s u b tre e ]

+ 1 .

( I t  i s  custom ary to  c a l l  th e  numbers a ss igned  to  nodes " w e ig h ts " . )  Put 

a n o th e r way, t h i s  e q u a tio n  means t h a t  an a lg o r ith m  to  a s s ig n  w e ig h ts  t o
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internal nodes is to scan the tree in symmetric order (or inorder), 

assigning weights from 1 to N to the internal nodes, but skipping 

x numbers when an external node | x j is encountered in the scan.

For studying the best case, it will be useful to put a different 

weight on each internal node, namely the size of the subfile represented 

by that node (rather than the partitioning element used for that subfile). 

We are led to a consistent formal definition of this correspondence 

between the operation of Quicksort on a permutation of n elements 

and binary tree structures: If n < M , the tree is the single node
j n | . Otherwise, the root node is and the left and right

subtrees are the trees for the left and right subfiles. Our example 

for M = U under this correspondence is

The structure of the tree and the weights of the external nodes are 

obviously the same as before, by definition. The weights of the internal
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nodes are again redundant, and can be reconstructed just as above, 

except by considering both subtrees. In this correspondence, the weight 

of every node is one more than the sum of the weights of its successors. 

Clearly, we can change from this correspondence to the other whenever 

convenient. Also, given any binary tree with root node ®  and 

weights from 0 to M assigned to its external nodes, we can calculate 

weights for the internal nodes. If these are all > M , then we can 

also construct a corresponding permutation on N elements.

Using the weights and some other elementary properties, these trees 

are easily related to the analysis of the best case. Given a tree with 

root node (n ) , define the following four quantities:

a = the number of internal nodes;

s = the number of internal nodes whose successors are both
internal nodes;

c = the sum of the weights of the internal nodes; and

c' = the sum of the weights of the external nodes.

Now, recall that we developed a recurrence for the best case running time:
Q

min ( V l +UN-s+9W +1,N+55 , N > M ;1 < s <N

UN " \

7N , N < M .s.

This expression can be recast in terms of the binary tree structures. 

Essentially we argued that the only "costs" incurred by Quicksort in 

the best case are for comparisons, partitioning stages, stack pushes, 

and the insertion sort scan. Everything else can be made to vanish
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independently of how partitioning is done. This means that for any 

given binary tree there is a corresponding permutation for which 

Program 2.h will require

9s + Uc + 35& + 7C *

time units, and all other permutations corresponding to that tree will 

take as long or longer. For example, in the tree pictured above, we 

have a = 5 j s = 1 , c = U2 , and c' = 10 , so that the best case 

running time of all permutations corresponding to that tree is h22 time 

units. We can slightly simplify this expression by noticing that every 

element must either be used as a partitioning element or fall into a 

small subfile, so that a+c' = N by definition. Our problem is now 

reduced to minimizing the quantity

28a + Uc + 9s +7N

over all trees with root node ®  . Let us refer to this quantity as 

the cost of a tree, and let us refer to the minimum cost trees as the 

best case trees, leaving implicit the dependence on N and M •

Our method will be to define a sequence of transformations on 

trees which leave the weight of the root node unchanged, but which 

lower the cost. Any tree to which none of the transformations apply 

will be a best case tree. Our transformations may modify the structure 

of the tree and change the weights of external nodes —  the weights of 

the internal nodes can always be computed.

For example, two external nodes which are not 
so that only one of them is not

M can be merged

M A formal definition of a
transformation to do this is as follows:
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Transformation 1: Suppose that a tree with root node ©  contains

an external node J x J at level p and an external node | y j at

level q with p < q and x,y /= M . Let z = min(M , x+y+1) .

0 by 0 and £yj by x+y-z

be 0 0

(Note that

(ii) As described above, assign to each node a weight equal to one more 

than the sum of the weights of its immediate successors. If any 

internal node has a weight < M then make it external and delete 

its successors. Then if any node has |-1| as an immediate 

successor, replace it with its other successor and delete the a

For example, the and the in our sample tree are merged

. □

by Transformation 1 as follows:

: = k
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Transformation 1 can no longer be applied, since there is only one 

external node which is not M

It is not difficult to verify that Transformation 1 has the properties 

that we desire, if we notice that there is another way to compute the 

cost of a tree. Specifically, we can find an alternate expression for c , 

the sum of the weights of the internal nodes, because each external node 

contributes its weight to all of the internal nodes above it in the tree
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and each internal node contributes 1 to its own weight and the 

weights of all the internal nodes above it in the tree. The number 

of internal nodes which appear above a given node in the tree is just 

its level in the tree, so we have

c = S  e*level([ e |) + 21 level((^) + a
external internal
nodes [ e | nodes

(The second sum is customarily called the "internal path length" of 

the tree; and the first is called the "weighted external path length".)

Now it is easy to see that Transformation 1 does not increase 

the cost of the tree. Step (i) simply replaces the terms x-p+y*q 

by z-p + (x+y-z)*q in the expression for c . The difference between 

these is (z-x)p+ (x-z)q = (z-x)(p-q) which must be < 0  since x < z 

and p < q . Step (ii) cannot increase the cost, since it can only 

delete nodes, which might cause a or c to decrease, and obviously 

cannot add to the cost of the tree. Therefore, the net cost 

28a+ 4c+ 9s+ 7N cannot be increased by the transformation.

Furthermore, the only internal nodes affected by Transformation 1 

are those on the path to the root from | x | and 0  in the 

smallest subtree containing them both. The weight of this root and 

the weights of all other nodes in the tree are unaffected by the 

transformation. In particular, the weight of the root node of the 

whole tree ®  is never changed by Transformation 1.
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Notice that the application of Transformation 1 always results 

in the number of external nodes which are not M being decreased

by 1 . This means that it can be applied again and again until there 

is at most one such node, and we are led to:

Theorem k.2. There is always a best case tree in which every partitioning 

occurs on an element whose rank is a multiple of M+l .

Proof. Given any partitioning tree with root node apply

Transformation 1 to it until all of the external nodes are M

except possibly one node | x [ . Then interchange the subtrees of

any node having j x | in its left subtree. This obviously has no 

effect on the cost. In our example, we have

In general, it is a well-known fact that the number of internal nodes 

in every binary tree is exactly one greater than the number of external 

nodes. Therefore the left subtree of every internal node in our tree
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contains k internal nodes and k+1 

have found from our definitions that
M nodes for some k . We

rank of partitioning element = [number of internal nodes in left subtree}

+ {sum of weights of external nodes in 

left subtree}
+ 1

= k+ (k+1) M + 1 

= (k+1) (MU) ,

so that the rank of every partitioning element is a multiple of M*-l .

Since the above manipulations do not raise the cost of any tree, even 

one which purports to represent the best case, Theorem U.2 is established.

□

One of the consequences of Theorem h.2 is that we no longer have 

to write down the weights of even the external nodes, so long as the 

value of M is understood. The weights of any tree which could represent 

the best case can be reconstructed from the weight of the one external 

node j x j which is not 

two trees are equivalent:

M , so that, for example, the following
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M , it is convenientIf a tree has no external node which is not 
to pick one and call it [ x | , so that all of our trees have one 

external node | x | with 0 < x < M . Notice that the internal nodes 

have weights of the form k(M*-l)+x for some integer k if they are 

on the path from | x [ to the root; k(M+l)+M otherwise.

The last step in our derivation of the best case will be to come 

to the intuitive result that the best way to choose the partitioning 

element is as close to the middle of the file as permitted by Theorem U.2. 

This choice will not in general be unique -- for example the two trees



and

both have the same cost, but the partitioning element is 5M+5 for 

the first and for the second. We will work with a canonical

form from which trees of equivalent cost can be generated. This is 

done by the following transformation on trees.

Transformation 2: Suppose that Transformation 1 can no longer be

applied to some tree. That is, it has exactly one external node El 
< x < M which is not necessarily 0  • If* is not) sit the

deepest level of the tree, interchange 0  with any

0

M node

95



-.z fever eẑ erri
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Interchanging subtrees or interchanging any two internal nodes at the 

same level clearly has no effect on the cost; and by the same argument 

as used for Transformation 1, the | x | interchange cannot raise the 

cost since it results in the nonnegative quantity M-x being added to 

some internal weights, but subtracted from as many or more other 

internal weights.

We are now ready to finally minimize the cost of the trees by 

"balancing" them. The next transformation takes two external nodes 

from the "heavy" part of the tree and adds them to the "light" part, 

in such a way as to leave the resulting tree in the canonical form.
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transformation is to replace ■J22.CL

1/ 3y ;hi£ only if it does not increase the
y i j

cost. ' It almost always decreases the cost —  see the discussion below.)

This transformation is not as complicated as it seems. Basically, 

it involves subtracting M+-1 at a deep level in the tree and adding it 

back on at a shallower level, without changing the number of external or 

internal nodes. The same arguments that we have used before will show 

that the cost is decreased, except possibly in the case when a new stack 

push is introduced. An example of the repeated application of 
Transformation 3 follows:
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Depending on the value of 0 , this tree might further be

transformed to

but this transformation introduces a stack push and therefore could 

increase the cost.
We are finally ready to discover the best choice of the partitioning 

element. It is almost always possible to apply Transformation 3 until 

the number of external nodes in the right subtree is either the same or 

one greater than the number of external nodes in the left subtree.

More precisely, there will be nodes in the left subtree11 0
| j j  | M | nodes and the j x j  node in the right subtree,

where N = k(M*-l)+x (0 < x < M) . From the definition of our tree

structures, this means that the best choice of the partitioning element 

is f l l  (M*l) • With this knowledge, we can compute the exact value
of Ujj , the running time of Program 2.U in the best case. First, 

however, we must find the cases where it is not possible to "perfectly" 

balance the tree in this way, and prove the following theorem.

Theorem L • 3 • Let M > 1 . The best case of Program 2.h occurs when, at every 

partitioning stage, if n is the number of elements being partitioned
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then the element with rank r 2(M+1) (M+l) is used as the 

partitioning element. There are two exceptions: if N = 3M+3 or

3M+U , then the (M+l) -st largest element is used.

Proof. If N is written as N = k(M+l)+x with 0 < x < M , then

rN+1 1~J _ I k M-x ”~1
2(M+l) ‘ 2 I 2 2(M+1) |

rrn-K 
m

— ( k mod 2 + M-x
M+l

so that it will be sufficient to show that any tree with root node 0  

can be transformed into a lower (or equal) cost tree with root node 0 0

rnand with exactly nodes in its left subtree.

Following the discussion above, we will use Transformations 1, 2, 

and 3 to produce such a tree: It remains only to analyze the conditions

■under which Transformation 3 is applicable. If the change stated in 

Transformation 3 is made, then the total cost 28a + Uc + 9s + 7N is 

changed by

A = U(2M + 1 - r+ (q-1) (M+l) - (p-1) (M+l)) + 5 ,

9 if a new stack push is introduced 

where 6 = / -9 if a stack push is eliminated

0 otherwise.
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Either r = M + x + 1 , where 0 < x < M , or r = 2M + 1 , which is the

same as the case x = M , so the change is

A = M(q-pH)(MH) - x -1)+ & 0 < X < M .

We are interested in identifying the cases where A is positive. These

are the cases for which Transformation 5 does not apply. Clearly, since 

M > 1 > this quantity will be negative for p > q+2 or x > 2 no 

matter what the value of 6 is . This leaves two cases: p = q

and p = q+1 .

Let Nt , Nd be the number of external nodes in the left andli K
right subtrees. From the stipulations of Transformation 3, we have 

the three inequalities

2q < Nt , ND < 2P+1 , and NT < N - 2n — L — n

These will be useful in the remainder of the proof.

A typical example where p = q is the tree
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We know from the first and third inequalities above that N >2^+2 ,K
so that there is another internal node besides + M + on level p ,

which implies that A = & . For a stack push to be required on the

A minimal such tree has 

and CL 2M+1^  nodes on level q , as the following

left side, we must have NT > 2̂  + 2^ ^
JJ

alternate M

example shows:

But the right subtree has the same number of levels and two more 

external nodes, so there must be at least one more internal node on 

level q , so a stack push is also required on the right. This implies 

that 5 ^ 9 , so A < 0 .

A similar argument holds for p = q+1 . If x = 0  or 1, then

by the way \(j^) is chosen in Transformation 3, ^ x  + M + must

be the only internal node on level p . Using the same argument as 

above, there must be a node on level p-'l = q in the right subtree 

which can be moved to the left at a cost A < 0 • An example of this 

transformation is:
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This argument degenerates if it is the root which causes the stack push, 

so that the trees

and

are the best case trees for N = 3M + 3 and N = 3M + U .

Strictly speaking, this final argument should be incorporated 
into our series of transformations.

Transformation 3a. Under the conditions of Transformation 3: if

P = <3+1 j N > 3M+ U ; and the modification stipulated in Transformation 3 

would increase the cost, then let be the leftmost internal

node on level p-1 in the right subtree and perform the modification 
as stated. □
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This completes the proof of Theorem U.3- Our series of 

transformations is sufficient to "balance" any tree with root node ©

□
It is important to be aware that this derivation depends completely 

on the choice of coefficients for the quantities contributing to the 

running time of Program 2.b Most important are the relative values of 

the coefficients for comparisons and stack pushes. If the overhead for 

stack pushes is relatively high (which could happen in a practical 

situation, if a recursive implementation is used), then the best trees 

will tend to be more unbalanced, for it will pay to avoid stack pushes. 

This effect appears in our derivation as the exceptions for N = 3M + 3 

or 3M+ Ij- . The tree

is less expensive than
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because it requires one less stack push. The reader may find more 

examples of this effect by looking for counterexamples in the above 

derivation for M = 0 and 1 .
We are now ready to derive an exact expression for the total 

running time of Program 2.b in the best case. If all of the external 

nodes of the partitioning tree are M , then N is a number of

the form k(NH-l) -1 , and Theorem b.2 tells us that both subfiles will 

also have this property. Theorem U.3 tells us exactly what the 

partitioning element is in the best case. Substituting this information 

into our original recurrence for the running time of Program 2.k in 

the best case gives the equation 
r
U*. . +U - + 9̂ -1,-, +Uk(M*l)+31 k(NH-l)-l>M

Uk(W-l)-l " '

7k(NH-l)-7 k(MH)-l<M.
V.

Now, if k = 1 , we have U„ = 7M ; if k = 2 , then

U2M+1 = UM + UM + 8M + 59 = 22M + 59 5 and if k = 3 then

U,w ~ = tU. , + U + 12M + ̂ 3 = UlM + 82 . For k > U , there is always 3M+2 2M+1 M ~

a stack push, so we have eliminated the term. To
r|"|(W-l)NM

simplify notation we will define f(k) = > so that we now

have the recurrence
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f(k) = < UlM + 82

22M + 39

k > U

k = 3

k = 2

One way to solve this recurrence is to look at the differences between 

successive terms. For k > U we have

f(kfl)-f(k) = + f ( [ ^ i J )  + +

■ f C r t l ) - f ( L i J )  -  t e ( N H - l )  -  1 .0

■ f ( L l J + 1) - f C l i J )  +  M w l )  •

This last formula can be verified by observing that P P l-L IJ *1 
and = I | I • Now, let p = |_lg kj , so that 2s < k < 2P+1 .

Noting that L U ? J J - L W  , we may telescope the recurrence

p times to give

f (k+1) - f(k) = f I

If k is in the left half of the interval, 2p < k < 3,2̂ ) , then

J  = 2 , and if it is in the range 3 *2^"^ < k < , then

= 3 > so that we have
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f(3) - f(2) + l+(p-l)(MH) , for 2P < k < 3-2*" ; 

f(k) _ f(3) + k(p-l) (M+l) , for 3 -2p_1 < k < 21* 1
f(k+-l)-f(k) =

v2(k) =

After substituting the values for f(2) , f(3) > and f(l) we can

combine these into the single formula

f(k+1) - f (k) = 19M + 1+3 + h( |_ lg kj - 1) (W-l) + 9v2(k) k > 2 ,

where Vp(k) denotes the second most significant bit in the binary 

representation of k :

0 for 2 Llg kJ < k < 3 -2 Llg k-l _1

1 for 3-2 Llg kJ “1 < k < 2 Llg kJ+1

This recurrence now telescopes into a summation:

f ( k )  = f ( 2 ) +  X ( 19M + 1+3 + k ( L l g ( J - 1 ) J - 1 ) (W-l) + 9 v9 ( j - 1 ) )  
3 < j  < k

= 22M+39+ (15M+39)(k-2) +k(w-l) X Llg jJ+9 X v0(j)
2 <j <k-l 2 < j < k-1

The first sum remaining is a well-known identity (see Appendix B):

£  L l g  j  J = k L l g  k j  -  2 L l g  kJ + 1  + 2 ;
2 < j < k-1

and the second sum is easily evaluated from the definition of v2(k) :

X  v ( j )  = 2 L l g  k - l " 1 - l - v ( k ) +  ( k - 3 ' 2 L l g  k J _ 1 ) v ( k ) .
2 <j <k-l * 2 v j 2V '
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Substituting these gives the exact formula for the running time of 

Program 2.b in the best case, when N is a number of the form 

N = k(M+l) -1 :

As we did with the worst case, we can work backwards from the 

partitioning trees to generate permutations which lead to the best 

case performance. For example, the best case tree for N = 6(M+l)-l 
is
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If we fill in partitioning elements on the internal nodes for M = 3 , 
we get the tree

and then we can use the procedure described in Chapter 2 (slightly- 
modified to handle M > 1 ) to get a permutation of (1,2,...,23} 
corresponding to this tree:

1 2  3 
It 2 3 1

5 6 7
8 6 7 5

9 10 11

1 2 2 3 1 8 6 7 5 9  10 11 h

13 Ik 15
16 lit 15 13

17 18 19

20 18 19 17
21

12 2 3 1 8 6 7 5 9 10 11 1+ 16 lU 15 13 20 18 19 17 21

The formula derived above says that Program 2.h will require 

2lt(lt-2+ 15) + 2U*6 - 55-2 - ItO = 5U6

22 23 

22 23
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time units to sort this permutation, and no other permutation on 23 

elements will require less time.

Finally, we can write down an exact formula which works for all 

integers N > M • To keep our notation consistent, it will be convenient 

to write N in the form N = k(M+l)+x with -1 < x < M-l . Any number 

N can obviously be represented in this way. Again, by Theorems t.2 

and U .3 we have, after separating out small terms and dealing with the 

special cases N = 3M+3 and N = 3M+U , the recurrence

U
(M+l) -1

+ U(k(NH-l)+x) + 35
+x

U / \ U , + 3^M+ 95+ Ux+ (£> + 6. )(^x-5)-9& ,k(M*-l)+x A M+l+x v Ox lx'v "  -lx

’W x +15M+U5+1,x k = 2 .

(Here 8 represents the Kronecker delta function, which has the value

1 if i = j , 0 otherwise.) The easiest way to solve this is to

subtract it from our original equation for U, ,w , \ , , so that thek(M+l)-l 7

U
r§](w-i)-i

term cancels. This results in the equation

||J(W-l)+x ^|J(M+1)-:
+ U(x+1)

Uk(NH-l)+x uk(W-l)_Uk(M+l)-l { UW-l+x "7M+ ̂ x+ 15+ (50x + 6iv)^x"5) "95_vx; k

UW-l+x " 7M+U(x+1)

> k

2.

= 2 .
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We can telescope this equation just as before to get

Uk(W-l)+x ” ̂ k(M+l) -1

= W ‘7M+4(Llg kj)(x+l) + v2(k)(9(i-6.;bc)+ (6x0 + 6xl)(^x-5)) .

If x = -1 , the right hand side is of course 0 . If x / - l ,  then 

UW-l+x = Um + Ux + M m+1+x) +35 = H(M+x) +39 , and we can calculate the

final solution

+ (1-»r0)(1« + 28+v2 (Ei)(9-1- (6rl + 5r2)(l,r-9)))

where r = (N+l) mod M+l

and v,C - <\ M +1 J ~ \

0 2

1 3

Llg M U  J < [ gfl | < 3 2[}S g ^ - l
- L̂ H-1 J

|jgij < gL1® IriJ+1

For example, for M = 3 aad N = 21 the best case tree Is
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and the permutation

12 2 ; 1 8 •' 7 5 9 10 11 k 16 it 15 13 20 18 19 17 2h 22 23 21

takes 632 time units. For 2(' elements the tree is

and the permutation

12 2 3 1 8 6 7 5 9 10 11 k 20 it 15 13 17 18 19 16 2k 22 23 21 25 

takes 652 time units when given as input to Program 2.t.



We have seen throughout our study of the best case that the best 

choice of the partitioning element is not in general unique. Our 

transformations on the trees often have no effect on the cost.

Figures k.2 show all choices of partitioning elements for M from 0 

to 5 and for M+l < N < 100 . There is a ** corresponding to each 

choice of the partitioning element which leads to the best case. Each 

line is centered around the middle of the page. For example, the 

circled line in Figure k.2a indicates that, if M = 3 and N = 26 , 

then the elements with rank 1 1 , 12 , 15 and 16 are equally good 
choices for the partitioning element. Our "canonical form" and proofs 

restricted our attention to only one of these on each line: the element

Figure U.2b. Notice that the patterns for M = 0 and 1 are different 

this is because, as mentioned above, the relative weight of the stack 

push imbalances the trees. We recognize many other aspects of these 

complex and intricate designs from the analysis given above. Indeed, 

the reason that the analysis itself was so long and difficult is that 

it is necessary to account for all of the features of these diagrams.

It is fitting to end our study of the best and worst case with these 

interesting figures, for they tell us nearly as much about Quicksort 

as the involved formulas that we have labored so hard to derive.

with rank These are circled, for M = U , in
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CHATTER FIVE

Our analysis during the last two chapters has told us a great deal 

about the Quicksort algorithm, but we have been so deep into the analysis 

that we have nearly lost sight of our original program. Therefore, it 

is appropriate at this time to use what we have learned during the 

analysis to study some more practical modifications of the program.

In addition, now that we are competent and confident in the methods of 

analysis, we will be able to compare most of the variants of the 

algorithm intelligently. This will not be quite as easy as it might seem. 

We saw in Chapter 2 that minor changes in the partitioning strategy 

can have major effects on the performance of the algorithm —  we will 

see in this chapter that there may be drastic effects on the analysis 

as well.

First, we will look back at the various partitioning methods that 

we studied in Chapter 2 and justify some of the arguments made there in 

light of what we now know from the analysis. This will include an 

attempt to analyze Partitioning Method 2.3, so that we may have some 

indication of why it is desirable to have randan subfiles. Next, we 

will look at some better methods of choosing the partitioning element, 

all designed to make the occurrence of the worst case less likely in a 

practical situation. These have little impact on the analysis except 

for a modification of Method 2.3 which can be analyzed (an analysis which 

is quite different from what we have seen so far). Finally, in order 

to compare Methods 2.2 and 2.h, we look at the situation when equal keys 

may be present in the file. This leads us to a "two-partition" Quicksort
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algorithm, and we will conclude the chapter by studying the very 

interesting aspects of the analysis of this algorithm.

The analysis of the average running time of Quicksort using 

Partitioning Method 2.1 is essentially the same as the analysis in 

Chapter 3* Although the program does two ''half" exchanges (rather 

than one full exchange) in the inner loop, the same argument that we 

used to find the average value of the quantity B holds. However, as 

we noticed, the test " i > j " is performed twice per exchange, so the 

coefficient of B is higher. This is the reason that we rejected this 

method. It is possible to improve this method by simply deleting one of 

the tests, then repairing the damage outside the inner loop. This results 

in a method which is less elegant than Method 2.4, but which could be more 

efficient on machines where it is inconvenient to implement full exchanges. 

Another difference in the analysis occurs because the algorithm is not 

quite symmetric between left and right —  a little more overhead is 

involved when the left pointer crosses the right pointer than when the 

right crosses the left. A new quantity X must be included in the 

analysis to account for this. As we might expect, it turns out that 

the average value of X is — the average value of A .

I f  a l l  o f  th e  keys a re  d i s t i n c t ,  th e n  P a r t i t io n in g  M ethod 2.2 

pe rfo rm s e x a c t ly  th e  same as P a r t i t io n in g  M ethod 2.4 when th e  le f tm o s t  

elem ent is  used as th e  p a r t i t io n in g  e le m e n t. I t  i s  n o t d i f f i c u l t  to  

see th a t  i f  t h i s  change is  made (p  :=  f  r a th e r  th a n  p  :=  ( i+ r )  -r 2 ) in  

Method 2.2, th e n  Example 2.4 d e s c r ib e s  i t s  pe rfo rm an ce  as w e l l  as th e  

perform ance o f  Method 2.4. T h is  means t h a t  th e  average va lu e s  o f  a l l  

th e  q u a n t i t ie s  we s tu d ie d  a re  th e  same and, on in s p e c t in g  th e  program , 

we see th a t  th e  c o e f f ic ie n ts  o f  B and C a re  n o t changed and th e  

c o e f f ic ie n t  o f  A is  s l i g h t l y  h ig h e r  f o r  Method 2.2. (Depending on
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the implementation* come new quantities with averagr* value ^ — A 

may also be involved as in Method 2.1 —  see Appendix A.) The main 

difference between the methods, of course, occurs when equal keys are 

present. We shall defer discussion of this question until later in the 

chapter.

In the discussion of Partitioning Method 2.3, we discovered that the 

method produces nonrandom subfiles, and therefore it violates one of the 

basic assumptions of our analysis. We are now in a position to study more 

closely the difficulty of analyzing this method. We shall restrict our 

attention to what should be the simplest quantity to analyze: A_, , theU
average number of partitioning stages required to sort II elements, under 

the assumption that all N'. permutations of them are equally likely as 

input. To further simplify the calculations, we will assume that the 

leftmost element is used as the partitioning element at every stage 

(p := I in Partitioning Method 2.3)* To begin, we notice that the 

subfiles are almost random -- only the smallest element in the right 

subfile is in a nonrandom position after partitioning. Therefore it is 

appropriate to begin the analysis by conditioning on the first partitioning 

element and setting up a recurrence, in the same way as before. Again we 

assume that the numbers 1,2,...,N are being sorted, and at the first 

stage each element s, l < s < N , i s  equally likely to be used as the 

partitioning element (i.e., each number s is equally likely to be 

leftmost in the file). If s = 1 , then it stays where it is and a 

random subfile of length N-l is left after partitioning. Otherwise, 

if s > 1 , then the first exchange wil] put it into the right subfile, 

and all positions are not equally likely. The left subfile, on the 

other hand, will be random. We have the following situation:
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1 2 s+k-1 N

1 2 s-1 N-s+1

The left subfile consists of (s-1) randomly ordered keys; and the 

right subfile consists of (N-s+l) keys which are randomly ordered 

except for the smallest key s which does not fall into each position 

with equal probability. We need to find the probability that s falls 

into position k in the right subfile. This is the probability that, 

in the original file, all of the N-s+l-k keys at the right end of the 

file (A[s+k] , A[s+k+l] , ...,A[N]) were >s and that A[ s+k-1] 

was < s . This leads to the expression

s-1 VN-s+l-k y) (s-lj1 (;n -s;>'. (s+k-3)! (s-2]1!
N-l ( N-2 > 

V N-s+l-k J
| (N-l;1 1[k-ii)l (N-2)'. (s-2J1!

T K I

for the probability that s falls into position k in the right subfile. 

Now, if we define A ^  to he the average number of stages to sort a file
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of N elements which is randomly ordered except for the smallest 

element, which is in position k , then the above discussion leads 

to the recurrence

%  - 1+ h ( V i + 2 <̂<AVl  + V s i i i

Also, directly from the definitions, we know that

These equations hold for N ^ M and we will simplify things by taking

M = 0 and A. = Â , = 0 . From these equations we see that in order0 Ok
to solve for A^ , we need to have a formula for A ^  (or one the 

sums involving A ^ ).

We can use the same method to set up a recurrence relation for A ^  • 

We start with a permutation of {l,2,...,n} , with the 1 in position k 

and the rest randomly arranged. Let us call the leftmost element in this 

permutation t , so that we may examine the result of partitioning this 

file on t . If t = 1 , then by our definitions k = 1 also, so that 

a random file of size N-l is left after partitioning. In other words,

^ 1  = 1 + 1

If k < t , then we have a slightly more complicated situation:

121



t - l+ ;

t~I _ 2 I-t+1

It is easy tt see that the 1 is net moved, because the exchanges only 

rr.ove elements which are not initially in the proper subfile. The left 

subfile still has its smallest element '’the 1 ) in position k , so 

Aft-1)> £taSes w il1 te required, on the average, to sort it. The right 
subfile, by the same argument as used above, has its smallest element 

'the t ) in position j with probability

( N_t ) t-2 V N-t+l-j J
n-2 ( u-l \

n-t+ i-.j j

f ; y )cm
that an average of

( W )  
1 (?-1)

stages will be required to sort the right subfile.

The remaining case, when k > t , is the most complicated, since 
both the 1 and the t are moved by partitioning:
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1 2 t-l+i N

1 2 t- 1 1 2
_L

k-t+1 N-t+1

Again we need to compute the probability distribution for the smallest 

element in both of these subfiles. For the right subfile, the probability 

that the t falls into position i is zero for 1 < i < k-t+1 , since 

we know that the t must at least switch with the 1 . For i = k-t+1 , 

we are dealing with the case when the t and the 1 are exchanged, which

can occur only if all of the elements A[k+1] , A[k+2] , ... , A[N] in the

original file are > t . The probability that this occurs is

N-t'N
m l  , or It-?;/ N-2 \ ’ r  N-2 \

^N-k J  (^t-2 j

For i > k-t+1 , we have the same situation as above, and the t will 

fall in position i with probability

C t t )
CE)
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Therefore an average of

'li-t+Lj 1'k-t+lj

partitioning stages «. e needed to sort the right subfile. All that 

remains to consider is the left subfile for the case k > t . IIow, 

the 1 falls into position j if and cnly if: fi) the key A[j ]

in the original file is >t ; and (ii) the k-j- 1 keys 

A[.j+1]> • • A[k-1] comprise exactly t-j-1 keys which are <t

f which will fall to the right of the 1 in the left subfile) and k-t 

keys which are > t ^which will fall to the left of position k-t+1 

in the right subfile). This occurs with probability

or

Putting this all together, we have our recurrence for A ^
when k > 1 :
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- 1 + y J avg. no. of partitioning stages if
Nk _ N-1 g < tw I t is the partitioning element

1 + —i— y  I y   ̂* o \ j -L- y «
N_1 2 < t < k \  1 < j <t-l f N"2 ̂

f N-t ̂  f t+j - n
+ U - k  J v  V t-3 )

( 5 ) (N-t+1)(k-t+1) ,-t+2 < i < N-t.x ( ? - )

+ —  z  [ a + r  ^ t-? ) A
^  k < t < N ^  (t'1)k 1 < j <N-t+l (N-t+l)j

f k-j-lV N-k+j-2 ^
a _ ]_ x A .  y  L t-j-i A  ,i-i J .
V  1 N-i , r N- 2 \ -----  A

2 <t<k l < 3 <t-l (t-2 )

( N_t)+ —  E  a
N_1 2 <t <k f N-2>\ (N-t+l) (k-t+l)

(t-l).j

(K )

(1 ^ )i<t<N k-t+2 <j <N~t+i T^iy ( N ' t + 1 ) J

H - 1  k<?<N A(t-1>k

—  Z Z ^ t~‘ J A
N_1 V<t<rw 1 <r i i  ̂N“2 ̂  (N-t+l) jk < t <N 1 <j < k-t+1 ^ t _2 )
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This recurrence appears impossible "to solve* mainly because of the first 

term* which involves summing over the lower index of a binomial coefficient 

appearing in the denominator. We can* of course, use this equation to 

compute the values of . Such a computation leads to values of

for this method which are significantly higher than for all the other 

methods that we have S;en. This can also be verified by "simulation"*

i.e.* running the methods on a variety of "random" files, and for all Nt

files when N is small. Thus we have good reason to believe that the

maintenance of random subfiles is as desirable from a practical stand

point as it is necessary for thorough analysis.
In Chapter 3 we found that Quicksort takes time proportional to

N In N on the average, and in Chapter U we saw that the algorithm takes
2time proportional to N in the worst case. Furthermore* we saw that

the standard deviation is low* so that in the probabilistic sense* this

worst case is not very likely to occur. However, from a practical 

standpoint* the worst case (or close to it) is very likely to occur, for 

the algorithm performs very badly when the keys are already in order. 

Unfortunately* we are rarely faced with a truly "random" set of keys to 

sort. On the contrary, in practical applications it is common to find 

some natural order in the keys. Some sorting methods* such as insertion 

sorting, take advantage of this and run more efficiently when such order 

is present. Program 2.U, on the other hand* is handicapped by this: any

long run of keys already in their proper position will eventually span 

a whole subfile, for which the program will run very slowly. This effect 

should clearly be avoided if possible —  it is somewhat embarrassing to 

have a sorting method which is slowest when sorting a file that is already 
in order'. Fortunately, it is not difficult to determine the cause of
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this problem. The culprit is the "arbitrary" choice of the first 

element as the partitioning element, which was done as a matter of 

convenience in specifying the algorithm. We will now investigate some 

more intelligent ways to choose the partitioning element.

First, we might consider choosing some other fixed element from 

the subfile, as we did in some of the methods in Chapter 2. The last 

element would be as bad a choice as the first: a more logical candidate

is the element in the middle. In order to avoid the various difficulties 

that we encountered in Chapter 2, we will implement this idea by simply 

interchanging the first element with the one we have chosen, then using 

Partitioning Method 2 .h as before. In other words, we insert the 

statement A[£] :=: A[(£+r) -̂ 2] into Program 2 .b just before the statement 
v := A[£] . This will not affect our analysis, because if the file is 

randomly ordered, any fixed element is a random choice from the file.

The average running time will be increased because of a slight increase in 

the coefficient of A (we have added one exchange for each partitioning 

stage), but it is a small price to pay since it results in much faster 

running times for many input files which might occur in practice. It 

is obvious that this algorithm performs very well for the "worst case" 

permutations that we saw for Program 2 .h . For example, for N = 15 > 

the partitioning tree for

1 2 3 U 5 6 7 8 9 10 11 12 13 1^ 15

is
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as opposed to the worst case tree for Program 2.U,

In  fa c t ,  f i l e s  w h ich a re  a lre a d y  in  o rd e r  le a d  t o  th e  b e s t case f o r  t h is  

cho ice  o f  th e  p a r t i t io n in g  e lem en t. However, p a r t i a l  o rd e r  in  th e  in p u t  

can s t i l l  cause t h is  method t o  pe rfo rm  b a d ly .  I f  we t h in k  o f  a v e ry  la rg e  

f i l e ,  w ith  th e  s m a lle s t o r  la rg e s t  e lem ents o c c u r r in g  in  o rd e r  nea r th e  

m idd le , then  we see th a t  i t  is  a m is ta ke  t o  p a r t i t i o n  on th e  m id d le  

element, f o r  th e  f i r s t  s e v e ra l p a r t i t io n s  w i l l  be de g e n e ra te . I f  th e re  

is  any o rd e r w hatever in  ou r o r ig in a l  f i l e ,  th e n  i t  i s  n o t u n l ik e ly  th a t  

t h is  u n fo r tu n a te  s i tu a t io n  w i l l  o ccu r in  one o r  more s u b f i le s  d u r in g  th e  

s o r t in g  p rocess . A ls o , s im i la r  d i f f i c u l t i e s  a r is e  i f  any f ix e d  elem ent 

is  used as th e  p a r t i t io n in g  e lem ent.
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A more attractive method, which was suggested by Hoare in his original 

paper, is to use a "random" element from the file as the partitioning 

element. As above, we can implement this by inserting the statement

A[f] :=: A[random(f,r)]

just before the statement v := A[f] in Program 2.U, where random(£,r) 

is a procedure which returns a random integer between I and r . This 

approach is attractive for two reasons: First, it will help make the

worst case less likely, in the same way as above. Second, if a good 

random number generator is used, it makes our analysis of the average 

running time much more realistic. If our file is already random, this 

modification, like the last, has no effect. However, even if biases do 

appear in the file, this method ensures that every element is equally 

likely to be the partitioning element, so that the analysis in Chapter 2 

remains valid. We will not concern ourselves with the details of 

implementing random number generators here, except to note that they are 

relatively expensive, and would result in the coefficient of the quantity 

A in Program 2.U being increased by 100 to 200$. Again, this is a price 

worth paying if it is known that there will be extreme biases in the 

files to be sorted. Increasing M will reduce some of this cost.

Another approach, which may be more efficient in some situations, 

stems from the observation that we don't really require numbers having 

all of the characteristics of truly random numbers. We certainly can 

expect to find some randomness in our files -- otherwise it would not be 

necessary to write a sorting program. It is therefore reasonable to 

consider, for example, a simpler method, where the same relative position 

is chosen for all subfiles of a given size, as in the following
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procedure random (£,r);

1 + L(r-f+l){lOr",+1 n}j ;

Here the braces ( { } ) &re meant to indicate the "fractional part":
r-f+1(x) = x - |_xj for x > 0 . On a binary computer, 2 should be

used, so that the inner multiplication can be implemented as a "shift". 

The use of it as the multiplier is arbitrary —  any other irrational 

number would do as well. The computation of this kind of function is 

more efficient than the generation of random numbers, and it adequately 

serves our purposes for many applications. For this particular function, 

the small values are

r-f+1 2 3 b 5 6 7 8 9 10 11 12 13 lU 15

L (r-f+1) (I0r"*+1«} J pHO 1 3 3 2 5 8 10 8 12 b 3

From this table, we can find the partitioning tree when this modification 

of Program 2.U is used on the keys 1 to 15 in order (with M = 1 ):
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T h is  is  a t y p ic a l  p a r t i t io n in g  t r e e ,  f a r  from  th e  w o rs t case . Our 

a n a ly s is  does n o t t e l l  us e x a c t ly  how t h i s  method p e rfo rm s  on th e  average 

u n le s s  we assume th a t  th e  in p u t  f i l e  i s  random ( in  w h ich  case i t  is  

u n n e c e s s a ry ) . However, t h i s  m ethod re q u ire s  le s s  overhead th a n  random 

number g e n e ra tio n , and may, in  some s i t u a t io n s ,  re p re s e n t an a p p ro p r ia te  

ba lance  between p r a c t ic a l  and t h e o r e t ic a l  c o n s id e ra t io n s  in  ch o o s in g  

th e  p a r t i t io n in g  e le m e n t.

I t  is  in te r e s t in g  to  n o t ic e  th a t  th e  same e f fe c t  as c h o o s in g  a 

random p a r t i t io n in g  e lem ent can be a ch ie ve d  by  random ly  "s c ra m b lin g ” 

th e  e n t i r e  a r ra y  b e fo re  s o r t in g  i t ,  as in  th e  fo l lo w in g

p ro ce d u re  sc ram b le ; 

b e g in  i  :=  1 ; 

lo o p :

A[i] :=: A[random(i,N)]; 
while i < N :

i  :=  i+ 1 ;  

re p e a t ;

end;

T h is  method i s  u s u a l ly  le s s  e f f i c i e n t ,  s in c e  i t  a lw ays re q u ire s  N

exchanges and random number c a lc u la t io n s ,  w h ile  th e s e  o p e ra t io n s  a re

pe rfo rm ed  o n ly  2 1 t im e s  on th e  average in  ch o o s in g  random

p a r t i t io n in g  e le m e n ts . As above, we m ig h t im prove t h i s  by  n o t s c ra m b lin g

th e  f i l e  random ly , b u t r a th e r  s c ra m b lin g  i t  s y s te m a t ic a l ly ;  b u t t o

compete w ith  o th e r  m ethods, we w ou ld  s t i l l  need a p ro ce d u re  w h ich  runs  
1̂+* 2

about ——  tim e s  as f a s t  as th e  random number g e n e ra to r, w h ich

m ig h t be d i f f i c u l t  t o  d e v is e .
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We have seen several simple methods to make the worst case of 

Program 2.U less likely in practical situations, and we will not dwell 

further on the relative merits of these methods. Of course, none of 

the suggestions above will eliminate the worst case —  we can always 

find a permutation for which a method makes the worst choice for the 

partitioning element at every stage.

If this idea of choosing a random partitioning element is applied 

to Partitioning Method 2.3, then we get a method which, although it 

does not always put the partitioning element into position, does produce 

random subfiles, and so should submit to analysis as do our other 

methods. We expect this method to be slightly less efficient than our 

other methods because of the fact that the partitioning element usually 

falls into one of the subfiles, making it one larger than in the other 

methods. The analysis which proves this is of a quite different 

character than we have seen before, so we will now pursue it further.

We are mainly interested in methods of analysis, so we will 

restrict our attention to finding an expression for , the average 

number of partitioning stages taken by the program
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procedure quicksort (integer value l,r); 
if r-£ > M then

i := £-1; j := r+1; p := random(l,r); v := A[p]; 
loop:

loop: i := i+1; while A[i] < v repeat; 
loop: j := j-1; while A[j] > v repeat; 

while i < j:
A[i] :=: A[j]; 

repeat;
quicksort (£ , i-1); 
quicksort (j+1 , r);

under the assumption that all of the N'. permutations of the integer 

{1,2,...,N} are equally likely as input. The same methods can be 

extended to find the number of exchanges, comparisons, etc., and to 

find the exact running time of a practical version of this program 

as in Chapter 2 and 3- In order to simplify our calculations somewhat, 

we will take M = 0 in our analysis, even though this magnifies 

differences between methods. For reference, we may compare our 

result with

the number of stages required by our other methods when M = 0 .

As always, we begin by conditioning on the first partitioning 

stage, so that we have the recurrence

endif;

1 <
average number of stages required for the \ 
subfiles when s is the partitioning element J .}
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Complications arise because the sizes of the subfiles vary depending on

the position, p , of the partitioning element. We noticed in Chapter 2

that if p = s (the partitioning element is already in place) then the

pointers will meet at A[s] and the subfiles will have s-1 and N-s

elements, as in our other methods. If p < s , then the partitioning

element will be encountered by the i pointer before the pointers have

met, and therefore exchanged into the right subfile, so the subfiles

after partitioning will have s-1 and N-s+1 elements. Similarly, if

p > s , then the partitioning element will end up in the left subfile,

so the two subfiles will have s and N-s elements. Unfortunately, for

fixed p and s , we cannot always say that the two subfiles produced

will be random. For example, if p = s-1 , then s will be the smallest

element of the right subfile, and it will tend to be very near the left

end of that file. However, the subfiles are random for fixed s , and we

can develop a recurrence by considering separately the three cases p < s ,

p = s , and p > s .  If p = s, the subfiles are random by the same

argument that we used in Chapter 2, since we never know anything about

the relative order of the other elements. If p < s , which occurs with 
s-iprobability , then s is equally likely to be involved in any one

of the exchanges which occur during partitioning. In other words, it is 

exchanged with a random element from the right subfile, so it is equally 

likely to fall in each of the N-s+1 positions in the right subfile.
This is sufficient to show that the subfiles are random, since our previous 

argument clearly holds for the other elements in the subfiles. A similar 

argument holds for the symmetric case p > s , so we are left with the 

recurrence

= 1 + N 1 < ^ < N  ( l T  Âs-1+ \-s+l^ + N ( A s - 1 + A N - s ) +  I T  (A s  + AN - s
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which holds for N > 1 , with = 0 . This can be simplified through 

a series of straightforward algebraic manipulations,

* * ■ 1 +  ?  u l .  (S'1)(V l + ' W l ) + 4  , £  „ <AS-1+ V s >N 1<S<N N l<s<N

+ 4 2  (w-s) (A +4 )
N l<s<N S ™ S

= N2 + 2  s(A +/L ) + 2 2  As
W 0 <s <N-1 0 < s <N-1

+ L  (N-s)(A + A jj ) -N(A+Aq) 0 < s <N-1 s II s n o

= IT + N E  A + N  L  A^ - N A +  2 £  A
0 < s <N-1 s 0 < s <N-1 0 < s <N-1 s

= N2 +2(N+1) L  A ,
0 <s <N-1 S

to the formula

(Ajj - 1) “ 2 £  Ag
0 < s <N-1

As we have done before, we can eliminate the summation by subtracting, 

from this last equation, the same equation for (N-l) , leaving

2 . . , , 2N
N+1

which can be rewritten as

Am ' 1 . (, . 1 *\ Am-i- 1  , 2

N+1 ' V  n2 J k N2 '

We are now very close to having a recurrence which telescopes into a sum. 

Multiplying both sides of this last equation by the "summation factor"
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TT f  1 + \  ^  , we get
j >N+1 v, j d J

T h T  . M . l  1 ' S  I *  — S —  A ' - l  *  j  > W  <2

which telescopes to yield

V 1n T T  TT ( i * $ )  - E  - T  ^ , ( 1  + ^j >N+lV J J  2 <k<N k J >k+l j

It remains only to evaluate this sum and product. Unfortunately, there 

seems to be no simple "closed form" expression for f T  ( 1 + ~p J ,
j >k+lV j J

and we must be content with an asymptotic result. The first step is to

notice that this product is very close to 1 for large k , so it is

convenient to separate out the "dirty" terms by defining

f(k) = TT ( i + V )  - 1
j > M \  3 J

which, when substituted into the recurrence, gives

• 1
(f(N) + l) = Z  -% + Z  -|f(k)N+l 2 22 <k<N k 2 <k <N k

= 2(Ĥ 2) - 1 )+ Z  -|f(k) 
2 <k <N k

Next, we notice that this sum certainly converges to some constant

_2 
r

k >2 kc
c  ̂ Zi g f(k)
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so that we can further isolate the small terms in out formula by 

separating out the "tail” of the summation:

% ^ ( f ( N )  + l) = 2(i/2) - 1) + c - L  f(k) .
iN 1 k >N+1 k

At this point it is necessary to resort to asymptotic estimates of the 

small terms (see Eqs. ( 5 0 )  - ( 5U) in Appendix B). First, from the three 

basic formulas

ln(l+x) = x - If ♦ ... + --  xk + 0(xk+1) ;

2 k x x x k+lxe = l + x + —  +... + — + 0(x ) ;

and

£  —  =  —  + - i -  + 0 — —.a / •, \ a-1 „ a a+1l>n 1 (a-l)n 2n n

we can derive an asymptotic formula for our product:
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This implies that

f(k) = i * 0(?)
so

k >N+1 k k >N+1 k V (? ))

= n2 + ° ( n 0

and

f(N) + 1 1 “ N + N2 + 0f ^( nO

Substituting all of this into our equation for gives the answer

*fl l H n2

By multiplying this out and simplifying, we can get a formula for 

to within 0[ —p J • In fact, with the methods we have used, we could
V n  J

derive a formula to any asymptotic accuracy. For now, we will be 

content with 0^ ̂  ̂  , so, using the formula above, we get

2n(h<2> - !♦ § ) ♦  1 + 0( i )
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Finally, applying Eq. (53 ) in Appendix B, we get the final answer

\  - n ( ^ - 2 + c) - 1  + o ( § )

The c o n s ta n t c e v a lu a te s  t o  .3862 . . .  , so K, ^  (1 *677)N  > w h ich

is  s ig n i f i c a n t l y  h ig h e r  th a n  f o r  o u r o th e r  m e thods. O f c o u rse , we

expect t h i s  d i f fe r e n c e  t o  be s m a lle r  f o r  la r g e r  M , and in d e e d , we

can use th e  same methods as above t o  show th a t

S  ■ i r - 2 + 0 ( ; ? )  + 0 ( i )  *

2 (N + l)
w h ich  is  f a i r l y  c lo s e  t o  o u r p re v io u s  r e s u l t  o f  A^ = " +̂2 “  *  >

u n t i l  N g e ts  v e ry  much la r g e r  th a n  M . A ls o , we can use th e s e  

methods to  g e t a s y m p to tic  fo rm u la s  f o r  a l l  o f  th e  o th e r  q u a n t i t ie s .  

F o r exam ple, when M = 0 , th e  average number o f  com parisons is

CN = H(2V = ' )  - 1+ ° ( t )  ’

where

c  = E  ( |  f ( k )  -  - 5- - —  ( i + f ( k ) ) )  *  . 923. . .
k > l  >. K k  (k+1) '
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Although this method is always slightly less efficient than the others, 

it is interesting to see the radical effect of such a minor perturba

tion on the analysis.

It has been convenient in our analyses to assume that all of the 

keys A[l] , A[2] , ... , A[N] are distinct. Of course, this may not 

always occur in practice, so we now will study the operation of 

Quicksort when equal keys are present. In some applications it is 

important that the sorting algorithm not change the relative order 

of equal keys. This property is called stability. Unfortunately,

Quicksort is not a stable algorithm, no matter how we treat keys equal

to the partitioning element. For example, suppose that a file consists 

only of l’s , 2's , and 3's ; 2 is the partitioning element; and

the file contains the pattern

• • • 3 1 3 1

Then the relative order of both the 3's and the l’s must be disturbed 

by any of our normal partitioning methods. An easy way to make any 

sorting algorithm stable is to force all the keys to be distinct before 

sorting, by appending each key's index to itself:
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i := 1 ; 
loop:

A[i] := A[i] *N+ i - 1; 
while i < N:

i := i+1 

repeat;

This transformation, in addition to making all the keys distinct, 

preserves the relative order of the keys. We have A[i] < A[j] before 

the transformation if and only if A[i] < A[j] after the transformation, 

except for the equal keys: if i < j and A[i] = A[j] before, then

A[i] < A[j] after. We now achieve a stable method by sorting the file 

and then transforming back to our original keys:

i := 1 ; 
loop:

A[i] := LA[i]/NJ 
while i < N:

i := i+1 

repeat;

Of course, this method is costly in terms of both time and space (each 

key must be a little bigger), so that it should not be used unless 

stability is important and even then it may not be practical.

The main reason that we assume distinct keys in our analyses is 

that it is difficult to model the situation simply when equal keys are 

present. However, we can feel somewhat justified in treating only 

distinct keys, because in most practical situations the "key space"

(all possible key values) is very large, so that the probability that 

a significant number of equal keys will be present is very small. This 

means that the effect of equal keys, when dealing with the average 

performance, can generally be safely ignored. If it is known that only
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a small number of key values are possible, then a method which takes 

advantage of that fact should be used. (One example of this, when the 

range of keys is known to be small, is a method called "distribution 

counting", which involves making two passes through the file: one to

count the number of occurrences of each key, and a second to move the 

keys into place according to the counts.)

However, equal keys do occur in many applications, and even though 

we have ignored them in our analysis, there is no reason to ignore them 

in our programs. We have seen that Partitioning Methods 2.2 and 2.h 

perform almost exactly the same for all permutations when the keys 

are distinct, but when equal keys are present they perform quite 

differently. For example, given the input file

(and when the left subfile is partitioned, the left pointer will cross 

over into the 3 's), while Partitioning Method 2.b results in the less 

balanced partition

2 2 2 2 1 1 1 2 2 3 3 3 3 3 3

Partitioning Method 2.2 will produce the partition

1 2 2 1  1(2)2 2 2 3 3 3 3 3 3

On the other hand, Method 2.2 performs worse for the input file

2 3 3 3 3 3 3 2 1 1 1 2 2 2 2

since it produces the partition

2 1 1  1 @ 3  3 3 3 3 3 2 2 2 2
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1 2 2 2 2 1 1 @ 2  3 3 3 3 3 3

It is dangerous to attempt to draw conclusions from such anomalous cases, 

but they do help to illustrate differences between the algorithms. 

Fortunately we can prove that Partitioning Method 2.b will always result 

in a partition closer to the center, on the average, if it is assumed 

that all of the Nl arrangements of the N (not necessarily distinct) 

input keys are equally likely. This is a direct consequence of the 

following:

Theorem 5.1. When Partitioning Method 2.2 (with p := r) operates on 

a file A[l],...,A[N] , it produces a partition no closer to the center 

than Partitioning Method 2.U operating on the reverse of that file.

Proof. Specifically, let j and i define the position of the partition 

after Method 2.2 (with p := r) is used on A[l],...,A[N] , so that after 

partitioning we have A[1],A[2],...,A[j] < A[j+1] =A[j+2] = ... =

A[i-1] < A[i],A[i+l],...,A[N] ; and let j' define the position of the 

partition after Method 2 .b is used on A[N],•••,A[1] , so that after 

partitioning we have A[1],A[2], .. .,A[ j'-l] < A[ j ’ ] < A[j'+l], • • - ,A[N] .

In both cases, the file is partitioned on the value of A[N] • Call

that value v and let t be the number of keys in the file which are

< v . Our goal will be to show that the inequality

N+l

while Method 2.b partitions the file perfectly:

j -- < t+k - holds for j-t < k < i-t .

First we notice that since Method 2.2 does not move keys which 

are = v , we can have j = t+k only if exactly k of the keys 

A[l],••-,A[t+k] were originally = v . In fact, this must be true for
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all k in the range j-t < k < i-t-1 since A[ j+1], .. .,A[i-2] are 

all = v and are not moved. (When k = i-t-1 , we know that k-1 of 

the keys A[l], ...,A[i-1] were = v , since the last exchange must have 

been A[i-1] :=: A[N] .) Similarly, since Method 2.h always moves keys

which are = v , then j' = t+k' for some fixed k' only if there

were exactly k'-l k* .rs = v in the last N-t-k'+l positions of the

reverse file: A[N-t-k'+l], ...,A[l] .

To complete the proof it is necessary to consider three cases

depending on the relative values of k and k' . If k = k1 , then
N+lthe inequality y  - 2 < N+lt+k - — I obviously holds. If

k > k' , then the discussion above says that A[ 1], . . A[t+k] has more

keys = v than A[ 1], ..., A[N-t-k'+l] , which can only be true if

t+k > N-t-k'+l , or j' > N-t-k+1 . (Note that this argument holds even
N+lwhen k = i-t-1 .) Now, if j' - —5— is > 0 , then k' < k implies

N+l N+l N+lthat 0 < j' - < t+k - ; and if S|= - j' is > 0

then j' > N-t-k+1 implies that 0 < - j' < t+k - . In

either case, taking absolute values gives the desired result,

y - < t+k - n; 1
2 2

The argument for the third case, k' > k , is slightly more complex. 

First, if k = i-t-1 , then k-1 of the keys A[ 1], ..., A[t+k] were 

= v for Method 2.2, which is fewer than the k'-l keys of 

A[N-t-k'+l], .. .,A[1] which must have been = v for Method 2.b, so

t+k < N-t-k'+l , or y  < N-t-k+1 . For other values of k , we can only

say that the number of keys = v in A[N-t-k'+l], ...,A[l] is greater than

or equal to the number of keys = v in A[l], ...,A[t+k] . This would not
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shows that J'- ^ < t+k - n: 12 2

imply anything about the array bounds, were it not for the fact that 

A[t+k] = v for j-t < k < i-t-1 , so now we must have N-t-k'+l > t+k , 

or j * < N-t-k+1 . Finally, an argument symmetric to that in the above

and we have
shown that this holds for all k in the range j-t < k < i-t .

The theorem follows immediately from this inequality. If the first 

partition is to the left of center ( i- 1 < 2 )  then the second

is at least as close ^ j - j • | < j - i | ; and the

symmetric argument holds for the right. If the first partition straddles

the center, or j+1 < < i-1 , then I t+k -

1

< ^ for some k ,

N+l J  o“ < 2 , or the second partition must also beand therefore 

at the center. □

Theorem 5*1 establishes a one-to-one correspondence between permutations 

of keys used as input to Method 2.2 and permutations of keys used as input

to Method 2.1*. The same result holds for general p : let

A[p],A[N],A[N-1], • •., A[p*l], A[p-1], .. .,A[2],A[1] be used for Method 2.U 

when A[ 1], ...,A[N] is used for Method 2.2. (The examples given above 

fit into this construction for p = (£+r) +2 .) Therefore, if we average 

over all such permutations, Method 2.1* will result in an average partition 

at least as close to the center. This does not necessarily mean that it 

will always run faster, but the intuition that we have gained from our 

study of the best case in Chapter U tells us that it is desirable to

have the partition as close to the center as possible.

Of course, Method 2.2 could still yield smaller subfiles in some 

cases, since its partition might include more than one element. (In 

fact, if all the keys are equal, it requires only one stage to sort the 

entire file.) However, this sometimes turns out to be a liability, as we see
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when we examine Example 5*1* The effects are intentionally exaggerated 

in this example through the use of binary files. (The particular pattern 

used is from the binary representation of e .) Also, to make things 

easier to follow, it is assumed in Example 5*1 and in the arguments below 

that p := I is used in Partitioning Method 2.2. The behavior for 

Method 2.2 as it stands is similar. Now, when 0 is the partitioning 

element, the left pointer stops at the first 1 and the right pointer

scans the whole file (no element is < 0 ) in Method 2.2. In Method 2.h,

the left pointer stops at every position and the right pointer stops at 

each 0 . The pointers behave similarly when 1 is the partitioning 

element. The most glaring defect of Method 2.2 is that one of the pointers 

therefore goes all the way to the end of the file on every partitioning 

stage, even when an interior subfile is being partitioned. This can be 

corrected, in a less efficient algorithm, by testing for the conditions 

i > I and j < r during the pointer scans rather than using -® and 

oo keys to stop the pointers, but even this does not reduce the number 

of comparisons sufficiently, as we shall now see.

Suppose that C„ is the average number of comparisons required by

Method 2.2 to sort a binary file of N 0 *s and 1 's under the
Nassumption that all 2 such files are equally likely, and that no

comparisons are made outside the range [ £,r] . Let and be

the averages for files that begin with 0 and 1 . First, we will find a 

recurrence for by noticing that the situation after the first stage

of Partitioning Method 2.2 is as follows (" x " denotes keys which may be



Example 5 -1

Method

Method

.2 (p  :=  I )  :

0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0  1 0  1 0

( 0)1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0  1 0  1 0

0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0  1 0  1 ©

( c T o ) l  0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0  1 0  1

0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 l ( 0 )

0 ) 1  1 0  1 1 1 1 1 1 0 0 0 0 1 0  1

0 1 0  1 1 1 1 1 1 0 0 0 0 i< Q >
( 0)1 0 1 1 1 1 1 1 0 0 0 0 1

0 0 1 1 1 1 1 1 0 0 0 ( 0 )

( 0 ) 1  1 1 1 1 1 0  0 0

0 1 1 1 1 1  0 0( 1)

© 1 1 1 1 1 0  0

O i l 1 1 0 ®

® 1 1 1 1 0

0 1 1 1 ®

© 1 1 1

< s >

h i

0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0  1 0  1 0

0 0 0 0 0 0  0( 0)1 1 1 1 1 1 0  1 1 0 1 1 1 0  1 1

o o o(o)o 0 0 

0( 0)0
0( 0)0

0 1 1 0 1 1 0  1( 1)1  1 1 1 1 1 1
0 0( 0)1 1 1 1 1

0®
1 l ( l ) l  1

1 1 l ( l ) l  1 1 

i © i
i ® i

1®
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Partitioning required N+ktl comparisons, and all that is left to be 

sorted is a file of size N-k , random, except for its first key, which 

is 1 . If the file is all 0 's (k = N) , this is not quite correct, 

since 2N comparisons are required and the file is sorted. This leads 

us to the recurrence

cn0) * - ¥ i *  z  (li+lt+1 +cN-k) •2 l<k<N-l 2 N k

By a similar argument, we can show that

CH1) s J 5 l *  £  T  <H+k+CN-k) ’Z  l<k<N-l 2 1N K

and therefore CK = | + ^ satisfies

CN = _N-1 + ^  ~k (N+ k + — + C )
a ^  ± 1 <k <N-1 2 * Si K

We can use the same methods that we have used before to solve this
Nequation. Multiplying by 2 , we have

2KCn = UN + Z  2N‘k(N+ k + | + CH_k )
1 <k <N-1

= UN + L  2k(2N - k + \ + C, ) ,
l<k <N-1 d k

and subtracting the same equation for N-l gives

2® C - 2 "’ 1 C = k + + | + C ) + Z  2k+1
1 <k <N-2

This simplifies to give the recurrence

CN ’ CN-1 * 1 * 1  > for N > 2

with the initial condition C. = 2 , which immediately telescopes to 
the solution

CN = J (N2 - 1) + 2N

11*8



We might have expected that this average number of comparisons would
2be proportional to N if we had noticed that two successive stages 

simply exchange the leftmost 1 with the rightmost 0 .

On the other hand, we can show that the number of comparisons 

required by Partitioning Method 2.U is proportional to N lg N in the 

worst case. This is suggested by an examination of Example 5*1*

Notice that each partition results in one subfile with all keys equal 

and one "unsorted" subfile. The subfiles with all keys equal are 

clearly processed in a logarithmic number of stages, since they are 

always split in the middle. Now consider the unsorted subfile. After 

each partitioning stage, at least half of the keys equal to the 

partitioning element must be removed. Therefore, the unsorted part 

of the file cannot last through more than lg N partitions, and every 

element in the whole file is involved in at most lg N partitioning 

stages. We may count the total number of comparisons by noticing that 

each partitioning stage contributes one comparison to the total for 

each element involved plus one extra comparison when the pointers cross. 

By these arguments, the total number of comparisons taken by Method 2.t 

on binary files can be no more than N lg N + N . This is substantially 

better than the quadratic performance of Method 2.2.

Although it is interesting to consider the problem of sorting 

binary files, the results should not be taken too seriously, since the 

effects are so exaggerated. We have plenty of other evidence to 

convince us that Method 2.h is preferable when equal keys are present. 

Theorem 5*1 shows that the partitions are no farther from the center 

on the average, and whatever advantage is gained by the fact that 

Method 2.2 may have more than one key in the partition is lost because
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the pointers may scan past the bounds of interior subfiles. Of course, 
this does not represent a complete argument that Method 2.h is more 
efficient (since we have not considered exchanges and other overhead), 
but we will not dwell further on this subject.

An important practical reason to stop on equal keys is that it makes 
easier the definition of the -<» and *> keys that we use to stop the 
pointers. For example, suppose that our numbers to be sorted can take on 
any value which we can represent in one word on our computer. By definition, 
we can't represent a key larger than all of these numbers in one word, but 
if we use Program 2.h, we only need a key larger than or equal to ai 1 
of these numbers: i.e., the largest representable number can serve as
the ® key, and the smallest representable number as the -® key.
If this is still inconvenient, the need for the -® can be eliminated 
by switching the direction of the insertion sort (cf. Appendix A). The 
sentinels can be eliminated altogether, in a slightly less efficient 
partitioning method, by exchanging the first two keys if necessary before 
partitioning to put them out of order; then correcting the situation 
afterwards.

Ideally, when equal keys are present, we would like to have a 
partitioning method which puts all of the keys equal to the partitioning 
element into position. Such a method really results in the establishment 
of two partitions: all elements to the left of the first will be less
than the partitioning element; all elements between the two will be 
equal to the partitioning element; and all elements to the right of the 
second will be greater than the partitioning element. But if we are 
going to have three subfiles, why not try to make them all about the 
same size? A more general, "two-part it ion" Quicksort is suggested, 
which puts two partitioning elements into position:
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Program $.1

procedure quicksort (integer value f,r);
if r-f > M then A

if A[J] > A[r] then A[l] :=: A[r] endif; 
i := il := i; vl := A[i]; 
j := jl := r; v2 := A[r]; 
loop until pointers have met: 

loop: i := i+1 ;
while A[i] < v2: C '

if A[i] < vl then
A[il] := A[i]; B 1

il := 11+1 ;
A[i] := A[il];
if i > j then pointers have met endif; 

endif; 
repeat;
loop: j := j-1 ;
while A[j] > vl: C-C'

if A[ j ] > v2 then
A[jl] := A[j]; B"
jl := jl-1 ;
A[j] := A[jl];
if i > j then pointers have met endif; 

endif; 
repeat;
A[ il] : = A[ j ]; B1''
A[jl] := A[i];
il := il+1 ; 
jl := jl-1 ;
A[i] := A[il];
A[j] := A[jl]; 

repeat;
A[il] := vl;
A[jl] := v2; 
quicksort (I , il-1 ); 
quicksort (il+1 , jl-1); 
quicksort (jl+l,r); 

endif;
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This program is much more complicated than the others we have 

studied, hut it is based on many of the same ideas. Example 5*2 shows 

the operation of the method on our set of fifteen keys —  it can be 

described in a manner similar to Partitioning Method 2.1, except that 

there are two "holes" to be filled, initially at the left and right 

ends of the file. The partitioning elements vl and v2 are picked 

from the first and last elements, such that vl < v2 . The pointers 

il and jl keep the current positions of the holes. The "invariant" 

at the main loop is the following situation:

< vl vl and < v2 > vl and < v2 a > v2

t
il t

jl

Both of the pointers i and j scan over keys between vl and v2 .

When the left pointer, i , encounters a key < vl , it is put into the 

left hole, and the hole is moved one position to the right (by incrementing 

il and putting that element into A[i] ). Similarly, when the right 

pointer, j , encounters a key > v2 , it is put into the right hole, and 

the hole is moved one position to the left, (in Example 5*2 the 68 , 

the 99 > the 96 > and the 95 are moved in this way.) Finally, 

when the i pointer has stopped on a key > v2 and the j pointer 

on a key < vl , then each is put into the hole on the other side, and 

the holes moved appropriately. (This does not occur in the first stage 

in Example 5*2, but it does occur at the second partitioning stage.)
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Clearly, these manipulations maintain the invariant conditions sketched 

above, and when the i and j pointers meet, then vl belongs in 

the il hole; v2 in the jl hole; and three subfiles are clearly 

defined. The partitioning tree is therefore a ternary tree: for

Example 5 .1 the tree is
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Example 5-2

partitioning:

sorting 
the file:

l+l 26 95 OU 08 88 96 3k 07 35 99 2k

Cox) 26 95 0^ 08 88 96 3k 07 35 99 2k

I26

68 10 01 
68 10 (©

<3d

<3i

$
10 2k

168 
10 ( 3  68

99 68

<88)

\96J
2k 3k 07 35 10 O

.<33
<33

10

96 99 68 

2U 3^ 07 35 O  88 96 99 68

< 9 3

35 0U 08 10 2k 3>k 07 88 96 99 68

88 96 99 68

2k 68 10 01

88 96 99 68

oU (07) 2k 08 10 (26) 35 3k 
08 (l°)(2j£)

GDdD
68 } 88 93) 96 99 

99.
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Unfortunately, as we will soon see, this method cannot compete 

with our other partitioning methods. However, the method is based on 

an intriguing idea, the analysis is interesting, and it will serve as 

a good introduction to the more significant variants of Quicksort to 

come in the following chapters. For brevity, we will ignore such 

practical improvements as sorting the shortest subfile first (actually 

for this method it suffices to avoid sorting the longest subfile first), 

and concentrate on the "leading term" in the running time: the number

of comparisons and exchanges (by "exchange" in this context we mean 

"move a hole" which requires the same amount of work). As we have done 

before, instructions whose frequencies represent these quantities are 

labelled in Program 2.h. Upon inspecting the program, we find that the 

number of exchanges is given by

B = 2B"' + B" + B*

If the partitioning elements are s and t , with 1 < s < t < N , 

then by counting the number of times the il pointer is Incremented 

and the jl pointer is decremented we find that the quantity 

B'+B"’ contributes (s-1) to the first partitioning stage, and 

B"+ B'M contributes (N-t) . Averaging over all partitioning elements 

s and t , assuming all pairs equally likely, we see that the average 

contribution of B'+B"’ to the first partitioning stage is

155



- 2  Z  £  (s-1) = ijT^TT £  (s-1) (N-s)N(W-l) 1< S < N . 1 s <t <N ( J 1<S<N-1

2
N (N-l)

N-2

( 3 ) (see Eq. (22) in 
Appendix B)

Similarly, it turns out that the contribution of B" + B" * is also 
N-2~ y  . The number of exchanges is obtained by simply summing these:

since B = B" + B"* + BT + B" 1 , the average contribution of the first
2partitioning stage to B is t (N-2) . It is convenient to modify

this slightly by adding the two "exchanges" needed to get the partitioning 

elements into place, giving t (N+l) as the average contribution of 

the first stage to the number of exchanges.

Now we can, as we have before, set up a recurrence for the total 

average number of exchanges taken by Program 5*1:

2
with = 0 for N < M , so that in particular bm+i = 3 (Mf2)

2and B „ = t (M+3) • Not surprisingly, after manipulating indices, M+2 J

these three sums a-11 turn out to be the same (this is because the 

partitioning elements are random), and we have

- ! (N+1) + n7^3T £  (N-s-l)B ," -W 0 <s <N-2
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or

(5 )v
As before, we will try to eliminate the summation by subtracting this 

formula from the same formula for (N+l) • This can be succinctly 

expressed with the difference operator A , defined by Ax = xn+  ̂- xn •

Notice that for binomial coefficients A ( “O - W - O O - W  

for any k . Applying A to our recurrence, we get

= 2 f Np1 ) + 3 L  (N-s)B - 3 Z (N-s-l)B
\ d J \ d J o <s <N - 1 0 <s <N -2

^ J 0 <s <N-1 

In the same way, the remaining sum can be eliminated:

* 2 0 0 b n -  2 <h + i ) + %  •

Expanding the A , we have

( N22 ) BN+2 - 2 ( N21 ) w ( " ) BN -  2 (»+ 1 ) + ; B N 

(N+2)(N+1)Bn+2 -2(N+1) NBn+1+ (N(N-1)-6)B^ = U(N+1)

(N+2) - 2(N+1) N Bn+1+ (N+2) (N-3)Bn = MN+1) •

The next step is a "magic" rearrangement of the terms which will lead to

a solution, (indeed, much of this derivation may seem "magic", though 

we could easily get this far with the use of generating functions.) We
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will see a more important example, and some theoretical justification 

for this, in Chapter 8. The idea is to break up the middle term as 
follows:

(N+1)((N+2)Bn+2 - (N-2)Bjj+1) - (W-2)(0ffH)B^+1 - (N-3)^) = U(N+1) .

After dividing by (N+l)(N+2) , we now get a recurrence which telescopes:

- <*-*> V i  (““ i V i  - it
N+2 N+l + N+2

= fr*g) y 2 - (M-2) Vj. _1_
M+l <k <N k+2

T  + ^ % + 2  " ^ 2 ^

This equation is the same as

■ ( * - * 0 V l + 1 , » V " ( f  -  V 2 )  '

and we can make this recurrence telescope by multiplying through by

(N-l)(N-2)(N-3) _•
■»------ ^  ^  ^ -------L ,  g i v i n g

(*)=» * ( T ) w * ( 0 v ( 0 ( ¥ - O

Both of these sums are easily evaluated (see Eqs. (19) and (23) in 
Appendix B), giving the result
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C K  • K ” > ' ( ( “ X 'w - lH " ? ) O w - j) )

* ( t - -w )(C ;,) - ( ? ) )

so that our final answer is

f w -2 A
Bjj = ^ (N+1) (Hjj+1 - H^g) - ^  (N+1) + ^ j »

U ;

This is asymptotically ^ (N+1) In ̂  ^ , nearly 2 ̂  times

worse than the ^ (N+1) In f J exchanges required hy our other

algorithms. We need go no further with the analysis, for we can never 

hope to recoup this loss. (It does turn out that Ĉ. is asymptotically

(N+1) In ̂  J , and that the total overhead due to comparisons is

slightly lower than for any other method that we have seen so far.)

Our analysis up to this point has been concerned mainly with time 

and not space, since we showed in Chapter 2 that the strategy of sorting 

the small subfile first limits the space requirements to lg

stack entries. However, as we have noted, it is somewhat inconvenient 

to implement this idea in a high-level language, \onless recursion is 

handled properly by the compiler. Since Program 2.2 is much shorter 

and simpler than Program 2 .U, we might legitimately ask just how much
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space it wastes. As always, we begin by conditioning on the first 

partitioning stage, so that the average maximum stack depth required 

by Program 2.2 on a random permutation of [1,2, ...,N} is described 

by the recurrence

DN = 1 + I . ma*(Ds-l ’ DN - s > '  N 2  11 < s <N

(with D_ = 0 ) since the maximum stack depth needed is 1 plus the 

maximum stack depth needed for the subfiles. If we assume that < D .

for i < j then this simplifies to

N D„ = N + 2 N
1¥1 ’

|"irl <s<N-]

Subtracting the same formula for N-l gives

N odd

N even

ND - (W-l)D -D +1
L ^ j

N > 1

This recurrence appears very difficult to solve explicitly, but an easy 

computer calculation shows that it grows slowly with respect to N : 

D-i,w\n °nly about 28 . Therefore Program 2.2 will require less
XUUUU

than 28 stack entries to sort less than 10000 elements on the 

average, and even fewer if it is extended to insertion sort small 

subfiles. Of course, the worst case may still occur —  if Program 2.2 

as it stands is used to sort the file 1 2  3 • • • 10000 , it will 

require 10000 stack entries. But this is the worst case, and we have 

looked at several techniques to make unbalanced partitioning trees very
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unlikely. If the worst case does occur, then space overflow is a 

convenient "alarm" that tells us that the program might take much too 

long to sort the given file. On balance, Program 2.2 with 

" A[i] A[random(i,r)] " (or even " A[£] :=: A[(f+r) f2] ") inserted 

just before " v := A[f] " will perform very well as a "quick and dirty" 

sorting program when space is not a pressing constraint. The extension 

to insertion sort small subfiles is probably worthwhile, and of course 

Program 2.b is always preferable if the program is to be used often.

We have seen a variety of simple modifications to Quicksort- in 

this chapter, and we should suspect that there may be more sophisticated 

variants which may significantly improve the performance of the algorithm. 

But we also should expect that care should be exercised, since improvements 

in one part of the program may be offset by extra overhead in another.

In the next three chapters we shall examine three strategies designed 

to improve Quicksort, and we shall analyze their effects on its performance.
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CHAPTER SIX

Everything that we have learned about the Quicksort algorithm tells 

us that the algorithm performs best when the partitioning element is 

close to the middle of the file being partitioned at every stage. Yet 

the methods we have seen for choosing the partitioning element simply 

involve picking one element and relying on the randomness of the files 

to ensure that, on the average, the partitions will be near the center.

We should expect to be able to do better than that, but we must be careful 

to balance out the costs involved. Indeed, there are algorithms which 

will find the median of n elements in time proportional to n : if we

were to use such an algorithm to find our partitioning elements, we 

would have a Quicksort with a worst case running time of 0(n lg n) . 

However, such a method is not practical because of the comparatively 

high overhead required to find the median at each partitioning stage.

We would like to examine methods somewhere between these two extremes: 

methods which tend to partition close to the center, but at relatively 

low costs. Such methods may compete, on a practical basis, with the 

best sorting algorithms that we have seen.

The method that we will study in this chapter is based on a technique 

introduced by M. H. van Eraden in 1970. The idea is to delay, as long as 

possible, the decision on what should be the partitioning element. As 

the left and right pointers move in, we keep track of the largest element 

found so far in the left subfile and the smallest element found so far in 

the right subfile. The partitioning element might turn out to be any 

element between these bounds. Elements outside these limits are scanned
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over or exchanged just as in our normal methods, and the bounds are 

adjusted when new elements within them are encountered. The following 

program is a more complete definition of this "adaptive” partitioning 

scheme:

Program 6.1

procedure quicksort (integer value t,r); 
if r-i > M then

i := i; j := r; vmax := -°°; vmin := ®; 
loop:

if A[i] >A[j] then A[i] : = : A[j]j endif; B
if A[i] > vmax then maxi := i; vmax := A[maxi]; endif; 
if A[j] < vmin then minj := j; vmin := A[mini]; endif; 
loop: i := i+1; while A[i] < vmax repeat; C*
loop: j := j-1; while A[j] > vmin repeat; C-C'

while i < j: 
repeat;
if i = j then i := i+1 ; j := j-1 ; endif;
A[j] :=: A[maxi];
A[i] :=: A[minj]; 
quicksort (I , j-1 ); 
quicksort (i+1 , r); 

endif;

During the inner loop of this program, we always have A[k] < vmax for

k < i and vmin < A[k] for k > j , with the interval [vmax , vmin]

containing the partition. The operation of the program on our set of 

fifteen keys is shown in Example 6.1. The interval containing the 

partition shrinks from [01,UU] to [10,26] to [2h,26] . After the 

pointers have met, at 07 and 96 , it is known that all of the elements 

to the right of the 07 are > 26 and all of the elements to the left

of the 96 . This means that the final position of both the
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Example 6.1
partitioning:

sorting 
the file:

bb 26 95 OU 08 88 96 31*- 07 35 99 2b 68 10 01

© ©
129

01 (10)
10J
2?S UU

01 10 ©
< 3 3

95 68 (26) UU

$

01 10 ©  Ob 08 07 88 55 99 95 68 (26) UU

.96

0 1 CoH 07 10

< 3 3
08 07 96 3U 88 35 99 95 68 © uu
08 d U  2 0 3 ^ 88 35 99 95 68 96 bb

08 88 96 5U 07 35 99 2b 68 10 01

08 2 Q 3 U 88 35 99 95 68 96 bb

3^0 5 U p  99 95 68 96 88 

88 68C§5 2E>99 
£ 8 88!
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2b and the 26 are known, and they both are exchanged into position. 

If some element of the array is already in position, the pointers might 

meet at that elanent, and three elements are then put into position by 

partitioning. This occurs, for example, in the second partitioning 

stage in Example 6.1. The nodes of the partitioning tree now may 

contain more than one partitioning element —  for Example 6.1 we have

As we have done before, we will restrict our attention to this recursive 

program, while recognizing that all of the improvements that we saw 

between Program 2.2 and Program 2.b can be applied to make Program 6.1 

much more efficient.

In order to be able to analyze the performance of Program 6.1 we 

first need to determine the exact probability distribution for the 

position of the partition in the file at each stage. As always, we assume
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that the numbers being sorted are the integers {1,2, ...,N) . For example, 

the position of the partition for all of the permutations of four elements 

is shown in Example 6.2. By simply counting in this table, we can 

determine the frequencies of all of the ''two-partitions'' and "three- 

partitions". In general, let

s
number of permutations of {1,2,...,N} for which the 
partition falls on s and s+1

and

f number of permutations of {1,2,...,N} for which the
bNs I partition falls on s , s+1 , and s+2

}

}

From our algorithm, we can begin to determine some basic properties of 

these numbers, and then we can try to derive formulas for them. First, 

since we have one of these kinds of partition for every permutation of 

{1,2, ...,N} we obviously have

L  a*. + £  b„ = N!NS Nss s

Also, there is a symmetry property: if the partition falls on s and 

s+1 for a permutation cp c2 *** cn then it falls
N-s and N-s+1 for the permutation d^ d^ • • • d^ , where 

d̂  = N+l -  ̂ • For example, the permutation

10 7 13 2 h 12 lU 8 3 9 15 6 1 1 5 l

is partitioned to

1 5 3 2 h 8 12 9 15 13 11 lU 10

on
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(this corresponds to our fifteen sample keys and Example 6.1), while the 

"symmetrically corresponding" permutation

15  1 1  5 10 1  7 13 8 2 U 12 lU 3 9 6

is partitioned to

6 2 5 3 1 7 ^ 8  (9 1 0 ) 12 Ik 13 11 15

w h ich  "s y m m e tr ic a lly  c o rre s p o n d s " t o  th e  r e s u l t  o f  p a r t i t io n in g  th e  

o r ig in a l .  T h is  symmetry means th a t

^s = ^(N-s) *

and, s im i la r ly ,  we have

bNs = bN (N - l- s )

167



v>l

1 2 3 b

2 1 3 ^
2 3 l h

2 3 b 1

1 3 2 h

3 1 2 b

3 2 1 U
3 2 b 1

1 3 ^ 2  
3 1 ^ 2

1 + 1 2  

3 1 + 2 1

Example 6.2

1 (f ~ ^  U

1 (2 |) U 
< 0  U 3

1 (2~3) U
2 1 (0 ) 
1 2 (3 jj)

< C Z Z 2 > U
(l 2> U 3 

1 (2 3) U
1 o  ^
1 (2 2 ) ^

1 2 h 3
2 1 1+ 3
2 1+ 1 3
2 1+ 3 1

1 1+ 2 3
i+ 1 2 3
1+ 2 1 3
u 2 3 1

1 1+ 3 2

1+ 1 3 2

1+ 3 1 2

1+ 3 2 1

1 2 3

al+s 1+ 12 b

bl+s 2 2
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The tables below, obtained empirically, show the values of a^g and b^g 

for small values of N and s :

N

2
3
b

2
2
1+

2
12 b

^s

N

3
1+

2

2 2 bNs

5 12 38 38 12 5 k 12 b

6 U8 150 22l* 150 U8 6 12 38 38 12
7 2h0 732 1238 1238 732 2U0 7 bQ 150 22U 150 bQ

1 2 3 b 5 6 ... 1 2 3 1 5

As we expect, these tables are symmetric, and they indicate that the 

partition tends to be near the center. However, the most obvious feature 

of these tables is the relation between the two frequencies:

^ s  “ b(N+l)s

It is not too difficult to prove that this relation holds, now that we 

have guessed it. Suppose that we form all permutations of [1,2,.. .,N,N+l} 

from permutations of {l,2,...,N} using the same kind of correspondence 

that we used in Chapter 1: with each permutation of N elements we

associate the N+l permutations of N+l elements defined by:

(i) incrementing each item > s+1 by 1 ; (ii) inserting (s+1 ) 

into each of the N+l possible positions between elements. Then the 

partition will fall on s , s+1 , and s+2 in one of these permutations

of N+l elements, if and only if the partition falls on s and s+1 in 

the corresponding permutation of N elements.
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We can therefore concentrate on finding an expression for a ^  , 

and because of symmetry we can assume s < N-s . To begin, we might 

notice that the only way that the partition can fall on the elements 1 

and 2 is if they are initially at the left and right ends of the 

array. This is easy to verify by examining the algorithm. First, the 
variable vmax cannot decrease during the execution of the program, 

so that if it is not initially 1 , it can never be. If vmax is 

initially 1 and vmin is not initially 2 , then the pointers must 

stop at least once (since there are elements between vmax and vmin 

within the array) with A[i] and A[j] both > 1 , which must result 

in vmax being increased. Therefore, the initial values of vmax 

and vmin must be 1 and 2 if the partition is to fall on 1 and 2 . 

There are exactly 2(N-2)I permutations of {1,2,...,N) with 1 and 2 

at the ends, so we have shown that

V  - 2(N-2) '•

In fact, a„ > 2(N-2)l for all s , since the 2(N-2)'. permutations 

with s and s+1 at the ends will result in the partition being at s 

and s+1 . However this type of argument does not generalize nicely 

to yield an exact expression for a^g for all s , so that we will 

have to resort to a more complicated argument.
First we consider the left subfile after partitioning but before 

the s key has been exchanged into position. This is a permutation of 

the elements {1,2, ...,s] . Some of these elements were brought in by 

exchanges during the partitioning process. By knowing these and 

examining the left subfile after partitioning, we can determine how 

many times the pointers must have stopped during partitioning. For 
example, if we have the left subfile
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©  □  ©  [©] 2 0  7 ®
where the Q ' s  indicate left-to-right maxima and Q ’s mark elements 

brought in by exchange, then we can tell that the pointers must have 

stopped 6 times during partitioning: 3 for the exchanges and 3 for

the left-to-right maxima not brought in by exchanges. Now, the number 

of left-to-right maxima in a permutation of (1,2,...,N} is N-D , where 

D is the quantity we studied in Chapter 1. From the analysis in 

Chapter 1, we know that the number of permutations of {l,2, ...,s} 

with exactly k-x+j left-to-right maxima is [ , © ]  • We can

therefore generalize our observations to say that the number of possible 

left subfiles after a partition during which the pointers stopped k 

times and x exchanges were made (not including the first element) is

y  r S 1 f k-x+j-1 "\ f s-k+x-j 'N
t  U-x+jJv. j A  x-j j

Here, the index of summation j is intended to count the number of

left-to-right maxima brought in by exchanges, i.e., the number of

elements both O  !d and in the example above. This expression

can be verified by considering the number of ways of distributing the

- □  •s among the s elements in the left subfile. The number of

left-to-right maxima (the number of O  »s) is k-x+j : j Q fs

can be distributed among the k-x+j- 1 O  (not counting the first)

in ( k-xr )  ways, and the remaining x-j □  fs can be distributed
f s-k+x-i^among the remaining s-k+x-j elements in ( x-j ) ways* We no  ̂

count exchanges involving the first position because it can only be 

exchanged with the last element in the right subfile —  we will double 

our final answer to account for this.
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Similarly, for the right subfile we have the expression

v  T n-s *1 f  k-x+i-1 \ r n-s-kfx-i >
t  Lk-x+iJ V. j yv.  x~i J

for the number of possible right subfiles after a partition during which 

the right pointer stopped k times and x exchanges were made. Now, an 

obvious feature of the algorithm is that not only must the number of 

exchanges counted be the same for the lefl and right subfiles, but also 

the number of times the pointers stop must be the same. If this were 

the only requirement, then we could make some progress by multiplying the 

above expressions together and summing over x and k . Unfortunately, 

however, we have the additional (obvious) requirement that if the one 

pointer stops for an exchange, the other must also. We have only 

succeeded in showing that

/'vT s If k-x+j-lV s-k+x-jVN/ y1 |~ n-s 1 f k-x+i-lVN-s-k+x-i>
( ^ U - x + j A  j A  x ~j i / V i  Lk“x+iJv. i A  *-i J

= 2
W V v T  s 1 f k-x+j-lY s-k+x-Af N-s ~\f k-x+i-1 Y  N-s-k+x-i
x k i  tLk-x+jJl j A  x"j A k-x+iJV. i A  x-i J

= 2

where the last transformation was to interchange the order of summation and 

to replace j by j-k+x and i by i-k+x . Now the sums on k and x 

both reduce to Vandermonde1 s convolution (see Eq. (21) in Appendix B) :
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and

Substituting these, we get

This expression does not seem to simplify further, and it really doesn't 

offer much information for general N and s . Fortunately, however, 

equality holds for s = 1 and s = 2 (the pointers, after the initial 

stop at i = 1 and j = N , stop again only for possibly one exchange), 

and this will be sufficient for our purposes. For s = 1 , we have a 

check on the result we already have derived:

v  ■

= 2

since al 1 terms vanish except those for i = 1 and j = 1 . But

= (N-2)I by Eq. (29) in Appendix B, so this agrees with our

earlier result. Similarly, for s = 2 , the only non-zero terms are

those for i = 1 , 2 and j = 1 , 2  :

V  = 2[ i ] [N?] <n-2> + 2[ i] [N22] +a[ i ] [Hf  ]<■-» +2[a][N22] 2

’ 2 ( [ ”I2] (N‘2) + [ ”i2] (N'5))  + 6[N22]
= 2( (N-2) '. + (N-3)(N-3)'.) + 6(N-3)I ,
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since  ̂N£2 \ = (N-3)'-H^^ by Eq. (30) in Appendix B. The complications 

involved in this expression and this derivation indicate that, if we were 

to get a formula for a^g for general s , it would involve a sum of 
Stirling numbers.

However, we need go no further, because the expressions for 

and â 2 indicate that this method cannot produce random subfiles after 

partitioning. Consider the number of permutations of {l,2,...,n) for 

which the right subfile turns out to be of size N-3 . From our 

definitions, this is

^2 + bNl

or, substituting the expressions we have derived, the right subfile is of 
size N-3 with frequency

2( (N-2)! + (N-3) (N-3) 1) + 6(N-3) '• Hn_, + 2(N-3) !
or

(N-3) I (Mn-2) + 6hn_̂ )

Now, in order for the right subfile to be ’'random", each of the (N-5)'. 

permutations of its elements must be equally likely —  that is, each must 

appear with equal frequency when all permutations of (1,2,...,N} are 

considered. But this can only occur if the above expression is an 

integral multiple of (N-3)'- , which is certainly false (for N = 7 , 

we get 20 + 6h^ = 65 1/2 ) . Therefore, the subfiles after 

partitioning for Program 6.1 cannot be random, and we cannot hope to 

complete an exact analysis of this program. On hindsight, we should not 

be too surprised by this result. Our standard proof for random subfiles 

says that the partitioning process is independent of the relative order 

of the elements which turn out to fall in the left (and right) subfiles.
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For this method, the relative order of all of the elements affects the 

final position of the partition, so that the proof breaks down entirely.

It is unfortunate that we are unable to analyze this algorithm, 

but it would be disastrous indeed (from an analyst's point of view) 

if Program 6.1 outperformed all of our other methods. Fortunately, 

this is not the case —  simulation studies consistently show that 

Program 6.1 is less efficient than our other methods (such as 

Program 2.k) for essentially the same reason that Program 5.1 was 

inefficient. The partitioning element does tend to be closer to the 

center, and for this reason the number of ’’comparisons" (the average 

value of the quantity C ) tends to be lower. However, we now know 

better than to count "comparisons" only. In fact, Program 6.1 has other 

comparisons within its inner loop —  those necessary to maintain the 

partitioning bounds vmax and vmin . Not only are the pointers 

stopped more often, but also there is more overhead (three extra 

comparisons) involved each time the pointers stop. Again we have a 

case of adding overhead to one part of the inner loop (the quantity B ) 

to optimize other part of the inner loop (the quantity C ), and again 

this strategy does not succeed.
Moreover, these extra comparisons succeed much more often than they 

fail -- the variables vmax and vmin are not changed very many times 

on the average. Also, each successive change is of less importance 

than the preceding. The idea is to get a partition which tends to be 

close to the center, and this is mostly accomplished the first few times 

the partitioning bounds are improved. Most of the extra work involved 

in Program 6.1 is required to get the two partitioning bounds to meet
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exactly, and. this is not really necessary. An improvement to Program 6.1, 

therefore, might involve using the partitioning method given until vmax 

and vmin have been changed once or twice, then arbitrarily using one 

of the values as the partitioning value for a method like Partitioning 

Method 2.U. This would give, for large enough N , an improved choice 
of the partitioning element without affecting the ''inner loop" of the 

program.

The idea of an adaptive partitioning method is attractive, and many 

serious attempts at improving the Quicksort algorithm result in the 

definition of such a method. As another example, we might consider a 

modification to Partitioning Method 2.1 which initially exchanges 

A[f] and A[r] if necessary to make A[£] < A[r] ; then scans from 

the left to find an element > A[i] and from the right to find an 

element < A[r] . If the left scan is shorter than the right, then 

A[f] is used as the partitioning element, with Partitioning Method 2.1 

used for the rest of the partitioning. If the right scan was shorter, 

then A[r] is used as the partitioning element. The motivation behind 

this idea is that the method tends to use as the partitioning element 

the closer of A[i] and A[r] to the center, and the decision costs 

very little.

While these methods do perform much better than Program 6.1 and 

almost compete with Program 2.U, we will not consider them in any further 

detail for two reasons. First, they still do not produce random 

subfiles. It seems that, by their very nature, any of these adaptive 

methods cannot result in random subfiles after partitioning. As we have 

already remarked, they are not necessarily inefficient for this reason,
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but they certainly are difficult if not impossible to analyze. The 

second reason that we will not look further at these methods is that 

they involve deciding which should be the partitioning element 

on the basis of examining a relatively small number of elements 

in the file. This relates these to the method discussed in Chapter 8, 

where it is shown that, if the partitioning element is chosen on the 

basis of examining a fixed number of elements at every stage, then the 

best strategy is to choose the median of those elements. This indicates 

that the methods described above will not perform as well as the method 

that we will see in Chapter 8, and this is verified by simulation.

Unfortunately, then, it seems that we can always do better than 

these adaptive partitioning methods. We will look next at an idea which 

does eventually lead us to a genuine improvement in the Quicksort 

algorithm. This idea, which can be implemented in the two quite different 

ways discussed in Chapter 7 and Chapter 8, does lead to a choice of the 

partitioning element which tends to be close to the center of the file. 

Unlike Program 6.1, the extra overhead required to achieve this does 

not fall in the "inner loop", so that the savings achieved can be 

significant.
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CHAPTER SEVEN

Our efforts towards finding a better strategy for choosing the 

partitioning element have been directed towards getting the partition 

as close as possible to the center of the file being partitioned. In 

trying to make a good choice of the partitioning element, then, we are 

simply trying to estimate the median element of the file. Essentially, 

this estimate is based on "sampling", or examining some of the elements 

in the array. Now, it is a well known principle from statistics that 

the best estimate of the median of an array, based on a sample from thei
array, is the median element of the sample. This leads us to a 

partitioning method called samplesort, which was introduced by W. D. Frazer 

and A. C. MeKeliar in 1970*

Samplesort is more complicated than most of the other methods that 

we have seen, because of the mechanics of choosing the sample and finding 

the median of the sample. One way of implementing the idea is to choose 

a small sample at each partitioning stage and then to use the median 

element of that sample for the partitioning element. This is the method 

that we will discuss in Chapter 8. Of course, the larger the sample, the 

more accurate will be our estimate of the median —  but it is not practical 

to take a large sample at every partitioning stage. Samplesort overcomes 

this difficulty by taking one very large sample at the first partitioning 

stage, sorting it, and then using elements from the sample as 

partitioning elements on succeeding partitioning stages. First, the 

median element is used. Then the element bounding the first and second 
quartiles is used for the left subfile, and the element bounding the 

third and fourth quartiles is used for the right subfile. The process
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is continued in this manner while there are sample elements to be used, 

and normal Quicksort is used after the sample is exhausted. Jt is most 

convenient to use an initial sample of size 2 - 1 for some integer k .

We will see later that the effect is the same as taking a sample of size
k k- 1

2 ‘- 1 at the first partitioning stage; then taking samples of size 2 “ -1

for partitioning at the second level of the partitioning tree; then
k-2samples of size 2 -1 at the third level, etc. To mechanize the

partitioning process we will choose the first 2 - 1 elements of the 

array as the sample and ensure that the sample does not participate 

in the partitioning process. Specifically, after the sample has been 

chosen and sorted, the array has the following format before partitioning:

12 ... t+1 . .. 2t+l 2t+2 ... N
v__________  __________^  J

sample unknown elements

k- 1(For notational convenience we define t = 2 -1 .) In other words,

the (sorted) sample occupies array positions A[l],A[2],...,A[2t+1] , 

and, by definition, the median element s is in position A[t+1] . If 

we now apply our normal partitioning procedure (Partitioning Method 2.h)

to the end of the array (A[2t+2] , A[2t+3] , __, A[N]) using s as

the partitioning value, we get:
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/  / / / 
V < V / ŝ / / > s / / / / < s > s

1 2 ... t+1 .. • 2t+l 2t+2 ... t+s t+s+1 n

sample result of partitioning

Now we can perform t+1 exchanges to get s and the sample elements 

> s into position, leaving two subfiles, each with t elements of the 

sample at the left end:

/ / <
< s © ' / / > / / /  /  ✓ / / > s

1 2  ... t s s+1 ... s+t N

If the right half of the sample was kept sorted when it was moved, then 

the two subfiles now have the same format as the original file, and the 

procedure can be applied recursively. When the process has degenerated 

to "samples" of size 1 (t = 0) , then this is Quicksort as usual.

Example 7-1 shows how our fifteen keys are sorted using this method, 

with a sample of size 7 (k = 3) • The first seven keys of the file 

are sorted, using Quicksort (for example, Program 2.U). Then the file 

is partitioned on the median element of the sample, the UU . After

partitioning, the Uk and the right half of the sample are moved to

the right subfile, leaving the Ok , the 08 , and the 26 in the left

subfile; and the 88 , the 95 y a>nd the 96 in the right subfile. The
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Example 7 •1 (k = 3)

sorting
the
sample:

sorting 
the file:

UU 26 95 OU 08 88 96 3k 07 55 99 2U 68 10 01

OU 26 08 ©  95 88 96

©  26 08 

08 ^26^

88 (95) 96

OU 08 26 UU 88 95 96 3k 07 35 99 2k 68 10 01

OU 08 26 (UU) 88 95 96 3k 07 35 01 2U lo[] 68 99

oU 08 26| 35 01 2k 10 3k 07 @ )  88 95 96] 68 99

68Q 9988 (950  96

88 68 C95) 96 99

68 (88

OU © 26 07

E 1 07 01 ©

01 © 07

01[J2U 10 3k 35

9 0  99

10 2k (2 6 )  3k 35 

( iB )  2k

( 34)  35
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median of these three, the 95 , is used in partitioning the right 

subfile, and the 08 is used in partitioning the left subfile. 

Continuing in this manner, the sample elements are eventually exhausted 

as partitioning elements, and the procedure reverts to normal Quicksort, 

partitioning on the first element in each subfile. The partitioning 

tree for Example 7*1 is

which is nearly optimal. From this example, we can clearly see the 

motivation for the samplesort idea. The first k levels of the 

partitioning tree are forced to be complete —  they contain all of 

the elements of the sample. The most costly kind of imbalance in the 

partitioning tree, imbalance at the highest levels, is avoided.

The implementation of this idea turns out to be surprisingly 
simple —  it is little more than a generalization of Program 2.U, 

with only a few hidden subtleties:
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Program 7 • 1
procedure samplesort (integer value f,r,t); 

if r-I > M then
i := £+2xt; j := r+1; v := A[f+t]; 
loop:

loop: i := i+1; while A[i] < v repeat;
loop: j := j —1; while A[j] > v repeat;

while i < j:
A[i] :=: A[j]; 

repeat; 
i := t;

* loop: A[£+t+i] :=: A[j-t+i]j while i > 0: i := i-1; repeat;
samplesort (f , j-1 , t -f 2); 
samplesort (j+1 , r , t -f 2) ; 

endif;

In order to make this program perform as described above, it is necessary 

to first choose and sort the sample, so that the calling sequence

samplesort (1 , 2  -1 ,0);

samplesort (1, N , 2^ -1);

insertionsort (1,N);

should be used to sort A[1],A[2],...,A[N] with a sample of size 2 - 1 . 

(in a practical implementation, it may be desirable to attempt to avoid 

the worst case by scrambling the file as discussed in Chapter 5*)

Again, this program can be improved by removing the recursion and 

sorting the smaller subfile first.

There are two subtle features to be noted about Program 7.1. First,

the variable t always carries the size of the sample to be used in
kthe subfiles, and it is always a number of the form 2 - 1 for some
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integer k . At each stage, it is changed to t 4- 2 which is the 
t-1 k-1the same as or 2 - 1 for t > 0 , hut which remains 0 for

t = 0 • Program 7.1 with t = 0 is exactly the same as Program 2.2.

A second point to notice in Program 7*1 is the operation of the loop 

which splits the sample (which is marked with an * ) when there are 

less than 2t elements < s in the file. This occurs, for example, 

when the first right subfile in Example 7*1 is sorted (at the seventh 

partitioning stage). It might seem more natural to have the variable i 

in this loop run from 0 up to t rather than from t down to 0 .

If we were to do so in this case when there are more elements < s in 

the sample than in the rest of the file, then the sample would not remain 

in order since some of its elements would be involved in two exchanges.

By going in the other direction, we have some of the elements not in 

the sample involved in two exchanges. (In the seventh partitioning 

stage of Example 7*1> the 68 is exchanged with both the 95 and. 

the 96 .) This doesn't otherwise affect the operation of the program, 

since these elements are randomly ordered anyway. (Program 7*1 could 

be made slightly more efficient by eliminating these extra exchanges, 

but this case occurs so infrequently that it is not worthwhile to 

complicate the program in this way.)

We now have the freedom of choosing two parameters to make this 

program run efficiently: the sample size, 2 - 1 ; and the cutoff for

small subfiles, M . The optimal sample size is of most interest, 

since, as we will see, it affects the leading term of the average running 
time. To simplify the analysis, we will take M = 0 , as we have done 

before. We will now attack the problem of finding the best value for k ,
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starting with the derivation of an exact expression for the average 

number of comparisons used to sort N elements (as a function of k ).

It is often convenient to work with the sample size as t = <_ -J. as above,
sc that the initial sample is of size 2t+l . We will use the t and k 

notations interchangeably, without explicitly denoting their dependence.

To begin, we assvjne as always that the file being sorted is a 

random permutation of {1,2,...,N) , and we see from Chapter ? that 

the average number of comparisons needed to sort the sample is

(Ut+U)(H2t+2 -l)

Next we set up a recurrence for the number of comparisons needed by 

samplesort proper by conditioning on the first partitioning stage, as 

usual. Now, however, there are two variables in our recurrence. Let 

us define Cjj(2t+1 ) average number of comparisons required

for N elements, given that the first (2t+l) are sorted and used as 

a sample in Program 7*1* Again, from Chapter ?, we have

S o  " s t u + D O W - D  •

Now, for general t , the first partitioning stage takes N-2t+l 

comparisons (by an elementary argument as in Chapter 2), and the 

subfiles each use samples of size t (by definition), so that we have 

the recurrence

CN(2t+l) = N " 2t+l

+ Tj Pr{s is the partitioning element)(C/. - i \ . 1.  +  C / 1, t  \.)t+1 < s <N-t (s-ljt (N-s;t
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Since there are t elements < s and t elements > s in the 

sample, clearly the partitioning element s cannot be < t+1 or 

> N-t . In fact, the probability that any particular value s is 

used as the partitioning element is the probability that t elements 

< s and t elements > s were included in the sample together 

with s . Specifically,

By writing this recurrence, we are implicitly assuming that it makes 

no difference that we use the same sample elements for the subfiles, 

as opposed to choosing new samples of size t for each of the subfiles. 

But we are justified in doing so because the probability that any

methods. This is obvious for the strategy that we're using. For the 

other method the argument goes as follows: Let s be the median of 

the 2t+l elements we are interested in. Then s is used as the 

partitioning element for the first stage with probability

Pr{s is the partitioning element) C ^ X v )

Substituting this into our recurrence, we get

CN(2t+l) (N-2t+l)+ L
t+1 < s <N-t (C(s-l)t + C(N-s)t) *

particular group of 2t+l elements used is 1 for both

; the t elements < s are chosen for the sample
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for the left subfile with probability -7—  .. ; and the t element:

> s are chosen for the sample for the right subfile with probability 

1

( v j
Therefore, the particular group of 2t+l elements is used

with probability

~ W ~  ( “ ) ( ' ; • ) '  ( » 0  '

Therefore we may properly write and C f o r  the average

number of comparisons used for the subfiles.

As usual, since the probability distribution for s is symmetric, 

the two sums in our recurrence are the same (change s to JJ-s+1 in 

the second). After multiplying by f 2t+i} we are -*-e^  with

(at+i'Kfat+i) * (N-2t+1)(2t+l) +2 ( V ) ( V ) c(s-i)

It is convenient to write N-2t+l = (N-2t-l)+2 since

(N-2t-l) ̂  2t+l ) = ^^+2^ 2 t + 2 3  Eq* Appendix B* Ft0111 this

point on, we are actually solving two recurrences in parallel, one for 

N-2t-l , one for the constant 2 . We will examine the implications of 
this below. Our recurrence now is
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2t+2 2t+lz , o__z
W » >  * < * « >  ^ ^ 5  + 2

+ s > M  ■ £ *  ( NtS ) ( " 1) C (S- « t zN 

2t+2 „ 2 t + 1
(2t« 0 2 + 2 "

(l-z) 2t+5 d - , ) ^ 2

s. s„ ( t XOc+ 2, i T - / l ; L  2N+s+t+l
s >t N >0 st

2t+2 2t+l t+1
= (2t+2) 2 gt + 2 ♦ 2 C (z) — 1 _

(1 -z) 2t+3 (1 -2) (1 -2)

We now have a recurrence on t which we can solve to get an equation 

for the generating function Ct(z) . First, we multiply both sides of

(l-z) 2t+1this equation by the "summation factor" — 2t+l—  9 which gives
z

(1l i r  W z> - 7 ~ T s  + - h  + 2 ct<z> •z (1 -z) Z

This recurrence is almost, but not quite, ready to telescope to a sum. 

To make it do so, we change notation back to k = lg(2t+2) (since 

t = 2k~̂ -l) , and define

Fk(z) = \     C k (z)2 2 - 1  2 - 1  z
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which transforms the recurrence to

2\ < z> * 2“ 7 ~ T f + - h + 2* •(1- 2)

This telescopes, after dividing by 2 , to the sum

F (z) = F (z) + E ( “ 2 + ~ T ~ --
l<j<kl (1 -z) 2 2J(l-z)

k_iBy changing notation once again, back to t = 2 -1 and
1 ( 1-  )2t+1

F (̂z) = I ~2t-n—  C2t+1^ * We Can convert this equati°n to
2

d >  l i p ^ : W Z> -  ° o < z > + ^ 2 + -  d > ) '

or

2t+l
= z^  d-z)2t+1 V

Now we convert back to power series:

r(2t+2)C0(z) + (2t+2) lg (2t+2) — ^  (2t+l)J

C2t+l^Z  ̂ ~ Z E (2t)zi ((2t+2)Cj0+ (2t+2)lg(2t+2)j +2(2t+l)̂ zJ
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This equation follows from the fact that C_(z) = £  C,„z ,
j>0 J

— -— ■= = E  jzJ , and t—  = £  7? (see Eqs. (55) and (56) in
(1 -z) j  >0 1-2  j  >0

Appendix B). This is now a convolution of two sums which is easily transformed 

to

CPt+i(z) = z £  zN £  f(2t+2)C + (2t+2)lg(2t+2)j + 2(2t+l)VN“j y
N >0 0 < j <N ' J J

Since Cgt+1 (z) = £^ £ 2tN+1 JCN(2t+1) zN by definition, we can

Nset coefficients of z equal in this equation to get the solution:

( 2tN+l ) CN(2t+l) ■ 0 < £<N_i((2t«)Cj0 M ^ 2 ) l g(2t+2)j + 2(2t+l))(N-2Jt-1)

= (2t+2) £  2(j+l)(H - 1  )rN“pt"1 )
0<j <N-1 J ^ J

+ (2t+2) lg(2t+2) £  j ( N"2t"1)
0 < j <N-1

0 <J < N_1

The last two sums are easily evaluated as convolutions of binomial 

coefficients, but the first is more difficult, and is left for 

Appendix B. It follows from Eq. (U5) in Appendix B that
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(Xj^N-l (j+1 )(V l _l)( 2t ) (2t+2)(HN+l"H2t+2) '

which gives us our answer

C 2t+l 3 Sl(2t+l) “ (U-t+U) ̂  2t+2 ) (Hjj+1 - H2t+2)

+ (2t+2)lg(2t+2) ( 2 “ 2) +2(2t+l)(2tN+1) ,

or

CN(2t+l) = 2(N+l)(HN+1 -H2t+2) + (N-2t-l)lg(2t+2) + 2(2t+l) .

To this must be added the (^+ )̂(**2t+2 ” ̂  comparisons that were
required to sort the sample. Finally, then, let us change notation 

back to k = lg(2t+2) and define C k to be the total number of 

comparisons used to sort a permutation of {1,2,...,N] using samplesort, 

when an initial sample of size 2 -1 is used. Then, substituting into 

the equations we have derived, we get, after some trivial algebraic

simplifications:

CNk = 2 N̂+1)Hn + (N+1 '2k)(k-2H k) .

It is somewhat reassuring to find such a simple expression for this 

quantity.
As we noted during the derivation, we actually solved two recurrences 

in developing this solution. We have

CN(2t+l) = CN(2t+l) + 2 \(2t+l) ’
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where C»,N(2t+1) is defined by the recurrence

N(2t+l) t+1 < s <N-t

+ 2 Z
t+1 <s <N-t A(s-l)t

which has the solution

\ ( 2t+l) N

There is an immediate interpretation of this decomposition from our

stages, and the N-2t+l comparisons used during each partitioning 

stage consist of N-2t-l absolutely necessary comparisons plus 2 

redundant comparisons which we included to eliminate the overhead of 

testing for when the pointers cross. It is interesting that the 

redundant comparisons manifest themselves in the solution in this way.

it changes sign. This is analogous to finding the minimum of a continuous
Tfunction by setting the derivative to zero. To calculate >

we notice that Af(k)g(k) = f(k+l)dg(k) +g(k) Af(k) for any

TIf we wish to find the value of k for which C„, is minimized,Nk
we can take the difference with respect to k , AC„, , and find where

* 7 Nk 7
T

k kfunctions f and g ; and that A 2 =2 . We then get

TAC„.Nk (N+l-2k+1)(l-2H^k+1 +2H k) - 2k(k - 2H R)
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The desired ''best" value of k is the smallest k for which

> 0  ; by setting the above equation to zero, we find that 

this is the smallest k for which

2k(k-2H )
k+1 2

N+1 < 2 +

From this formula, it is easy to compute the value of k which minimizes 

the number of comparisons for practical values of N • These are given 

in the table below: for example, if 332 < N < 717 > then k = 6 ,

or a sample size of 63 , minimizes the number of comparisons.

N 332 717 1550 33^1 7180 15367 32765

k 6 7 8 9 10 11

We can also use this formula to derive an asymptotic expression describing 

the value of k which minimizes the number of comparisons. Starting 

with the asymptotic formula

H . = k In 2 + 7 + + 0
2 2 GAO

we find that

2k(k - 2H k) = (1 - 2 In 2) k 2k - 2k+1 7 - 1 + 0,(?)
and

1 2k+1 + 0((2*)2.
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so that we are looking for the smallest k for which

< 2 k ( * + s n r s r r r + 2 ) + 2 1 ^  ( I + 1 +  2 l ^ t t )  + 0 ( ^ )  •

Now we wish to solve this equation for k . First, we note that the 

sample is taken from the file, so 2 < N , which implies that 2 = 0(N) 

and k = 0(lg N) • Therefore, we have

or, taking logarithms,

Now, we can iterate this formula once to give

k - OgN - ig(k ♦. 2 J { - - x * a + ° ( V  ) ) )

= lg N - lg lg N + o ( W  )

■ 1«Cirf) + 0C W I) •
k NTherefore, k should be chosen so that 2 is about ■=— — • It takes 7 xg N

some faith in asymptotic methods to have confidence in the utility of

this result, but it does reasonably match the exact values computed above.

Also, this derivation leads to a simple proof of one of the most 

significant features of samplesort.

We will find an asymptotic formula for the number of comparisons 

used to sort {1,2, ...,N} , given that the best sample size was used —  

we will concentrate on finding the "leading term" (the term which 

dominates when N is very large). Now, since 2 = 0(N) and 

k = 0(ln N) our exact formula for the total number of comparisons can 

be approximated by the asymptotic formula
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C L  = 2(N+l) In N + (N+l-2k)k(l-2 In 2) + 0(N)NK

by substituting the asymptotic formula for the harmonic series that we 

used above. This expression can be simplified further to give

CjJk = 2 N In N + (1-2 In 2) Nk - (1 - 2 In 2) k2 + 0(N) .

But we know that k2 = 0(N) and k = lg N + 0(lg lg N) , and

substituting these, we get the result

CjJ = 2 N In N + (1 - 2 In 2) N lg N + 0(N lg lg N)

= N lg N + 0(N lg lg N)

cj = N lg N + 0(N lg lg N) .

This is the theoretic minimum number of comparisons required by every

sorting method. In other words, samplesort is asymptotically optimal 

with respect to comparisons. As N gets very large, the total average 

number of comparisons used by Program 7*1 approaches N lg N . This is 

an interesting theoretical result, but the converegence is very slow, and 

the overhead required to implement this algorithm limits its 

attractiveness in most practical situations.

From a practical standpoint, our interest is to pick a sample size

which will minimize the total running time, not just the number of

comparisons. We know that the other main contributor to the running 

tine is the number of exchanges, so we shall now consider the analysis 

of this quantity. This analysis will be somewhat more complex than 

our analysis of the number of comparisons, for the same reasons that 

we found in Chapter 3. First, we need to find the average number of 

exchanges needed on the first partitioning stage, or
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L  Pr
t+l<s <N-t

s is the 1 (average number of exchanges when 1
partitioning element | | s is the partitioning element f

The probability that s is the partitioning element is ‘X V ) /U  J
as above. To find the average number of exchanges, we notice that there 

are two kinds of exchanges. First, just as in Chapter 3, all of the 

keys among A[2t+2] , A[2t+3] , , A[t+s] which are > s are involved

in exchanges. The average number of such keys is

2  j 
0 < j < s-t- 1

f N-t-s ̂  ( s-t-1 ^
i I j As-t-i-jy

f N-2t-l \
I s-t- 1 J

N-t-s
f N-2t-l N 

s-t- 1 J
Z

0 < j < s-t- 1

f N-t-s- 1 f s-t- 1 'N 
^ j-i y^s-t-i-jj

N-t-s f N-2t-2 >
/ N-2t-l > ^ s-t-2 J  
\ s-t- 1 J

(s-t-1) (N-t-s) 
N-2t-l

In addition, after partitioning is done, the right half of the sample 

is moved into place at the beginning of the right subfile —  this 

requires t exchanges. Therefore, the average number of exchanges used 

on the first partitioning stage is
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( f. fS-t-D(M-t-s)
£  S / V \ l * (H-2t-l)

^ 2t+l J ^t+l<s <N-t

= *t + '2-j
t+l<s <N-t

We can expand in factorials or apply the identity (r-k) CO
three times to find that

v  t+l) (t*:L)l ttl) t | t+1 ( 2 t + 0
t+i<s<n-t (2t+2)(2t"2) 2 (at+a)

A , t+1 N-2t-2 
“ 2 2t-3

exchanges are made, on the average, during the first partitioning stage. 

Notice that this is asymptotically l/k the number of comparisons. 

Therefore the recurrence describing the number of exchanges taken by 

Program 7*1 is

f N V « f t  + N-2t+2 V  N >^ 2t+lJ\(2t+l) I 2 2t-3

+ 2
t+1 < s <N-t

This can be solved in exactly the same way as the equation above for 

comparisons, although the sums involved are more complicated. The 

solution is
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% ( 2t+l) - I (t+1) ls(2t+2) - 24 - 1

+ \ (N+1)Hn+1 - i (K+l)H2t+2 - | (N-l-St)

+ % (N+l) lg(2t+2) - Cj€(2t+2) (N+l) ,

where e, = £  — r1—  , which converges to I.26U99 ... as k gets
l<j<k 2J+1

large. The first three terms (t+l)lg(2t+2) -2t-l^ in this

expression represent the contribution of the exchanges which move the 

sample sections, and the rest of the terms count the total exchanges 

used in partitioning. Adding in the i (2t+2)H2 .̂+2 - ^ (2t+2) + ^

exchanges required to sort the sample, and changing notation back to 

k = lg(2t+2) , we get a final expression for the total average number 

of exchanges required to samplesort a random permutation of {1,2,...,N} 

using a sample of size 2 - 1 :

* 5  <N + 1 %  - 5  (N+1)H2 k + I  (N+ i+ 2 k ) ( !  - 1 )  + 5  - 5  ek<N + 1 ) •

Note that this agrees with our result for Chapter 3 when k = 0 .

In principle, we could develop similar expressions for the average 

values of all of the quantities involved in the running time of 

Program 7 multiply them by the appropriate coefficients, and sum 

them to get an expression for the total running time, just as we did 

in Chapter 3* We will refrain from doing so here because we will be 

doing such a complete analysis in Chapter 8 for a similar algorithm,

199



which is simpler and more efficient than samplesort. Also, the 

samplesort analysis is much more complex than indicated above if we 

allow for arbitrary M • (We chose M = 0 .) The results include 

sums of M terms which cannot be reduced further.

However, we can get some indication of what the sample size should 

be from the formulas that we have derived so far. For convenience we 

assume that we have a slightly inefficient version of Program 7.1 which 

does a stack push at every partitioning stage, so that the total 

running time is

3UA + 11B + 1+C ,

where A is the (total) number of partitioning stages, B is the 

number of exchanges, and C is the number of comparisons. From the 

analysis above, we know that the average value of these quantities, 

when a random permutation of [1,2,...,N} is sorted with a sample 

of size 2 -1 is, for M = 0 :

Bjk = i (V+VHn - \ (N+1)H . + I (N+ l+ 2k)(! - 1)

+ 7 " J €k(N+1) ;

cjjk = 2(N+1)HK + (N+l-2k)(k-2H R)

Carrying out the calculations exactly as above, we find that the value 

of k which minimizes the total average running time 

>^A^k + + i-s the smallest k for which
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N+l <
l U j ^ i  - h k + 2 Hak+ 1 ' 2 H 2k

This leads to much smaller sample sizes than those which minimized the 

number of comparisons, as can be seen in the table below:

N 1569 5290 6935 lb63b 30851 6U927

7 8  9 10

Now a sample of size 63 minimizes the total running time for much 

larger files than before: in the range 1569 < W < 3290 . This does 

not affect the asymptotic behavior of the average number of comparisons -■ 

it is still N lg N if samples are chosen in this way. These results 

are all distorted somewhat because we have taken M = 0 , but, because 

each choice of the sample size spans such a broad range of values of N , 

they do provide a fairly good indication of how the sample size should 

be chosen when Program 7*1 is used in a practical situation, with M 

about equal to 10 .

There are variations in the implementation of samplesort which 

may be more efficient than Program 7-1 in some situations. The most 

important of these stems from the observation that the exchanges required 

to move the sample elements about during partitioning may not really be 

necessary. We might consider a program which chooses the partitioning 

elements from the sample in exactly the same way as Program 7*1> but 

which leaves the sample untouched and partitions the rest of the array 

on the sample values only. The result is two sorted arrays: the sample
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(A[1],A[2), .. .,A[2t+l]) , which was sorted initially, and the rest 

of the array (A[2t+2] , A[2t+3] , , A[N]) , which is sorted by the

partitioning process. In some situations, this result may be sufficient. 

For example, if the file is to be output immediately then the two 

subarrays may be merged during the output process, at the cost of only 

N-2t-l comparisons. Of course, it may require some extra overhead to 

implement the partitioning method in this way —  but in many situations 

it can be made nearly as efficient as Program 7*1. A related modification 

can be made if the array is input just before it is sorted. In such a 

case, the sample may be spread out over the file (for example, every 

_th element may be taken) at no extra cost. However, none of 

these modifications improve samplesort to the point where it can compete 

with the median-of-sample method discussed in Chapter 8 in most practical 

situations. (An exception to this is when the file is known to be 

strongly biased. Taking a large sample is one way to measure and react 

to such a bias.)

Even though samplesort is asymptotically optimal with respect to 

the number of comparisons, it is interesting to consider ways of making 

it mere efficient for very, very, very large values of N . When N is 

extremely large, the sample is also very large, and it may be inefficient 

to simply quicksort it. Indeed, why not samplesort it, since samplesort 

is known to be asymptotically optimal for large N ? But the sample 
used to sort the sample may also be very large, so it might be more 

efficient to samplesort it! Continuing in this way, we are led to a

kl k2 knsequence of sample sizes 2 -1 , 2  -1 , ... , 2 - 1 , and our file can
be sorted by the sequence
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klsamplesort (1 , 2 -1 ,0) ;

k2 kx-l 
samplesort (1 , 2  -1 , 2 -1) ;

k k -1
samplesort (1 , 2  - 1 , 2 -1) ;

k k ^-1
samplesort (1 , 2 n-l , 2 n -1) ;

k - 1
samplesort (1 , N , 2 -1)

This is an intriguing idea, but even for n = 2 or 5 this method will

achieve significant savings only for truly astronomical values of N .

In fact, we find that Program 7*1 itself achieves significant

savings only for very large N • Even if we examine only the average

number of comparisons, we find that it converges very slowly to its

asymptotically optimal level. The table below shows, for some values

of N in the range 1000 < N < 100,000 , the value of C / N In N ,
Twhere is the average total number of comparisons used by

Program 7>1 when the optimal sample size is used.

N 1000 2000 5000 10000 20000 30000 Uoooo 50000 100000

TCN
1.6 8 1 1.665 1 .6U8 1.636 1.627 1 .62k 1 .6 19 1 .6 15 1.608 in 2 -N In N

I.UU2695...

For normal quicksort, this ratio is about 2 , and as N -* 00 , the ratio 
N lg N 1approaches N N = g . But for practical values of N , the
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ratio is not very close to this optimal value. The method discussed 

in the next chapter is much simpler than samplesort, and, as we will 

see, the ratio of the number of comparisons taken to N In N is about
"ip
—  *® 1 .71  ̂y which makes it better than samplesort for practical size 

files, since it incurs significantly less overhead in other parts of 

the program. The idea of estimating the distribution of the keys to 

be sorted by taking a very large sample, then partitioning according 

to this sample, is very appealing in theory —  the soundness of the 

idea is borne out by the asymptotic analysis. However, for files in 

a practical size range, it seems that the technique is too powerful, 

and is less efficient than the much simpler implementation of the notion 

of using the median of a sample that we will examine next.
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CHAPTER EIGHT

S am plesort ach ie ve s  " g lo b a l"  b a la n c in g  o f  th e  p a r t i t i o n in g  t re e  

by e n s u rin g  th a t  th e  f i r s t  k le v e ls  a re  co m p le te , where th e  sample 

s iz e  2 -1  is  chosen la rg e  enough to  make th e  b a la n c in g  w o r th w h ile ,  

b u t s m a ll enough so th a t  th e  b a la n c in g  is  n o t p r o h ib i t i v e ly  e x p e n s ive . 

An a l t e r n a t iv e  approach, w h ich  tu rn s  o u t t o  be v e ry  f r u i t f u l ,  is  to  

p e rfo rm  ' lo c a l '1 b a la n c in g  o f  th e  p a r t i t io n in g  t r e e  a t  eve ry  s ta g e , 

by e n s u rin g  th a t  th e  l e f t  and r ig h t  s u b f i le s  a re  nonem pty. T h is  is  

done by choo s ing  a s m a ll sam ple, th e n  p a r t i t i o n in g  on th e  median o f  

th a t  sam ple. In  f a c t ,  i t  tu rn s  o u t t h a t  v e ry  s m a ll samples a re  

s u f f i c ie n t ,  and most o f  th e  sa v in g s  in h e re n t  in  t h is  id e a  can be 

ach ieved  s im p ly  by p a r t i t io n in g  on th e  median o f  th re e  e lem ents a t  

each p a r t i t io n in g  s ta g e . To make th e  w o rs t case u n l ik e ly ,  we w i l l  

choose th e  f i r s t ,  m id d le , and la s t  e lem ents as th e  sam ple. We s t i l l  

must be c a r e fu l  to  ensure th a t  th e  s u b f i le s  rem a in  random, as in  th e  

fo l lo w in g  im p le m e n ta tio n  o f  t h i s  m e d ia n -o f- th re e  q u ic k s o r t ;
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Program 8.1

procedure quicksort (integer value f>r); 
if r-f > M then

if A[l] > A[r] then A[£] :=: A[r] endif;
if A[(l+r) t 2] > A[r] then A[(l+r) + 2] : = : A[r] endif;
if A[f ] > A[ (1+r) t2] then A[l ] : = : A[ (l+r) + 2] endif;
A[!+l] : = : A[(f+r) t 2];
i := 1+1; j := r; v := A[f+1];
loop:

loop: i := i+1; while A[i] < r repeat; 
loop: j := j-1; while A[j] > r repeat; 

while i < j:
A[i] :=: A[j]; 

repeat;
A[!+l] :=: A[j] 
quicksort (f,j-l); 
quicksort (j+1,r); 

endif;

The three consecutive if statements at the beginning of the partitioning 

process simply put the elements A[f ] , A[(i+r) +2] , and A[r] into
order.
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Example 8.1

partitioning:

sorting 
the file:

bb 26 95 OU 08 88 96 J>h 07 55 99 ?.U 68

01 (5^) 95 OU 08 88 q6 26 07 55 99 2b 68 10
10 01

u

01 5 10

01 51+ 10 OU 08 2b

<33
88 68 95 L ) ‘

<33
01 3b 10 oU 08 2b 07 r~A

96 55 99 88 68 95 U

©
[*>

01 3b 10 Ob 08 2b 07
V - 1

26 96 55 99 88 68 95 LL
01 26 10 oU 08 2b 07 © 96 55 99 88 69 95 U

uu 26 95 Ob 08 88 96 3b 07 55 99 2b 68 10 01

01 26 10 ou 08 2b 07 © 96 5 5 99 88 68 95 hi
01 © 10 26 08 2b 07

07 © 26 2b 10

10 (2U) 26

bb 55 68 (.989 99 95 y  
J5 (Tu) 6.8

95 (96) 99
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Our sixteen sample keys are sorted by this method as shown in 

Example 8.1. The partitioning tree is

which is nearly perfectly balanced, even though the partitioning of 
the left subfile represents the worst case. The local balancing which 
is effected by the partitioning procedure ensures that every node which 
has at least two descendents has non-empty left and right subtrees. In 
addition, as we will see, the partitioning element tends to be close to 
the middle, so that each subtree tends to be relatively balanced.

It is possible to replace the three if statements in Program 8.1 

which put A[£] , A[(£+r) -r2] , and A[r] into order by slightly more 

efficient code in some situations, since exchanges can be unnecessarily 

expensive when so few elements are sorted. However, it is important 

to be sure that the smallest and largest elements are not included in 

the partitioning process, at the peril of producing non-random subfiles. 

One method which produces random subfiles and does seem to avoid many 

of the extra exchanges involved in Program 7*1 is to determine which 

of A[£] , A[(£+r) t 2 ] , and A[rJ is the median of the three; then
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exchange that with A| I 1 : and partition at nrnai. inis method would 

seem to involve fewer exchanges than Program 3.1, but it is not really 

more efficient, since if extra exchanges are necessary in Program 8.1, 

then corresponding exchanges will always be required to achieve 

partitioning. However, the real reason that this method is not 

attractive is that it fails to avoid the worst case, in a subtle and

surprising way. Suppose the file to be sorted is

N 1 2 ? ... N-3 N-2 N-l •

Then the median of N , |_~2~J * an(̂  ’ S° a:̂ 'er
median is exchanged with N (the element in A[£ | ) we have

N-l 1 2 3 ••• N-l N-2 N ,

and this array is partitioned (by, for example, partitioning Method 2.U), 

to yield

N-2 1 2  3 ... N-Jj N-3 N-l N .

Not only is this a degenerate partition, but also the left subfile has 

the same form as the original, which means that the next, and, by

induction, all succeeding partitions will be degenerate. What is worse,

this type of file appears as the right subfile when the input file is

N N-l N-2 ... U 3 2 1 .

From this example, we can be reminded of the delicacy of the partitioning 

process that we found when we first examined partitioning methods in 

Chapter 2. We have to beware of non-random subfiles, and of simple 

anomalies which might lead to the worst case in a practical situation.

The careful implementation of Program 8.1 seems to avoid such anomalies,

to produce random subfiles, and still to run very efficiently.
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The analysis of Program &.1 generalizes very nicely, so before we

attack the specific analysis of the average running time of Program 8.1,

we will consider a more general situation. Suppose that we have any-

partitioning method which bases its decision on what should be the

partitioning element at each stage by examining 2t+l elements, and

that it chooses the k -th largest of these elements with probability p. ,k
for k = .1,2, ..., 2t+l . We shall derive an expression for the leading 

term in ohe total number of comparisons taken by Quicksort when such a 

partitioning method is used, 'if we take t = 1 and p^ = 1 , 

p^ = P- = 0 , then we are discussing Program 8.1.) For simplicity in 

the analysis, we will assume that the number of comparisons used to 

partition a random permutation of [1,2, ...,N] is N+1 . This is 

the "natural" number which comes up in the analysis —  since we are 

deriving only the leading term, we are really assuming that the number 

of comparisons for the first partitioning stage is N + 1+0(1) , which 

it certainly will be. Finally, we must of course assume that the

partitioning method always produces random subfiles. Now, if a random

permutation of {l,2, ...,N] is being sorted, the probability that an

element s is the partitioning element is

1 < k W *  ( ^ )

or the sum over all k of the probability that s is the k -th largest 

of the 2t+l elements being examined times the probability that it
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is selected. This means that our standard recurrence describing the 

number of comparisons becomes

= 2  2 *  Uy-OCSl  (c..1 *c,..)
N 1<S<N l<k<2t+l [ ot+i )

As always, the sum involving C , and the sum involving C T are
S -  JM -S

about the same (substitute s = N+l-s and k = 2t+2-k in the second"),
f N "\and, after multiplying both sides by I 2t+i J > wc 5ê

G t ” l ) eN - (K+1)C 2 t 1 l ) + :l<f <M 1<k2  qk ( ^ l " - k ) ( k i ) Ct-

- £ + 2  ) + 2  2\ d J 1 < k < 2t+l 1 <s <N ^ kJ \ k V s-1 ’

where = Pk+ P2t+2 k * ^ith the view that we should apply generating
Nfunctions to solve this equation, let us multiply both sides by z 

and sum over all N :

N o U n - ’ • * '»•»>( Nz

+ £  E  E  q, f rt c
N >0 1 <k <2t+l 1 < s <N

N-s s-1 A „ _N
- k J U - l jkl 2t+l-k / V k-1 7 s- 1

The first summation on the right hand side is the generating function for 

binomial coefficients (see Eq. (3̂ ) in Appendix B), and we can see that 

the sums on N and s in the second term comprise a convolution. 

Replacing s by s+1 , N by N+l and then interchanging the order 
of summation, we have
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l U xV  - <-2>
2t+l

N >0

+ z
1 <k <2t+l s >0 N >ss  s  <3v(2t"-1l k ) ( k! 1 ) cs 2B

2t+l
(2t+2)

(1-z)

+ I  1 <k < 2t+l ̂  (,|0( k!l̂ S ‘‘ X  N >0( 2t+Nl-k
2t+l

(2t+2) TT 72u 3(l-z)

+ z E  q. (sT0Ck!i)ĉ s)
2t+l-kz

“  , *kl "  V k-irs ; ,, x2t+2-kX <k < 2t+l \ s >0 ' y J (l-z)

Now, if C(z) = L  C z N is the generating function for [C ) , then 
N >0

by differentiating j times, we get the equation

C(j)(z) = £  N(N-l) • • • (N-j+l)C zN"j ,
N >j

or

z  f f V . * *  = c(3)(*> *3
N >0' J J N j!

(See Eq. (Ul) in Appendix B.) This equation allows us to express our 

recurrence in terms of the generating function C(z) . We have
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(2t+l), x 2t+l 2t+l
c < « & r —  ■ ^

„(k-l), v k-1 2t+l-k C i z) z z^  q  ^ -----  ---^  qk (k-1)I x2t+2-k
1 < k < 2t+1 v ’ (1 -z)

This equation is simplified somewhat by multiplying both sides by 

, 2t+l
I1"2)'

21+1z
, which leaves

(at*) , z

<2t+1>! " (l-z) 2 l < k < 2t+l

Although we could continue to work with the equation in this form, the

next few manipulations that we do will be clearer if we change variables

to x = l-z , and then define f(x) = C(l-x) . Then 

f^'(x) = (-1)̂  C '(1-x) , and our equation is

2t+l- v2t+l (2t+l)- N k-1, ,k-l „(k-l)- \ - >* (-1).  i M  _ V  a X  (-1) (x) _ (2t+2)
<2t+1>'- 1 <k < 2t+l _ x2

This is a differential equation of order 2t+l in f(x) . But it is 

also of degree 2t+l , and it is in fact a special kind of differential 

equation since every term of order j is also of degree j for all i 

This kind of differential equation can be solved by introducing the 
operator 9 defined by

9f(x) = x f'(x)
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Now, we can use this operator to produce terms of* order j and degree 

j for any .j :

9(9-1)f(x) = 9(xff(x)-f(x)) = x2f"(x) ;

9(9-1)(9-2)f(x) = 9(9-1)(xf*(x)-2f(x)) = x^f»»(x) ;

9(9-1)(9-2)(9-3)f(x) = x fv '(x) ;

9(9-1) (9-2) ... (9-j+l)f(x) = x'M'^(x) .

Dividing both sides by j , we have

J^(o)xJf^'(x)

where it is understood that the left hand side is to evaluated by 
expanding the binomial coefficient formally from the definition 
( & \ _ 9(9-1) ... (9-1+1) , .^ j J = ---— rT-—̂ —  * then applying the operator 9 as

indicated. This equation is easily proved by induction. Substituting 
this into our recurrence gives

2t+2
H R L I  21 <k <2t+l y x

Denoting by P(9) the operator polynomial which is applied to f(x) , 
this equation is

P(9)f(x) =
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where

To proceed further, we need to be able to factor this polynomial. First, 

we notice that, since ( ? )  = (-l)^(j+l) , one root of the polynomial

is always -2 :

= (2t+2) - L  k q
1 <k < 2t+l k

“ (2t+2) “ ^  k Pk ^  k P2t+^-k
1 < k < 2t+l 1 <k < 2t+l

= (2t+2) - L  (k+ (2t+2-k) )p = 0 •
1 <k < 2t+l k

Therefore we can write P(9) = Q(9)(9+2) , and 

Q(9)(&f2)f(x) =
x

Now, suppose that the roots of 0,(9) are r ,r_, ...,r0+ , so that we
- L  (— C L \j

have

Q(9) = (0-r1)(9-r2) . . . (9-r2t) ,

and

2t+2(9-rn)(9-r_) . . . (9-rQ,)(9+2)f(x)1/ v 2' v 2t' “ 2x
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We can solve this equation, because we know from integral calculus that 
the solution to the differential equation

(e-a)g(x) =

is

g(x) =
^  + c xa , if ;

x^ In x + c x3 , if Q! = p

Here c represents a constant of integration whose value depends on 

the initial conditions. Applying this general solution 2t+l times, we 

can derive an expression for f(x) :

(9-r1)(9-r2)(0-r3)...(9-r2t)(9+2)ffx) = — *2t+2

(9-r2)(9-r5)...(9-r2t)(9+2)f(x) =  2t+2 0 + cn x J ,
(-2-r^x2 1

(9-r ) ...(9-r )(9+2)f(x) = --------  - + c  x 1 + c  x 2 ;
(-2- ^ H - S - r /  1 2

(9+2)f(x) = ----------
(-2-r^ (-2-r2) .. .)-2-r2t)x2

+ Tj c x k ; 
1 < k < 2t

_ 2t+ 2   In x
- (-2-ri)(-2-r2)...(-2-r2t) x2

+ ^  Ck X K (r2t+l =
1 <k < 2t+l
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The constants c, change at each step in this derivation, but these K
changes are not indicated because we are not interested in their values. 

Also, it is implicitly assumed that r,,r ,...,r„. are distinct and
X  ci £_X*

not equal to -2 . (if they are not, the "remainder" term 

v rkc x becomes slightly more complicated -- we will ignore
l < k < 2t+l

such effects for now.) We notice that (-2-rn) (-2-r0) . . . (-2-r^) = Q(-2) , 

and, postponing for the moment the problem of evaluating this, we can 

change back to our original notation,

r,k
^  ’ (1 -z) 1 <k < 2t+l

and then expand back to power series. By the Binomial Theorem,

/. / k  v , nNN( xk \ N ™  . ln(l-z)(1-z) = (-1) ( }z . The series for — j--- L
N >0 \.N / f 1-z)2

is a

special case of Eq. (k2) in Appendix B and is the generating function 

for the sums of the harmonic numbers. Specifically, Eqs. (39); (36) 

and (U) in Appendix B imply that

= - 2  ((N+1 )H -N)zN
(1-z) N >0 ^
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Therefore, substituting these in, we have

c(z)  - 2  ((n+i)hn -n)zn + S  £
' N>0 N >0 1 <k<2t+l k 1 I" *N

so that
2t+2

CN Q(-2) ( * * > V l  +

as long as the r, behave properly.

It remains to evaluate Q(-2) . First, we observe that

P(0) = (9+2)Q(9) ,

so that

P*(9) = (9f2)Q'(9) +Q(9)

and

P’(-2) = Q(-2) .

To evaluate P'(-2) we first notice that in general formal differentiation 

gives

(>)' ■ ,< £ «  A C )
so that

p. (9) . M ) 2* 1 2
0 <j < 2t J y

2 S 57 (w )^  K  r \  s '  A s '  V - O  «  V1 <k < 2t+l 0 < j <k -2

and
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or

= -(2t+2)(H0. -l) + £  kq(ll -l) ,
1 < k < 2t+1

Q(-2) = -(2t+2)H + £  kq H ,
^   ̂ 1 <k < 2t+l k k

where again we have used the fact that kq = 2t+2 . (it
l < k < 2t+l

is not difficult to see that this expression for F1(- ) is always 

non-zero, so that -2 is therefore not a multiple roof, of P(Q) •) 

This now leads to a final expression for the average number of 

comparisons:

1C
^2t+2 ~ 2t+2 ^  k^k^k

1 <k < 2t+l k k

This amazingly simple general formula includes our normal quicksort 

as a special case. If we partition on the basic of examining only one 

element, as we did in Chapter 2, then we can find the asymptotic 

behavior of the average number of comparisons by takinr t - 0 and

p, = 1 (q̂  = 2) in the formula, which yields

cn - ii-hq + 0(N>

= 2(N+1)Hn+1 + 0 (N)

This, of course, agrees with the exact formula that we derived in 

Chapter 3- For t > 0 , we need to consider reasonable probability

distributions for the choice of the partitioning element. One common



distribution we might consider is the binomial distribution:

We can substitute this into our general equation to show that (see 

Appendix B)

examine other distributions and see how they compare, using the general 

formula, but it turns out to be unnecessary to do so. We can show, as we 

have already mentioned in this and the previous chapter, that the best 

way to proceed is always to choose the median of the 2t+l elements 

!'pt+  ̂= 1 , p̂  = 0 for k / t+1 .) The formula says that the average 

number of comparisons taken by this method is

1 (N+1)Hĵ +1 + 0(N)N
111 2 + 2t+l 2t+2 + €

o

where |r | < 1

(2t+2)22 t ~1

This looks very good, because it is very close to

for even moderately large t , and we know

that this is the best that we can hope to do, since

o N̂+l)H.r,. +0(N) = r— "r N In  N + 0(N) = N lg N + 0(N) . We could in  d TJ+l in  2

CII

and this is proved optimal in the following:
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Theorem 8.1.

Suppose that a quicksort program is based on a partitioning strategy 

which examines 2t+l elements and chooses from among them according to

fixed probabilities p , 1 < k < 2t+l . Then the coefficient of theK — —

leading term of the average number of comparisons required by the program 

to sort a random permutation of (1,2, ...,N) is minimized by the 

distribution P++n = 1 j Pk = 0 , k /: t+1 . That is, it is best to 

always choose the median element of the sample as the partitioning 

element.

Proof. From the discussion above, our objective is to show that

£  kHk(pk+P2t+2-k} £  (2t+2)Ht+l 1 <k < 2t+l k k 2t+2_k t+ 1

for all probability distributions {p̂ } . First, we change k to 

2t+2-k in the second part of the summation to get

£  kV Pk+ P2t+2-k) = ^  Pk(kHk+ (2t+2"k)H2t+2-k̂1 <k < 2t+l k k 2t+2 k 1 <k < 2t+l k K 2t 2 K

Since AkH, = (k+l)Hk+^ - kHk = ^+1 , we know that

kHk + (2t+2-k>H2t+2-l, *

+ H2t+2-k + 1

> (k+l)H, ,+ (2t+2-k-l)Hk+1 v 2t+2-k-l

for 1 < k < t , since Hp. +2 k > Hk for k in this ranSe* Therefore, 
telescoping the inequality, we see that it holds for all k :
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kHkt (2t+2-k)Hst+2.k > (2t+2)Ht+1 for 1 < k < t ,

and by symmetry

kHk+ (2t+2-k)H2t+2_k > (2t+2)Ht+ 1 for 1 < k < 2t+l ,

with equality holding only for k = t+1 . Substituting this into our 

summation gives

Z k H ( p + p  ) > ^  p (2t+2)Ht
l<k< 2t+l k k 2t+2'k l < k < 2t+l k t+ 1

which is the desired result since Z/ p = 1 . Equality holds
l < k < 2t+l

only if P++  ̂= 1 ^ d  pk = 0 for k / t+1 .

It remains to show that the roots rk of the operator polynomial 

P(9) "behave properly" when the median element is used as the partitioning 

element, so that the (N+l)lLJ+1 term is indeed the leading term. The 

polynomial

p,6) . C-D2* ^ ) - ( - < ? )

can be factored into the form

P(9) =
t

^  (t ) ( f 2t-9 A f 2 t + 2 \ }
( 2t+2 > v x  t + i ; ■ v t+i j j *

from which we can infer that 0,1, ...,t-l are all roots as well as -2 . 

The other roots do not seem so easy to find explicitly (except that 

when t is odd, J ~ T t+1  ̂  » so e = 3t+2 is also a root).
We could proceed from this point and use complex variable theory to
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/ 2t-r \ / 2t+2 \ /rR
show that if I 1 =( and r,  ̂-2 then we must have (

^  t+i J  V  t+i J \ i
(We would also have to consider the slight extra complication introduced 

by multiple roots.) However, we shall use a more elementary indirect 

argument to show that the number of comparisons is 0(N In N) .

Specifically, we can show from the recurrence for the number of 

comparisons when partitioning is done on the median of 2t+l elements,

i < s <n (atli)
C„ = N + l+ 2 Z  V Cs . 1 ,

that < 2(N+l)H^+^ regardless of the value of t > 0 .

The proof, of course, is by induction. The assertion is certainly 

true for N < 2t+l since = N+l < 2(N+l)HN+1 for these values of N

For N > 2t+l , we have by the inductive hypothesis

CN < N+l + t — §— r- l( i )  !<=<»  ̂* A  ‘ J ■

. M + 1+ . M t+i) z  r - v s \

( ^ )  i < . < A  *

This seemingly formidable sum involving binomial coefficients and 

harmonic numbers is related to a sum we encountered during our study 

of samplesort. It follows from Eq. (U5) in Appendix B that

1 <?<N ^ t )Ct+l)Hs = ( 2t+2 ) (HN " H2t+2 + Ht+l) '

so that we now have

0(N).
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CN < 2(MH)[HN -H2t+2 + Ht+ 1 + | )  ,

or

CN < 2 N̂+1 ĤN+1 *

*ince ~^2t+2 + Ht+ 1 = ' 1+ \ " J + k ' •** + 2t̂ 2 < " I * ™ S

completes the proof of Theorem 8.1 —  we know that the r^ contribute

terms of 0(N ) for some a , and this inequality implies that a

must be < 1 . □

This general result should give us a great deal of confidence in 

Program 8.1, and we shall now return to considering that program from a 

practical standpoint. First, we have shown above that if we partition 

by choosing the median of 2t+l elements, then the average number of 

comparisons is

C» ‘ ‘N+1)H«  + °(N) '

and that this is the best way to proceed. In Program 8.1, we only used

three elements (t = 1 ) , and we might ask if it would be practical to

use a larger value of t . Intuitively, since t measures work which

is done on every partitioning stage, we expect that it should be

relatively small -- in fact, the analysis above implicitly assumes that

it is 0(1) . The table below shows how the leading term is affected

by making t larger: the exact and approximate values of the coefficient
1

H2t+2 "Ht+1
are given for various values of t ; as well as the

percentage improvement over the coefficient for t = 0 and for the 
previous value of t .

22U



This table shows that the average number of comparisons required by 

Program 8.1 is

T  (N+1)V i  + 0(N) ’

which is (asymptotically) a lU.3$ improvement over Program 2.U. The 

table also indicates that it probably will not be worthwhile to go to 

a median-of-five (or higher) quicksort, because the percentage 

improvement in the leading term is relatively small, and would be washed 

out by the extra work required to find the median of a larger number of 

elements, for practical values of N •

Of course, we have considered so far only the number of comparisons, 

and we know that exchanges will also contribute to the leading term.

In Chapter 3 we found that the average number of exchanges required on 

the first stage given that s is the partitioning element is the 

number of keys among A[2], ...,A[s ] which are > s , or Ŝ~1  ̂ •

(This may count some exchanges which are used in the process of picking 

s as the median of 2t+l elements, but again such effects will not
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affect the leading term.) But now the probability that s is the
r . - i V n

partitioning element is — . 4 ^  jr , so the average number of
(  2 t+ l  J

exchanges for the first partitioning stage is

( t X  t ) (N-s) (s-l)
N *\ N-l
lt+1 )

v
L-i

s

(N-l)
? ( st1)(N;s) (N-s+1)s N f  ( " ) ( " )

+ ( 2 ”+o

(  a t " i )  (n - 1 ) (  a t l i ) ' " - 1 )

•  (N+1> + o b )

As with samplesort, the number of exchanges is asymptotically l/U 

the number of comparisons. Since slightly more exchanges are involved, 

the improvement in the total running time is slightly less than the 

improvement in the number of comparisons as the table below shows.
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t 0 1 OC- 5 00

1 t+1 
u+ 11 Ut+6

r
55 572 2670 U8720 27
5 55 259 U815 In

H2t+2 " Ht+1
<

V
11.67 10.66 10.51 10 .12 9-75

percentage 
improvement:

f over t = 0 

( ôver t =t-l

0 8-5

8 .5

11*7

5-5

15.0

1 .8

15 .8

0

(This table assumes that the total running time is UC + 11B+ ... , 

as in the assembly language Implementations of Appendix A.) Again, 

most of the improvement occurs for t ■= 1 , and larger samples will 

probably not be worthwhile.

(We have considered only odd sample sizes that we may have a 

unique median. The reader might be interested to discover-how the 

preceding analysis applied to even sample sizes shows that it is best 

to use odd sized samples.)

Our study of the leading term in the total running time has 

indicated that Program 8.1 may indeed be a very good way to sort. 

Fortunately we can verify this conclusion, since we can use the 

analysis above to help us derive a complete exact formula for the 

total average running time of Program 8.1. To begin this derivation, 

we follow the analysis above to the point where we began finding 

roots of the operator polynomial. We had
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x , \ 2t+2P(0)f(x) - g *x

where
. . , ,.2t+lP(0) = ("I) £  (Pk+ P' 

1 < k < 2t+l 2t+2-k

x = 1-z

f(x) = C(l-x) ,

C(z) = £  CN zN
N >0

and is the average number of comparisons to sort a random permutation

of (1,2, ...,n } • For the median-of-three method that we have implemented

We could proceed to solve this as we did in the more general case, by

successively solving three differential equations. However, we will

not do so for an important reason. We wish to obtain an exact expression

for the average number of comparisons which holds for general M , just

as we did in Chapter i. By pushing the solution through as above, we

are implicitly assuming M = 0 . It becomes highly inconvenient to

work with the generating function £  C..Z , which is the actual
N >M

function that we need. In Chapter 5, we got around this difficulty by

in Program 8.1, we substitute t = 1 , p = 1 , and p = p, = 0 , so
2 1 2

V U
P(6) = J  ( ~9) ( - 2 - 9 )  ( 5 - 9 )  • Our operator equation now becomes

(-0)(-2-Q)(5-9)f(x) = ~
x
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to reduce the problem to telescoping recurrences that we could solve.

Fortunately, we can also do this in this case, and the method for

doing so is suggested by the factorization in terms of 9 given above-

Consider the application of the innermost factor (5-9) to f(x) .

By definition, we have f(x) = C(l-x) = £  C (1-x) , so
N >0

(5-9)f(x) = 5 2  C (l-x)N - 9 £  C (l-x)N
N >0 N >0

= 5 £  cn(1-x)N + x £  c N(i-x)N-1
N >0 N >0

Switching variables on the right hand side to z = 1-x , we get

(5-9)f(x) = 5 £  C zN + (l-z) £  C N z M  , or
N >0 N >0

(5“®)C(z) = £  ((N+1)C -(N-5)C )zN .
N >0

This means that if we define T(z) = (5-9)C(z) , and the expansion

into power series is T(z) = £  T„ z , then we must have
N >0

t n  =  ( N + 1 ) W  -  ( n - 5 > c n  •

We can continue in this manner for each factor of the operator polynomial-

Next we define U(z) = (-2-9)T(z) , which means that if

U(z) = £  U zN then
N >0

manipulating the recurrence and making substitutions in such a way as
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°N ' (N+1)Tjj+i - (N+2)Tjj ,

■o Nand, similarly if V(z) = (-9)U(z) = 2̂  V„ z , then
N >0

VN * (N+1 >UK+1 ' N UB ’

But then by definition, we have

V(z) = (-9)(-2-9)(5-9)C(z) ,

and the original equation that we derived then says that

(i-z r

or, in other words, V = 2U(N+2) • These equations now give us

method to solve for C by substitution, in terms of telescoping 

recurrences that we can stop at the value M . First we solve the 

equation

(N+1)Un+1 = NUn + 2U(N+1) ,

then we use the result of that to solve

<Ntl>TN+l ' <N+2>TN + UN ’

and then we use the result of that to solve 

(N*1)CH+1 - (n-5)cn + tm .



We get the initial values for all of these equations by again working 

backwards. This last equation, when evaluated at N = 1-1+1 and 

N = M*-2 says that

TM+1 = (M+2)C- o  - (M-̂ )CM+2 'm+i and

V s  = (M+5)CM+J - (M-J)C

Similarly, we have

V l  *

Now, the recurrence that we are solving is

c» - <
N+ 1 +2 £  (S' A (\'Sl Cs-1l<s <N f

N > M

N < M ,

which says in particular that

CM+1 = ’

' m 2 - M+3 , and

' m 3
M+U + 12

M+3

Substituting these gives the initial values that we need for T and

V i  - 7(M+2)

V ?  = 7 ( m ^  + 12  , and

u,
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We can now solve our three recurrences. First, the recurrence

(n+1)un+i = N V 2U(K+i)

telescopes immediately to

(N+1)uN+1 = ( ' W ) V i  + 2h Z  (k+l)
NH-1 <k <N

= 12(M+l) (l«N-2) + 12(N+l) (N+2) - 12(M+l) (M+-2) ,

or

UN = 12 (N+l) .

Next, the recurrence

' « ) V i  = (k+2>tn + un

= (N+2)T. + 12 (N+l)LI

can he transformed by multiplying both sides by the summation factor 

(N+l) (n+2) a recurrence which immediately telescopes

T TN+l N . 12+N+2 N+l N+2

T
I* 1 + 12 L  1

M+l < k <N k+2

to the solution
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Finally, the third recurrence

(N+1)CN+1 « (»-5)cn + tn

- (N-5)Ch + 7 (N+l) + ^(N+1)HN+1 -H[4t2)

requires a slightly more complicated summation factor (assuming N > 1 

N(N-l)(N-2)(N-3)(N-U) . When both sides of the recurrence are

multiplied by this expression, we get

( Y ) V i  '  ( “ H ^ O Y )  + K " 6 1 ) (V i ' W  ’

which telescopes to

fN+1V  -  4 . 7  T. /"k+1>\i 6 ; v i

+ 12 L
M+l <k <N ( 6 ) ̂Hk+1 " ̂ 2^

We know that C ^ = M+2 , and the sums are easily evaluated (see

Eqs. (19) and (23) in Appendix B), which leaves

( Y ) V i - (T  )(isv 2 - iaw + f ) + t  ( T ) •

( N+2 ”\ N+2 f N+l ASince I 7 I = — I 5 J , "this leads us to our result: an

exact equation for the average number of comparisons taken by Program S.1:

C M+2 ̂
—  flVH-lWu \ + ZL 4- m  ±  7 jCK = —  (N+l) (Hj,+1 + (N+l) + -

t u
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It is very encouraging to end up with such a simple formula, despite 

the complex methods that were needed to derive it -- this simplicity 

can give us some confidence that our algorithm is indeed a "natural" 

way to sort.

Of course, the methods that we have used above have much more 

general applicability than the particular problem that we have just 

solved. In general, suppose that we are trying to find a formula for 

a sequence Ĝ  which is represented by the generating function

NG(z) = H  G„ zN . Suppose further that we succeed in showing through
N >0

manipulations on the generating function that

(rt-0)(rt_1 -9) ... (r2-0)(r1-©)G(z) = R(z) ,

dwhere 0 is the operator x —  ; x is defined to be l-z ; and

r(z) is some function describing a sequence R^ , R(z) = S  R*. z'
N >0

N

Then we can get an exact formula for by defining

Fx(z) = (r^GCz)

F2(z) = (r2-0)F1 (z) = (r2-©)(ri-0)G(z)

Ft ( z ) = ( r t -0 )F t _1(z )  = ( r t -0 ) ( r t _1 -0 ) . .  . ( ^ -© J g C z )  = R ( z )  ,

with F .(z) = Zj F. z for 1 < j < t ; and then solving the t 
N >0 J

recurrences
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(N+1 )F(t_i)(n+i) (N"rt)F(t-l)N + ^  

(N+1 )F(t_2)(N+i) = N̂"rt-l^F(t-2)N + F(t-1)N

(N+1)F1(N+1) = (N-r2)F1N + F2n

(k+1 ) V i  =(N-ri H  + F UJ •

When the roots r. (1 < j < t) of the operator equation are integers,J
these recurrences are easy to solve- If r. = 0 then the recurrence

(N+i) F( j _i)(n+i) (N“rj)F(j-l)N + FjN

telescopes immediately; if r. is a positive integer, the "summationJ
factor" (r +]Nt N(N-l) ••• (N-r^+1) will reduce the recurrence to the 

J
telescoping recurrence

( Y O ' f d - l H J M )  -  +  ( r j  F 3 H  5

and if r. is a negative integer, the "summation factor"J
(-r -1 )1

(N-r )(N-r.-l)----(N+'l) wi H  reduce it to the telescoping recurrence
J 0

F(j-1) (N+l) _ F( j-l)N . FiN

Q )  (
N-r .-1 \ / N-r.

J J (N+l)( J 
-r.-l J V -r.-lJ J > j

255



If the r, are not integers, then the problem becomes much more 

difficult. We can always define a "summation factor" as above and 

reduce the recurrence to a sum, but we might not be able to explicitly 

evaluate the sum. For example, we might use the Gamma function

x . m ml_  / \ . 1U iu*
'X' " x(x+l) (x+2) ... (x+n)

an extension of the factorial function to real numbers, which has

the property F(x+1) = xF(x) . (The function is not defined if x

is a nonpositive integer.) Multiplying both sides of the recurrence
N •by the "summation factor" r, r +l) we ^ave
"rj

(N+l) t F = F + NIr(II-r+l) * (j-1) (II+1) F(II-r.+l) (j-l)N r(N-r +l) jN J J t)

N! Nlr(N-r.) (j-l)N r(N-r.+l) jN J J

which telescopes to give the "solution"

'(N-r.) kl
Frj-l)N Nl [ r(-r.) + 0 < k < N _! r(k-r..+l) FJk

The ston involved in this solution might be very difficult to evaluate,

depending on the value of r. and the form of F., . This situationJ JK
occurs, for example, if we try to find the average number of comparisons 

taken by a median-of-five quicksort.



We have already seen at least two examples of problems to which 
the above techniques could be applied. First, the very first recurrence 

that we solved in Chapter 3,

CN * (N+1) + I L  Cs-1 ’1 < s <N

reduces, if we use the generating function C(z) = Z  C ẑ  , to the
N >0 N

differential equation

2(l-z)C'(z) - 2C(z) =
(1 -z) 2

In terms of the operator 0 , this can be transformed as above to

(-2-Q)C(z) = —  -
(1-z) 2

and the discussion in the last paragraph says that we should solve the 

recurrence

(N+1)Cn+1 = (N+2)Cn + 2(N+1) ,

which is exactly what we did in Chapter 3. We had a more complicated 

example in Chapter when we were finding the average number of exchanges 

taken by the 'two partition" Quicksort, Program 5*1* There we solved the 

equation
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L  (N-s-l)B 
0 < s <N-2 s

by manipulating it (without motivation) into the two recurrences

and solving these. Again, we can now see why this worked, because the 

application of generating functions to the original recurrence yields

and again the preceding paragraph leads us to the two recurrences that 

we solved in Chapter 5*

Returning to the question of completing the analysis of the average 

running time of Program 8.1, we find that we have to extend the above 

results slightly to allow us to work with the other quantities involved 

in the running time. We know from all the other analyses that we have 

done that we will need to solve a series of recurrences similar to the 

one that we have just solved for the average number of comparisons. 

Specifically, we need to be able to solve the recurrence

where Y„ represents the average value of one of our quantities when

represents the average contribution of the first partitioning stage

( - 2 -9 ) ( l -Q)B(z)  =  —
(1 -z)

Y = v + 2 N N
yLj (N-s)(s-1) y

s-1 N > M ,
l<s <N

Program 8.1 is run on a random permutation of (l,2, ...,N) , and y^
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to the quantity. By tracing through the analysis above, using the

generating function Y(z) = L  Y„ zN , we find the recurrence
N >0

transformed to

(-0)(-2-9)(5-9)Y(z) = 6  £  y f * zN
z n >0

= 6 E  A3 
N >3 (%(;)) Nz

Continuing to follow the analysis above, we see that, to solve for Y(z) , 

we need only solve the three recurrences

(N+1)UN+1 = N u„ + 6A3 ( y N( » ) )  ,

(k+1)tn+i ■ (n+2)tn + un ’ “ d

(k+1)yn+i ' (n'5)yn + tn n > m ,

where

Tw  - ’

TM 2  = ( ^ 5 ) ^ 3  - (M-3>YM+2 • “ d

Above, for the number of comparisons, we had y^ = N+l , and

6A3 ̂  (N+l) f  ̂  ̂  ̂  = 2UA3^ ^ ^  = 2U(N+l) which leads directly to

the recurrences that we solved. As another example, we might consider 

the number of partitioning stages. The solution to
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An N > M , An = 0 N < M

is found by solving the three recurrences

(N+1)Un+i = NUn +  6 ,

(N+l)V l  = (N+2)TN + UN ' 811(1

(N+1)Ajj+i = (N-5)^ + Tn N > M ,

using the initial conditions A ^  = A^g = 1 and A^ 5 = 1 +

which implies that = 6 , = 6 * ^  , and UM+1 = 0 .

Telescoping the recurrences in exactly the same way as before, we find 

that

Before continuing with our analysis of the median-of-three Quicksort, 

we will consider an efficiently programmed version of the algorithm. 

Although this program is an obvious combination of Program 2.U and 

Program 8.1, it deserves a place of its own as the most efficient 

general-purpose sorting method that is known.

a n d

12 N+l 2
7 NH-2 7
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Program 8.2

i n t e g e r  / , r , p , i , j ;  

i n t e g e r  a r r a y  s t a c k l O : : 2  x f ( N ) -1]; 

a r b m o d e  a r r a y  A [ 0 : : N + 1 ] ;  

a r b m o d e  v;

A[0] := A [ N + 1 ]  := ®; I := 1; r := N;

p  0;
l oo p  u n t i l  done:

i f  A[ / ] >  A [ r ]  t h e n  A[/*] : = : A [ r ]  e n d i f ;
if  A [ ( i + r ) r 2] >  A [ r ]  t h e n  A [ ( / + r )  + 2 ]  :=: A [ r ]  e n d i f ;

if  A[f ] > A [ H t 2] t h e n  A[ / ] A [ ( / + r ) + 2 ]  e n d i f ;

A [ / + l ]  : = : A [ ( / + r )  + 2];
i := 1*1; j ;*  r; v  := A [ / + l ] ;

l o o p :
l o o p : i := i+1; w h i l e  A [ i ]  <  v  r e p e a t ;

l o o p : j := j-1; w h i l e  A [ j ]  >  v  r e p e a t ;

w h i l e  i <  j :

A [ i ]  :=: A [ j ) ; 

r e p e a t ;

A [ f ]  :=: A [ j );
if  j-/ >  r-j t h e n  i f  M  >  j-/ t h e n  i f  p  * 0  t h e n  d o n e  e n d i f ;

P  := P-2 ;
/ := s t a c k [ p ] ;  r  := s t a c k [ p + l ) ;  

e l s e  i f  r-j >  M  t h e n  s t a c k [ p ]  := /; stack[p<-l| := j-1;

p  := p + 2 ;  I := j+1; 
e l s e  r := j-1;

e n d i f ;

e n d i f ;

els e  i f  M  >  r-j t h e n  i f  p  = 0  t h e n  d o n e  e n d i f ;

P  := P-2 ;
/ := s t a c k [ p ] ;  r := s t a c k [ p + l ] ;  

e l s e  i f  j-/ >  M  t h e n  s t a c k [ p ]  := j+1; s t a c k [ p + l ]  := r;

p  := p + 2 ;  r := j-1; 

e l s e  I := j+1;
e n d i f ;

e n d i f ;
e n d i f ; 

r e p e a t ; 

i := 2;

l o o p  w h i l e  i <  N:

if A [ i ]  <  A [ i - 1 ]  t h e n
v  := A [ i ]; j := i-1;

loop: A ( j + 1 ] := A [ j ]; j := j-1 ;  w h i l e  A [ j ]  >  v  r e p e a t ;
e n d i f ; 

i := i+1; 
r e p e a t ;

C ’

C * - C ’

S-S'
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As with Program 2.U, we know that the running time of Program 8.2

depends on the six quantities

A —  the number of partitioning stages,

B —  the number of exchanges during partitioning,
*C —  the number of comparisons during partitioning,

S —  the number of stack pushes,

D —  the number of insertions, and

E —  the number of keys moved during insertion.

The assembly language implementation of Program 2.b, which is given in 

Appendix A, requires a total average running time of

53 I * * 7! + 3bn + 8en + 9Sn + 7N '

The running time depends on six quantities all of which have an average 

value of ^ Ajj —  each counts the number of times one of the six 

possible outcomes occurs for the tests that we added to find the median. 

This explains the non-integer coefficient for A^ in the expression 

above. It is important to notice that only the coefficient of A^ has 

changed from Program 2.U. This method does not add overhead to the inner 

loop.

We have already found that the average number of partitioning stages 

required by Program 8.2 in sorting a randan permutation of (1,2,...,N] is

(r)A - ¥  M£1 _ 2
7 M+l 7

C)
We have also found the average number of comparisons, but we must 

modify the answer slightly since Program 8.2 takes exactly N-l 

comparisons for the first partitioning stage, not the N+l that were
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assumed in the derivations above. (As always, by "comparisons", we 

mean "comparisons during partitioning" -- the comparisons used in 

determining the partitioning element are counted in the coefficient 

of the quantity A .) This means, by the linearity of our recurrences,

To find the average number of exchanges taken by.Program 8.2, we must 

first go through our usual manipulations to find the average number of 

exchanges used on the first partitioning stage. If s is the partitioning 

element, the number of exchanges is exactly the number of keys among 

A[3],A[M, • • *,A[s] which are > s . Averaging over all permutations 

of (1,2,...,N} we find that the average number of exchanges when s 

is the partitioning element is

that C* = CN - 2An , or

0 <t <s -2
L  t (N-s-l)(s-2) 

N-*

Averaging over all partitioning elements s , we find that the average 

number of exchanges used on the first partitioning stage is



_ _ _ _ _  ,  ^ ̂ (s-l)(N-s) (s-2)(N-s-l) _
i-j  i «, \

1< s <N

( l i
(i)
N-U

This means that the average number of exchanges required by Program 8.2 

is described by the recurrence

K  _ N d  + 2 E  (s-1) (N-s)^ ‘ 5 l <s <u B- 1

and, by linearity, we now know that 

^  = 5 CN " \  ’

or

BN “ 35 (N+1) (HN+1 ‘^ 2 ^  + N̂+1  ̂ " 7 Mf2 + 1

~ ^ ^  ^

(5)
Rather than carry through the terms with ( 5 )  in the denominator, we 

will ignore them from now on, and therefore derive our answer to within 

0(N . This is so very small for the value of N in the range of

interest that we can still think of our answers as ‘'exact".

The solution for the average number of stack pushes , requires 

similar calculations, and we will omit the details. The average number
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of stack pushes on the first partitioning stage is

(!)
(s-1)(N-s) = 1 - 6

M+2 <s <N-M-1
i s l . u i s l  
( ' )  (?)

and the recurrence

S  ■  1 - 6

( M+l "\ ( W-l'N
k_iJ _ + h l . ? ; + 

( ! )  0 )
2 Z
1 <s <N

(s-1)(N-s) 

(?)
;-l

N > 2M+2 ; S = 0 , N < 2V&2 ;

has three components, each of which can be easily solved using the 

methods developed above. It turns out that

SN 7 N̂+1  ̂ (2M*3)(2M+1) ~ 1 + °(N )

It remains only to determine the contribution of the insertion 

sorting to the total running time of Program 8.2. As in Chapter 

we find that partitioning does not contribute to these quantities, so 

we need to solve the recurrences

N > M
1 <s <N

N -«N N < M

and
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^ (N-s)(s-l)

(?) “ - 1

N > M
l<s <N

N(N-l)
2+ N < M

Again, we will omit the calculations. The methods described above can 

be applied directly to yield the answers

 ̂ N+l - 6.
DN (N+1) " 7 m+2 ^ HNH-1 ~ ̂  +  ̂ 811(1

We have now found the average values of all of the quantities upon 

which the running time of Program 8.2 depends, all to within 0(N~^) . 

To summarize, we know that the median-of-three program requires, on 
the average,

12 N + l 
7 W -2 stages,

35 (n+1)(hn+i"hnh-2) + 2^  <N+1) ■ T  + 1

c*N

dn

SN

= y  (n+1)(hn + i " W  + §  <N+1) - T
2h N+l 

1YH-2 + 2

(N+l) - -  ^  - 1) insertions.

T5 * I jgi

1 fTT11\ 5M+3 
7 (N+1) (2M+3)(2M+l)

exchanges,

comparisons,

moves during insertion, and 

stack pushes.
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These formulas are all accurate to within 0(N~^) . As in Chapter 3 

we will avoid the details introduced by small N by assuming N > 2M+2 . 

Substituting these into the expression that we have for the total 

running time gives the formula

W (B+1)Iw  - ¥

+ <n+1 ) ( t ^  + f w k  -  W  % - 2  •  T  w  + M + ¥  ( a w H a t u )  )

for the expected running time of the median-of-three Quicksort.

Continuing as in Chapter 3, we can find the best value of the 

parameter M by considering the function

rfu\ - + .̂ 50 372 36 V l  U8 2̂ 7 3NH-3
1 ' ^ 9  7(M+2) ' 35 V-2 " 7 Mf2 35 7 (2Mf3)(2MH)

The graph of this function is shown in Figure 8.1 —  it is flatter 

than the corresponding graph for normal quicksort, and it takes on its 

minimum at M = 9 (although M = 10 is very close). The flatness 

means that the precise choice of M is not as critical for this method, 

as we would expect. With the choice of M = 9 , the approximate formula 

for the total running time is

10.63(N+1) In N + 2.11N - 70.68
or

7 *37(N+1) lg N + 2.U N  - 70.68 ,

which shows that the median-of-three Quicksort (Program 8.2) is significantly 

faster than normal Quicksort (Program 2.U) which has an approximate running 

time of
11.67(N+1) In N - I.7UN - 18.7^

or
8.09(N+1) lg N - I.7I+N - 18.7U
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Figure 8.1. Contribution of M .



As we have already commented, the median-of-three method results in

about a 9$ improvement in total average running time for large N .

In fact, for most files in a practical size range, Program 8.2 has

a lower total average running time than any other sorting method known

which does not use extra space proportional to the size of the file. We

have shown it to be the fastest that we have considered for the particular

machine used for the assembly language programs in Appendix A. Such

comparative studies will not vary too much from machine to machine -- the

analysis for another machine simply consists of attaching different

coefficients to the average values that we have derived for the quantities

upon which the running time depends. Notwithstanding, we know that any

sorting method (based on comparisons) must take at least N lg N comparicons,

and that the coefficient of N lg N in the total running time of Program.
372is ,---« 7 o 7 j if another method is to be more efficient, it must35 lg e ’

incur an overhead of less than 8 memory accesses per comparison for data 

and instructions in the inner loop. It would be very surprising indeed 

if there were a faster sorting method than Program 8.2, because of the 

very efficient inner loop inherent in Quicksort. If the technique of 

"unwrapping the inner loop" is used in the implementation, Program 3.2 

can be made even more efficient (see Appendix A), and the coefficient of 

N lg N in the total running time can be reduced to about 6.65 •

The median-of-three method does still have a worst case running time 

of G(N ) , because it is still possible for a degenerate partitioning 

tree such as
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to occur. (The above tree occurs, for example, when Program 8.2 

(with M = 0 ) is used to sort the permutation

1 11 3 9 5 13 7 2 U 6 8 10 12 1U 15 .)

However, such worst case performance is extremely unlikely to occur

because of the way the middle element of the file is used in making the
partitioning decision. If it is known that there are extreme biases in

the file, one of the techniques discussed in Chapter 5 could be used to

choose some element other than the middle element, so that the worst case

would be even less likely. This is probably being overcautious, however,

since the fact that three elements are used in the partitioning decision

makes the worst case very much less likely here than in Chapter 5* In
2any case, the 0(N ) worst case should not be a deterrent to using 

the median-of-three Quicksort in a practical situation. We use algorithms 

al 1 the time (such as hashing, for example) which have a horrible worst 

case that is very unlikely to occur. It takes only a slight amount of 

confidence in the laws of probability to use Program 8.2 as the most 

efficient sorting method available in almost any practical situation.

The median-of-three method is also significant from the standpoint 

of analysis. Although we had to resort to a variety of interesting 

mathematical techniques, we were able to derive exact formulas describing 

the average running time of the algorithm. This combination of a program 

of practical importance giving rise to interesting mathematical problems 

which can be completely solved is rare in the analysis of algorithms.

We could not hope for a more satisfying conclusion to our study of the 

Quicksort algorithm and the methods of analyzing it.
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CHAPTER NINE

The history of the published literature on Quicksort comprises a 

curious story, which illustrates the development of our understanding of 

the difference between an algorithm and its implementation as a program.

Hoare understood this difference very clearly: In 19^1 he published the

first description of Quicksort in the Algorithms section of the 

Communications of the Association for Computing Machinery [12] with a 

caution that "suitable refinements of the method will be desirable for 

its implementation on any actual computer". This was a recursive description 

of the algorithm in ALGOL 60, with the partitioning value chosen at random 

from within the array. He then published a comprehensive article dealing 

with the implementation of the algorithm in The Computer Journal in 

Britain in 1962 [13]. This article contains an extraordinary number of 

ideas, and is a model of clarity and conciseness. In just over five 

pages Hoare anticipates nearly all of the future "developments" related 

to Quicksort. He dicusses the use of an explicit stack for the purpose 

of sorting short subfiles first; the idea of treating small subfiles 

separately; other methods for choosing the partitioning element such as 

the median of a sample; and the use of "sentinels" ( <= keys) to remove 

the pointer test from the inner loop. Also, he presents a nearly complete 

analysis of the total running time of the algorithm. (Many of these ideas 

were apparently discovered independently in an influential paper written 

by T. N. Hibbard in 1962 [10].) In a most unfortunate development, this 

article went virtually unnoticed and authors began publishing their 

"suitable refinements" to the implementation of Hoare's Comm. ACM 

algorithm as "new" algorithms similar to Quicksort [2,10,32]. Not 

until 1969 did all of Hoare's ideas appear in a published implementation 

[yb]. We will discuss this in more detail below during a chapter by
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chapter account of the literature related to the topics we have discussed 

in the text. We often find ourselves referring back to "Hoare's original 

article" in The Computer Journal, and it should be read by anyone 

interested in the development of the Quicksort algorithm.

Equally important as a source for the material that we have covered 

is P. E. Knuth's The Art of Computer Programming [16,17,19]* The vast 

wealth of topics covered in these books includes the study of Quicksort 

[19, Section 5*2.2] and the techniques which have been used in the 

analysis of computer algorithms (see the headings under "Analysis of 

Algorithms" in the indices of the books). The style and methods of 

analysis that we have used have been inspired by these books.

The insertion sorting method in Chapter 1 is based on an extremely 

simple and natural idea, and its origins are difficult to trace. In 

fact, the improvement mentioned at the end of Chapter 1, binary insertion, 

appeared in the very first published account of computer sorting in 

19̂ 6 [25]. Insertion sorting has also been called a "sifting" or 

"sinking” sort, because large keys are "sifted" out and "sink" to their 

proper position in the file. It is important in other sorting methods 

besides Quicksort, most notably Shell's diminishing increment method [33]* 

The analysis of the method is largely elementary and it has always been 

known to require 0(N ) comparisons, but the specific approach taken in 

Chapter 1 in developing exact formulas for the moments of the total 

running time is adapted from Knuth ([16], Section 1.2.10 and [I9L 
Sections 5.1.1, 5.2.1).

The Quicksort algorithm itself has been published often as an 

example in texts and papers on sorting and computer programming, and it 

would be futile to attempt to catalog all such references here.
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Unfortunately, nearly every published implementation seems to use a 

different partitioning method, both because it is inconvenient to express 

the algorithm in many programming languages and because authors have 

differing concepts of the tradeoff between elegance and efficiency in 

computer programs (see [21]). The methods that have been published 

can generally be classed as being similar to one of the Partitioning 

Methods 2.1, 2.2, or 2.3* The method of "filling the hole" (Partitioning 

Method 2.1) was mentioned by Hoare (as a possibility for machines on 

which exchanges are inconvenient) and was adapted by Dijkstra [ 1+ ] and 

Knuth [19,21]. This method lends itself to a clear English description 

of the algorithm, and these authors use Quicksort as an example in the 

"art" of computer programming. As mentioned in Chapter 2, Partitioning 

Method 2.2 was the very first method to be published, in Hoare's original 

paper. The idea to stop the scans on keys equal to the partitioning

element, as in Partitioning Method 2.3, is due to Singleton [3I+ ]. These

methods lend themselves to a concise formal description, and they are 

often used as examples in work on proving programs correct (for example, 

[lU]). The fact that exchanging equal keys can lead to non-random 

subfiles (and inefficient operation) was not noticed until 197 >̂ by 

Knuth [21]. Other published methods are generally less carefully 

implemented than these, or involve concessions to some particular

programming language. None of the methods are as simply expressed or

as efficient as Partitioning Method 2.U, which was inspired from the 

treatment of Quicksort in an early version of [21 ] • A similar method 

is used by Floyd and Rivest [ 5 ] in their SELECT algorithm.
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Much of the analysis of the total running time in Chapter 3 is 

found in Hoare's original paper, though he stops short of finding the 

coefficients for a particular implementation and studying the best 

choice of the cutoff for small subfiles. The approach taken in 

Chapter 3 is from Knuth [ 19, Section 5-2.2]. The problem was also 

studied by P. Windley in i960 [37]> &nd he also presented (but did not 

solve) the recurrence for the variance of the distribution describing 

the number of comparisons. This recurrence was solved by Knuth [19,

Ex. 6.2.2-8] and the solution was rediscovered by E. Palmer, M. Rahimi 

and R. Robinson [27]. Of course, all of these analyses begin by 

showing that the subfiles after partitioning are random. A precise 

formulation of the approach used to prove this, which has been called 

the "Principle of Conservation of Ignorance" by L. Guibas, is given 

by T. Porter and I. Simon [28]*

A careful reader might wonder how Windley came to discover the 

recurrences for the number of comparisons in i960, before Quicksort 

was even invented! The answer is that there is an interesting duality 

between the analysis of Quicksort and the study of binary tree searching, 

an important search technique discovered in the 1950's (see [1 9 ],

Section 6.2.2). As an example, consider the binary tree (from Chapter 2) 

corresponding to the operation of Program 2.2 on one sample set of 

fifteen keys:



Suppose that we need to know whether or not a given key is in this tree. 

We can ''search'' for it by comparing it with the root; then moving to the 

left subtree if it is smaller and to the right if it is greater; then 

continuing in the same manner until we either encounter the desired key 

or come to a null subtree. To put a new key into such a tree, we simply 

insert it in place of the null subtree which terminates the unsuccessful 

search for the key. For example, the tree above might have been 

constructed by starting with a null tree and inserting the keys in the 

order

UU '5  07 99 01 26 2k 95 10 68 08 88 }k  96 oU ,

and many other orders lead to the same tree. A natural question which 

arises is the derivation of the average number of comparisons used when 

a random permutation of [1,2,...,N} is used to build a tree in this way. 

(This is N times the average number of comparisons needed to find a key 

which is known to be in the tree.) Now, after the first key is inserted
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as the root, each of the other N-l keys must be compared with it, and

the two subtrees are constructed independently. Therefore, if gr is

the probability that exactly k comparisons are used, and

G (z) = Z! ĝ T, is the associated generating function, we have
N k >0 ™

r

i zN_1 L  G ,(z)G„ (z) N > 0
N 1 < s <N S‘1 N"S

gn (z)

1 N = 0
V.

which is nearly the same as the recurrence that we derived for  ̂ (z)
p(with M = 0) at the end of Chapter 2. In fact = Z ’ S°

the mean is 2 greater and the variance is the same. This correspondence 

between these two algorithms is at once both obvious and mystifying.

The mathematics appears in the literature in both disguises. In addition, 

binary tree searching gives rise to some problems which do not arise in 

the study of Quicksort. For example, W. C. Lynch [23] studies the 

moments of the distribution for the average number of comparisons required 

to insert a new key into a binary search tree. A general treatment of 

this topic is given by Knuth ([19], Section 6.2.2, especially Exercises 

6 -8).

The usual practice in studying the best case and worst case of 

Quicksort is to consider only the best case and worst case for the number 

of comparisons (with M = 0) . This makes the correspondence to binary 
tree structures immediate and the result for the worst case obvious.

Also, the best case analysis then corresponds to the establishment of
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a lower bound for the average number of comparisons required by any

sorting method (see the work by Morris [26]). The results given in

Chapter U are of course very specific to the Quicksort problem, but

similar recurrences arise frequently. (For example, Knuth solves the

recurrence f(l) = 0 , f(n) = ( max (min(k , n-k) + f(k) + f(n-k))
1 <k<n

in connection with an in-situ permutation algorithm in [18].) A general 

treatment of similar recurrence relations can be found in Fredman and 

Knuth [91*

Although we saw in Chapter 5 that the suggestion in Hoare's original 

algorithm to use a random element as a partitioning element is sound, 

the idea was not well received in "practical" implementations of the 

algorithm because of the expense involved. This is doubtless due to 

the fact that most implementations (exceptions are Hibbard [10],

Singleton [3M, and Knuth [19]) in the literature use M = 0 , 1 or 2, 

and the expense of calculating a random number at each partitioning 

stage is intolerable under these circumstances. Both Scowen [32] 

and Boothroyd [2 ] use the middle element instead. As mentioned in 

Chapter 5> the effect of such minor perturbations on the analysis has 

received scant attention in the literature. The interesting asymptotic 

analysis of Partitioning Method 2.3 with a random partitioning element 

given in Chapter 5 is modeled on a derivation given by Knuth [20 ], when 

a similar recurrence (which arose in connection with a paging algorithm) 

appeared on a Stanford Ph.D. Qualifying Examination in Analysis of 

Algorithms.

The general assumption in the analysis that the keys being sorted 

are distinct is not limited to Quicksort. It is difficult to analyze
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the effect of equal keys on nearly all sorting methods with the possible 
exception of radix methods. Knuth ([19]> Section 5.1.2) derives exact 

formulas for the average and standard deviation of the number of inversions 

of a random permutation of a "multiset", and this could be used to 

extend the analysis of insertion sorting to the case when equal keys are 

present. But the derivation is difficult, and analyses of more complex 

sorting methods always assume distinct keys. From a practical standpoint, 

the author of a Quicksort program is of course forced to worry about 

equal keys. Most follow Hoare's original method, and scan over equal 

keys. Rich [29 ] achieves some saving by testing for the case that all 
keys are equal, and many authors (for example, Aho, Hopcroft, and Ullman [1])

choose the asymmetric implementation of putting all keys equal to the 

partitioning element into one of the subfiles. None give any qualitative 

indication of the effects of their strategy, and the analysis in 

Chapter 5 indicates that these methods are all less desirable than the 

technique of stopping both scans on keys equal to the partitioning 

element, which is due to Singleton [3M* A stable version of Quicksort, 

which is asymptotically efficient but not really practical, has been 

suggested by Rivest [30].

The history of van Smden's modification adds another curious twist 

to the story of the literature on Quicksort. In his original articles 

in 1970 [35,36], van Emden worked with continuous approximations to the 

situation to show that the average number of comparisons in his method 

is about l.lU N lg N « I .65 N In N . This derivation incorrectly 

assumed that the subfiles after partitioning are random, and so may not 

be very accurate. Even if it were, the method would not compete (as we
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saw in Chapter 6) because the analysis doesn’t count the comparisons 

and other overhead needed to maintain the partitioning bounds. Van Emden 

observed a 15$ saving in computing time, but he didn’t publish both of 

the programs he compared, and later empirical studies by Rich [ 29] and 

Loeser [22] among others showed the method to be as much as 20$ slower 

than even normal Quicksort. But it is easy to believe that it should 

run faster, and van Emden’s was for a time the method of choice (see 

for example [2̂ ]) to be used to improve Quicksort, even though it 

results in longer and slower programs, produced at extra effort.

The result that we derived in Chapter 7 for the average number of 

comparisons used by samplesort matches that found in Frazer and 

McKellar's original articles [7 , 8 ], but the optimal sample sizes 

differ because Frazer and McKellar went to a continuous approximation 

to the function before minimizing. The asymptotic derivation that we 

followed also led to a much simpler proof of the asymptotic efficiency 

of samplesort. Frazer and McKellar considered only comparisons and 

they recognized that convergence to the asymptotic minimum is slow.

They did not attempt to compare their method with fixed sample size 

partitioning.

The most effective modification, the idea of using the median of 

a small sample as the partitioning element, also was suggested in Hoare's 

original paper. Hoare did not pursue the idea, since he found it "very 

difficult to estimate the saving which would be achieved by this", and 

he went on to consider efficient methods of implementing the algorithm.

(As well he should: an implementation which tests for the pointers

crossing in the inner loop (as many do) will be up to twice as slow as



the methods we have seen; sampling only saves about 9$.) The idea was 

not rediscovered until 19̂ 9, when Singleton [ 3̂ ] published a careful 

implementation of Quicksort which involved partitioning on the median of the 

first, middle, and last keys. (Another, less efficient, implementation of 

Singleton's method is given by R. B. Sander-Cederlof [51].) This 

implementation also introduced the idea of stopping the scans on keys 

equal to the partitioning element, and proposed using insertion sort 

for subfiles of 11 or fewer elements. The only problem with this 

algorithm is that the median element is left in the middle of the file, 

and sc the subfiles after partitioning are not random. (The effects of 

this are not nearly as bad as for Partitioning Method 2.5 since three 

elements participate in the choice of partitioning element.) A very 

important feature of Singleton's algorithm from a practical standpoint 

is that it is the only one of the published algorithms [ 2 .10,12,29,5 1,j.h ] 

that doesn't test for the pointers crossing in the inner loop. This 

is a perfect example of misdirected effort in optimizing a program.

After presenting logical changes to Quicksort designed to reduce the 

average number of comparisons by 10 or 20$, or changes to the implementation 

'such as removing recursion) designed to improve the "efficiency", other 

articles then include programs which can be made to run up to twice as 

fast by simple changes to the inner loop.

Singleton presented only empirical evidence in support of his

implementation, and didn’t attempt to derive the average number of
comparisons or the average rannin? time. The coefficient ------ 7:--

2t+2 ~Ht+l
of II In II for the average number of comparisons when partitioning on 

the median of 2t+l elements was in fact derived by van Emden [55] as
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an application of his continuous approximation to the analysis of 

partitioning. A similar asymptotic derivation is given by Ilurwitz [151, 

who also indicates that a larger value of t may give rise to a smaller 

variance, as we might expect. The method of finding the exact formula 

for the total running time in Chapter 8 is based on the solution given 

by Knuth [19], but Knuth was unable to obtain a complete exact formula 

for the total running time because of complications introduced by the 

partitioning method that he used. Knuth*s partitioning method is the 

one described near the beginning of Chapter 8 (exchange the median 

element with A[£] ); the anomaly described there was discovered by 

D. B. Coldrick (see [19], Ex. 5.2.2-55).

There are a few issues relating to Quicksort in the literature which 

we haven't yet treated, mainly related to applications which don't fit 

our basic ground rules. If the records to be sorted are more than one 

word then the coefficients of B and C in the total running time 

will be larger, and improvements that we have seen which rely on coding 

efficiency in the inner loop may assume relatively less importance than 

substantive improvements to the algorithm. A typical situation is to have 

multiword records sorted according to the values of single word keys 

within the records. In this case exchanges become relatively more 

expensive than comparisons. If the keys themselves are more than one 

word, P. Shackleton (see [13]) suggests making comparisons more efficient 

essentially by storing a counter in the stack with each subfile which 

tells how many leading words of the keys in the subfile are known to be 

identical.

If there are so many records that they don't fit into memory all 

at once, then Quicksort may not be appropriate, since this was an
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implicit assumption in our analysis: Quicksort is an "internal" sorting

method. There are many "external" methods which are designed to sort 

large files which can't possibly fit into memory. Many of these have 

"internal" phases for which Quicksort may be used. Knuth ([19],

Section 5-̂ .8) describes an external method based on the idea of 
partitioning* but there are many better methods, mostly based on 

merging. However, if the sorting program is run in a paging environment, 

then B. Brawn, F. Gustavson, and E. Mankin [ 3 ] have shown that Quicksort 

is perfectly acceptable. This was actually anticipated by Hoare, and 

it is to be expected, since the program has only two slowly changing 

"localities", those containing the scanning pointers.

In his original presentation of the algorithm [12] Hoare showed 

that partitioning can be used for other applications besides sorting, 

by including with Quicksort a program to find the k-th smallest of a 

set of N elements. The idea is to partition the array A[l],.. .,A[N] 

so that A[k] is in position; all the keys to the left of A[k] are 

< A[k] and all the keys to the right of A[k] are > A[k] . First 

we put A[s] into position using our normal partitioning method. If 

s = k , then we are done, otherwise if k < s we need to work on 

A[l], •. •, A[ s-1] and if k > s we need to work on A[s+1], .. .,A[N] .

This leads us to
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procedure find (integer value l,r,k); 
loop

i := £; j := r+1; v := A[£]; 
loop:

loop: i := i+1; while A[i] < v repeat;
loop: j := j-1; while A[j] > v repeat;

while i < j:
A[i] :=: A[j]; 

repeat;
A[I] :=: A[j]; 

while k / j:
if k < j then r := j-1 ; else I : = j+1 ; endif; 

repeat;

Hoare originally stated the procedure recursively (e.g., 11 if k < j then

find(£ , j-1 ) else find(j+l, r) endif; ") but this is unnecessary, and he

did not do so in a later implementation [lU]. If the program is to be 

used more than once on the same file, then it is best to use a random 

partitioning element.

It might seem that this program would be easier to analyze than 

Quicksort, but it is in fact much more difficult. If k < s , then we 

are finding the k-th smallest of A[l],...,A[s-l] , and if k > s we 

are finding the (k-s) -th smallest of A[s+1],...,A[N] , so that we 

have the recurrence

Program 9-1

C . = N + 1  + rj Z C,„ , „ . + i  Z C, ,,, for 1 < k < N ,
Nk N 1 <s <k » k<s<N (S'1)* - -

describing the average number of comparisons required to find the k-th 

smallest of N randomly ordered distinct elements. We can now multiply
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by Nz^w^ and sum over N and k to get (eventually)

S  S i c ^ V . r ;  k>l N>k I (!-z) (1-wz)

+ £  £  CM b zN wk
1‘wz k>l N >k Mk

z  c„.zNwk
k>l N >k

We can rewrite this in terms of the generating function

C(z,w ) = Z E  c , zN and rearrange terms slightly to get the
k >1 N >k N

differential equation

(1-z)5 (l “Wz)
d \ f 1 w > , v 2w f-7- C(z,w) - I -—  +  - ) C(z,w) = t—  Idz v 7 ' \ 1-z 1 -wz J ' 1-w 1

which has the solution

(1-z)(l-zw)C(z,w) = 2 f + 1 - —  In(l-z) + In(l-zw) -w - 1'v V 1-z 1-zw 1-w ' 1-w '

We can now carefully expand each of these terms into power series, then 

multiply by y—  (which corresponds to a sum on one index) and by

(which corresponds to a sum on both indices) to eventually get the1-zw 
final answer

(Knuth [ 13] gives a solution to this problem which involves substitution 

and reduction to telescoping recurrences.) In particular, if k = m
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then we find that the average number of comparisons used to find the 

median of N elements is asymptotically 2(ln 2+l)N+0(l) « N •

We might also be interested in knowing how much this could be improved 

by a more intelligent choice of the partitioning element, for example 

the median-of-three method. On the theory that it is better to end with 

an interesting question than to end with a series of answers, this 

problem is left for the energetic reader. Floyd and Rivest have shown 

[5 ] that the idea of sampling can lead to dramatic improvements in this 

process, but their method is analogous to samplesort; and a method barel 

on fixed size samples would probably do better.

Most of the topics included in this brief survey of the literature 

on Quicksort are covered in the previous eight chapters, but we have 

progressed to the point where we can express the algorithms more 

succintly and analyze them more completely. The algorithms presented 

are more efficient than those referred to above, and this has been 

justified (and even suggested) by complete and exact analysis of the 

algorithms. Such analysis has received little attention so far in the 

literature outside of Knuth's books [16,17,19]> and this is indeed 

unfortunate. The Quicksort algorithm is better understood through 

analysis, and the analysis is very interesting in its own right. The 

many variations of the algorithm lead to much more spectacular variations 

in the analysis, and it is this combination of algorithm and analysis 

that makes the study of Quicksort so fascinating.
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APPENDIX A

The programs in the text are presented in a "high-level" language 

in which they are simply expressed. However, in order to analyze the 

running times of the programs, it is necessary to know the characteristics 

of the particular computer on which they are run, and their implementation 

in the machine language of that computer. The purpose of this Appendix 

is to illustrate how this might he done by studying the machine language 

implementation of some of the programs for the MIX computer described 

by D. E. Knuth in The Art of Computer Programming, Volume 1. The 

language is completely described in this book, but we use only a few 

of its features, and with the aid of the cursory description given 

below, an experienced assembly language programmer should have no 

trouble translating the programs to run on his particular machine.

Our aim is to produce programs that are as efficient as possible, and 

to this end we shall use some standard programming techniques to improve 

the efficiency of the programs. Most of these have little effect on 

the analysis in the text, since they only affect the coefficients of 

the various quantities studied. However, perhaps the most effective 

technique does change the analysis, and we shall examine that briefly.

Some further comment on the implementation of Quicksort, on real 

computers, is given in Appendix 0.

The MIX processor has two registers, A and X , which are large 

enough to hold memory words; and six index registers, II , 12 , 13 ,

IU , 15 , and I6 which can hold addresses. These registers can be 

loaded from memory using one of the instructions LDA , LDX , or LDi 

i = 1, . . . , 6  . Every instruction can be "indexed". For example the
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instruction 11 LDA A+N, ** " loads into register A the word whose address 

is computed by adding the contents of index register U to the value 

A+ N • Similarly we can store into memory by using one of the instructions 

STA , STX or STi i = 1, . . . , 6  . Addresses can be loaded using 

ENTA , ENTX , or ENTi i = 1, . . . , 6  : for example " ENT1* 2-N "

loads the number 2-N into register J* ; if this were followed by 

" ENT5 N-l,1* " then register 5 would get the number 1 . Further 

address arithmetic can be done using INCA , INCX , or INCi 

i = 1, . . . , 6  and DECA , DECX , or DECi i = 1, . . . , 6  to "increment” 

or "decrement” registers. The instruction " INC1* 1 ” adds 1 to 

register b (as would ” ENT1* l,1* 11) and ” DECX 0,5 " subtracts the 
contents of register 5 from the X register. Finally, there are 

comparison instructions CMPA , CMFX and CMPi i = 1, . . . , 6  and 

conditional jumps either depending on the outcome of a comparison 

(JL , JE , JG , JLE , JNE , JGE for jump if less, equal, greater, 

less than or equal, etc.) or on the value of a register (JXN , JXZ ,

JXP , JXNN , JXNZ , JXNP for jump if the X register is negative, 

zero, positive, nonnegative, etc.). The unconditional transfer is JMP • 

This includes nearly all of the instructions that are used in the 

programs below —  we will discuss more exotic instructions as we 

encounter them.

We shall assume in implementing the programs that the keys to be 

sorted are in memory locations A+l, A+2 , ... , A+N , where the values 

of A and N are defined elsewhere. Further, we shall assume that 

memory location A contains a key smaller than all of the keys to be 
sorted (-®) and memory location A+N+l contains a key larger than
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a.i 1 of the keys to be sorted («) . To minimize confusion, we shall 

always try to keep " i " in index register U , " j " in index register

5 , and " v " in the A register. For example, the instruction 

" STA A+l,5 " will correspond to the operation " A[j+1] : = v; ".

Rather than dwelling further on the format and conventions, let 

us examine the assembly language implementation of the first full 

program that we encountered, Program 1.2.

Program 1.2A

E N T  It 2 - N 1 i  2 ;

N E X T L D A A » N ,  >t N - 1 l o o p  w h i l e  1  <  N : V  :» A|l);
F N T 5 N - 1 , I t N - 1 j 1-1 ;

m o w : ( 'M P A A ,  5 D * + E loop while A(.1l >  v and
J G E I N S E R T D * + E

L D X A ,  5 E

8 T X A + l ,  5 E AlJ+1) A(JJ;
D E C ) 1 E J  J - i ;

J 5 P M O V E K r e p e a t ;

I N S E R T S T A A + l ,  5 N - 1 A[J+1] : •  v;
I N C  It 1 N - 1 1 ! •  i+1;
j l t N P N E X T N - 1 r e p e a t ;

The version of Program 1.2 that we studied in Chapter 1 is listed at 

right above, with each statement placed as near as possible to the 

corresponding assembly language instruction. The only coding "trick” 

used here is that register U contains the value of i-N rather than 

the value of i , which makes it possible to do the test " i < N " 

with one instruction (" jl+NP NEXT ") . The frequency counts for each 

instruction are given in the middle column, in terms of the unknown 

quantities defined in Chapter 1. To find the running time of the 

program from these we need only know that address modification and jump 

instinctions (which don’t reference memory) take 1 time unit; and

271



units. Adding the total time spent executing each instruction, we
*find that the total running time of this program is 3D + 9E + 7N - 6 

time units.

We found in Chapter 1 that this could be improved by using the 

assumption that A[C'] = -® to remove the test " j > 0 ”. We can now 
see this savings more clearly.

loads, stores and compares (which do reference memory) take 2 time

iTv̂rar .. /

r Vr A A* !*♦!,*•
,• I 1-. !SC T N C E P T  

hjrr- N-:f*
vr .1

Mr /Z

e  1 <  i l l

[ i ' <  A ( i - 1 1 t h e n

v  : *  a [ i ] ;

J : = i--;

w h i l e  A 

r e p e a t ;

r r i  i  r ;

■ -Ni TOT

There is one less instruction executed E times, so that the total

running of this program is 3D + 8e + 7N - 6 .

It turns out that we can improve this program even further, by 

using the powerful MIX "MOVE " instruction. This is an instruction 

of the "block transfer" type, which allows a block of up to 63 words 

to be moved from one location to another in memory. Index register 1 

is used to specify the destination. For example, if register 1 

contains 1000 , then the instruction " MOVE 2000(50) " would result 

in the 50 words in locations 2000 , ... , 20̂ +9 being moved to



locations 1000 , ... , I0U9 . The move proceeds from left to right, and 

register 1 is incremented by the number of words moved. The instruction 

takes one time unit plus two time units for each word moved. The above 

programs take four time units per word for moving in the inner loop, 

and they can be improved as follows.

N E X T

" 1;

E N T * * N - l 1 i  : = N - l ;

L D A A ,  1* N - l l o o p  w h i l e  i  ^  1 :

( ' M PA A + 1 , U N - l I f  A ( i 1 >  A f ! ♦ 1  ’
J L E N O I N S E R T N - l v  : -  A ( i  I ;

E N T 5 l . 1* n R J  i + 1 ;
1 F. i  _>op: \  :

'M P A A .  ‘ 1. w h i '«• A l  ;

I ; •  _ • K r e p e a t ;
P H C ^ 1 . 1 * r R * :*■
K T 5 1* : ! * ) 1, *

E N T 1 A , 1 n * k i ;
M O V E 1 , 1 I)R l ^ o p  w h i l e  t
O T A 0 ,1 d r A (  k 1 v ;
DB CU J N - l i  :  - i - 1 ;
• l l * F N E X T N - l r e p e a t . ;

A i  k . A |  M  1 , ;  • 

f;

Here the insertion process is reversed: we work from right to left,

(i = N-l,...,1) and put A[i] into position among 

A[i+1] , A[i+2] , ... , A[N] by moving all of the keys which are less 

than it to the left one position. The instruction " ST5 *+2(U:U) 11 

stores the value of register 5 into the length field at the 11 MOVE 1,1 " 

instruction, which then performs the moves necessary to allow the
ftinsertion of A[i] The running time of this program is 8d + 6e + 7N - 6 .

ft
Since D obviously has the same average value as D , we can see from

our derivation in Chapter 1 that the average improvement over Program 1.2 
1 2is 2E^ - 5D̂  = (N - U N  + IOHj) which is positive for N > 8 and 

significant for larger values of N (although the program doesn't work, 

and shouldn't be used anyway, for N > 6U ). This improvement is not



mentioned in the text became it is net an inprovenent for iuicisort, 

vnere »e use insertion sorting only for snail or xeli-orderei files.

The assembly language coding for the various partitioning methods 

in Chapter 5 is very simple and straightforward. For example, 

Partitioning Method 2 .1 night he implemented as follows:

P-iince the methods in the text are expressed in a goto -less iangui•5
not always be convenient to maintain a direct ccrrestx:ndence

between tne programs in the text and the assentl;.' language, althcugu

a "no: ;te: nave mel Ls conveniently



that location. The total running time of this program segment is 

10A + 15B + + 6X . (The quantities A , B and C are the same as

those studied in Chapter 3; the average value of X turns out to be 

1/2 A .)

In the text we dealt with coding techniques to improve program 

efficiency which could easily be expressed in a high-level language; 

in this Appendix we will see some standard programming techniques 

relevant to assembly language programming. The most important of these, 

the elimination of unconditional jumps in inner loops, will improve the 

performance of the above program. The idea is that it is always 

wasteful to end an inner loop with an unconditional jump, since the 
loop must contain a conditional jump,

LOOP

Jump to OUT if S true

JMP LOOP
OUT

and we can always "rotate” it to get the equivalent code

JMP INTO
LOOP

INTO

OUT
Jump to LOOP if S not true
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We have removed one instruction from the inner loop. Applying this 

to the above program, we can save a little more by carefully placing 

INTO y and we have

ftertltionlng Method 2-1A

U t P

I H T O

our

EXT* 0,2 A 1 f;
an 5 0 ,3 A J := r;
IDA A, 2 A v A[l);
JK P DTTO A goto into;
1DX A, 5 B*X loop until pointers have met:
STX A, A B*X Ali] := Alj);
melt 1 C -C ’ loop; i ; = 1*1;
CMPA A, It C-C* while A[i] < v

JC •-2 C -C ' repeat;
am o ,fc B*X

DECX 0 ,5 B»X i f  i >  j
JXKH OUT B+X then pointers have
IDX A , I B

STX A, 5 B A[J) :=  A(i );

DEC 5 1 C*-A loop: j j - 1 ;

CMPA A , 5 C' into: while Alj ) >  v
J L •-2 C* repeat;

am 0 ,  k B*A

DECX 0 , 5 B»A i f  i  >  j  then j  :=

JXJI LOOP B*A repeat:

EWT5 0 , 1* A-X (J l;)
STA A, 5 A A[J) :=  v;

which takes 10A + l^B + + 6x time units, a savings of B time

units over the previous program. This technique applies to all of 

our partitioning methods, and we shall use it in all of the programs 
below.

The implementation of Partitioning Method 2.2 leads to a longer 

program, but a more efficient inner loop:
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Partitioning Method ?.2A

F A B T I T I O N

L O O P

INTO

I FI

IF2

P A B T D O H E A
PARTDGI!E

E N T 1* 0 , 2 A

E N T  5 1 , 2 A

E N T A 0 , 2 A

INCA 0 , 3 A

S K B 1 A

S T A * + 1 ( 0 : 2 ) A

E N T 6 * A

LDA A, 6 A

J M P INTO A

LDX A , 1* B

E N T 1 A , 1* B

MOVF. A, 5 B
STX A, 5 B
I N C 1* 1 C - C ’-A

C M P A A , 1* C - C ’

J G E *-2 C-C'

DEC 5 1 C'

C M P A A, 5 C

J L E *-2 C'

ENT X O , 1* B + A

D E C X 0 , 5 B + A

J X N L O O P B + A
E N T X 0 , 5 A

DE C X 0 , 6 A

J G IF2 A
LDX A , 1* p

O T A A , 1* F
I N C 1* 1 F
J M P P A K T D O N E A F
E N T X 0 , 6 A - F
D E C X O , 1* A - F
J L P A K T D O N E A - F

LDX A, 5 G
S T A A, 5 G

DEC 5 1 G
S T X A, 6 F + G

i := /; 

j p H ;

p  := (i+r) r 

v := A [p ] 

g o t o  i n t o ; 

loop:

A[i ]  : = : A[j J; 

l o o p : i : i+1;

into: w h i l e  A [i ] <  v

r e p e a t ;

l o o p : .') : - j - 1
w h i l e  A ( j ] >  v 

r e p e a t ;

w h i l e  i <  j 

r e p e a t ; 

i f  i <  p

t h e n

A[i ]  : : A [ p ]; 

i := i+1;

e n d i f ; 

if  j >  p

t h e n

A[p ] :=: A(j); 
j := .i-1;

endif;
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' T i  2. -A 1 i art. * 1 1 n i n £  Jv

r » p 2 1 1
*2*7? X 1

illc' 1
•a e c h h i c 1.7 A

"l * -+-> - A
H A A, 2 A
7" IP T \"7\7 A

. . - t —*y r  l Br * *>
rJiTl A , 1* B
v  /r A* 5 B
c: { A> 5 B

1 w J
~ , r— , • V r* *-. * -V .. —* .**. -*■-> **
v :• *►-2 C'
:?.cc 1 c-c
- . - A A+ P w —w

♦ -2 r* .j"*
-'. y 3 + A
in x ' ; / 3 + A
V uc  ? S + A
~ y * c• / A

17 A A, 5 A
77 X -. 2 A

'-T A- j •‘•j > A
* T 1 ~ y Z A
7 1 7 1 K , 2 A
7. 7 A ~ } U A
IEC A A
* - Ti jozi j A

i b ::- 7 -3*? P C ? A'
7-!»F LZ?T • n h  —
-̂ -1/■ T C »— - — *■"
7 7 2 7 7 a :?:, 7'2:3) S'
I 7 C A / A - A
77 A 77 A7 ' +•: 5 J c »
H« T 2 -j /
•7* "3 ? A ? 7 1 7 IIK n*r.

tr.p A - A
~U»P -./■ — - jr. ̂ 

i
f. ~t~.

7 7 A : E , ^ : 5 ) 3-7
l>5 3-3

C _c*- - -**• ----- :•) - ^ 4W- — — —» —  7 1 c » n* — J >
?.A?~’7ICIi A ”

y  z HP zzf.r.r.'f.l) S + l
- - 7

Z Z k Z Y . f l - f ) C + l
i n o 1 S + l
7' h ; ?.A? 7 ~7 1CII S + l

. ..i r,i—  M 2-I* 1
::l /7 r. a -::, ̂ K - 1

-. ..''r. A- ’’-T
7 j E :;;7EHT TI-1
'*77 r ::-i,e D

V/ *T H X A> 5 E
A+ 5 E
1 E

C K P A A, 5 E
7 L S K  7 £ E
77 A A + 1 , 5 D

1 :j- i
K E / T ii- i

..’■A)

- 3 - 1
-"-1

i := 2;
l o o t  w h i l e  i

i : - i+ i;
i • = r 4-!;

A[l];
i n t o ;

; o c p

a ; i ]

ir.tc a hi 1 e

A l j J i

h C e  A[ i ] <  v

i <  jrepeat;

A i'

if  f t  >  M  >  r-j t h e n  r : =
? := P+2;
rtacktj] := /;
s t a s k l p + l '  := j 
i := j+1; e l s e

i f  r-j >  Y. >  f l  ‘-her. / 
i f  r-.;' >  f l  >  V. r.r n p * = T>4- s' * . — c. «

stacfc{p+I] := r; 
r := j-1; e l : e

I-I >  r-j or
r-j >  f t  t h e n  f := s t a c k [ p ] ;

r : = s t a c k l p f l j ;  
if  p  = 0  t h e n  
d o n e  er.dallifs;

i j ^  A [ i - 1  ] t h e n  
v : = A  [ i j ;

' A{ j+ 1 ] := At  J'-Ji 
j := j-l»

w h i l e  A[ j ]  >  v 
r e p e a t :

i : = 
r e p ?  a t ;

At j+11 := v;
i+i;

endif;
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This implementation follows directly from the other examples that we 

have seen. The most complicated aspect of this program is the assign

ment of the instruction frequencies to the two instructions at each of 

the labels LBIG , RIGHT , RBIG and LETT . In general, there are 

many different ways to assign frequencies. The method used here was to 

asssign A" to the instructions at LEFT ; then use Kirchhoff’s Law 

at LEFT and RIGHT to deduce the frequencies of the instructions 

at LBIG+1 and RBIG+1 . Fortunately, all of the quantities A’ , A" , 

C' , and S' cancel out in computing the total running time of the 

program, which is 2Ua+ULB+1*C +3D+8E+9S + 7N .

The assembly language implementations of the variants of Quicksort 

studied in Chapters 5, 6, and 7 can all be easily constructed using 

Program 2.UA as a model, and we will not examine them here. The 

median-of-three modification in Chapter 8 is also a simple extension 

of the above program, but we will conclude by examining its 

implementation because of its importance.
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wufrrnuN knta 0,2
I N C A  0 , 3  

SRR I 
3 T A  *+1(0:2) 

ENT*! *

I D A  A, 2 
C M  PA A, 3 

J L E  IF2 

LDX A , 3 

S T X  A, 2 

S T A  A, 3 

I F 2  I D A  A, U
C M P A  A, 3 

J L E  IF3 

L D X  A, 3 

S T X  A, 1+

S T A  A, 3 

I D A  A, U 

IF3 C M P A  A, 2

J G  C H O S E N  

L D X  A, 2 

S T A  A, *t 

S T A  A, 2 

L D A  A, U 

C H O S E N  LDX A + l , 2

S T X  A, 1*
E N T L  2 , 2  

E N T 5  0 , 3  
J M P  INTO 

L O O P  L D X  A, U

ENT.l A, It 

M O V E  A, 5 

S T X  A , 5 
I N C U  1 

I N T O  C M P A  A, L

J G  * -2 

DEC 5 1 
C M P A  A , 5 

J L  *-2 
E N T X  0 , L  

D E C X  0 , 5  
.TXN L O O P  

L DX A , 5 
S T A  A, 5 

S T X  A+l, 2
P A P T D O N E

T a rt i l  ion i ng Method Q. iyt

A

A

A

A

A  p  := (/+r) t 2;

A

A

A

A ^  i f  A [ /] >  A [ r )  t h e n  A [ /] :=: A [ r )  e n d i f ;

A1
A 1
A
A

A
A p  if  A[ (I+r) t  2 ] >  A ( r ]  t h e n  A[ (/+r) + 2 ]  : = : A[ r ]

A2
A2

A2
A

A

A, i f  A[ t ] >  A[ (/+r) + 2 ] t h e n  A[ / ] : =: A[ (/+r) t 2 ]

A 3

A 3

A 3
A

A  A( f+1] : = : A [ ( f + r )  + 2 ] ;  v := A [ / + l ] ;

A  i := /+2;

A  j : - r ;
A  g o  t o  into;

B  l o o p :

B

B

B A( i ] : = : A[ j ];

C '-A l o o p : i := i+1;
C' into: w h i l e  A [ i ]  <  v

C' r e p e a t ;

C-C' l o o p : j :- j -1;
C-C' w h i l e  A [ j )  > v

C - C ' r e p e a t ;

B + A

B + A  w h i l e  i <  j

B + A  r e p e a t ;

A

A

A  A [ / + l ]  :=: A(j];

endif;

endif;
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This code may be used to make a complete Quicksort program by inserting 

it into Program 2.bA in place of all of the instructions between 

PARTITION and PARTDONE-1 . After the initial manipulations, the 

partitioning method is of course the same, except that at the end 

we have " STX A+1,2 " (for A[f+1] : = : A[j] ) rather than ” STX A, 2 "

(for A[J] : = : A[j] ). The total running time of Partitioning Method 8.2A

is

35A + 6a1 + 8a2 + 8a  ̂+ 11B + k:

and the quantities A^ , A2 , A, are ^ A , j A , ^ A on the average,

so the total average running time of the method is ^3 7  A + H R  + I4C , 

as compared with 13 A + 11B + for the corresponding code in Program 2.UA,

so the additional cost is 30 j A , on the average.

An alternate method of implementing the choosing of the partitioning 

element in the median-of-three method is to avoid all extraneous data 

movements by treating separately each of the six possible cases 

determined by the relative order of A[i] , A[(£+r) -r2] , and A[r] .

This results in a longer program, which is very slightly more efficient 
in MIX:
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Part ilioning Method 8.1A (Alternate implementation: Part 1)

P A R T I T I O N  E N T A  0 , 2  A
INCA 0 , 3  A

S R B  1  A
S T A  * + 1 ( 0 : 2 )  A

E N T U  * A  p  := (i+r) t  2;

I D A  A, 2  A

L D X  A, 3 A

C M P A  A , 3 A

J L  L R  A

C M P A  A, U A i  + a 2  + A.

J L E  R L P  A i  + a 2 + A ?

C M F X  A, U A 2  + A j

J G  P R L  a 2  + A,

R F L  S T A  A , 3 A ,  i f  A [ r )  <  A [ p ]  <  A [ f ]  t h e n  A [ i ]  : = : A [ r ) ;  v  := A ( p ] ;  e l s e

S T X  A, 2 A ?

L F R  L D A  A, U A ^  + A $

J M P  C H O S E N  A j  + A 5
B R L  L D A  A , 3 A g  i f  A [ p )  <  A [ r ]  <  A [ / ]  t h e n  v  := A [ r ) ;  A [ r ]  := A [ / J ;

L D X  A , 2 A _  A l l ) := A ( p ) ;  e l s e

S T X  A, 3 A g
J M P  P L R  A g

R L P  S T X  A , 2  A. i f  A [ r )  <  A [ f  ] <  A [ p ]  t h e n  v  := A [ l ) ;  A ( / ] := A [ r ];
L D X  A , k  ^  A ( r ]  := A [ p ) ; e l s e

S T X  A, 3 A.

J M P  C H O S E N  A 1

LR C M P A  A, U  Aj^ +  A ^  + A g

J G E  P L R  A ^  + A,. +  A g

C M P X  A, U A 5 + A g

J G  L P R  A ^  + A g  i f  A [ I ] <  A [ p )  <  A [ r ) t h e n  v  := A [ p ] ; e l s e

L R P  L D A  A , 3 A g  i f  A [ / ] <  A [ r ]  <  A [ p )  t h e n  v  := A [ r ] ;  A [ r ]  := A [ p ) ;  e l s e
L D X  A, H A g

S T X  A, 3  A g

J M P  C H O S E N  A g

P L R  L D X  A, U A g  + A ^  i f  A [ p ]  <  A[ / ] <  A[ r] t h e n  v  := A [ / ]; A( / ] := A [ p ] ; e n d a l l i f s ;

S T X  A , 2 A 2 + A U
C H O S E N  L D X  A + 1 , 2  A

S T X  A , U  A

S T A  A + 1 , 2  A  A [ / + l ]  :=: A [ p ) ;
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The quantities A-̂ Ag, are all ^ o n  the average, so it

turns out that this implementation takes time units less

than the last, a very slight improvement.

Finally, we shall consider a coding technique which often leads 

to significant improvements in programs which involve simple pointer 

arithmetic in their inner loops. The technique is to ''unwrap” the 

inner loop, in response to the observation that l/U of our overhead 

for comparisons is taken up by pointer increments and decrements. The 

instruction sequence

INC  ̂ 1 

CMPA A, k 
JG *-2

is exactly equivalent to

CMPA A+l,l 
JLE *+5 
INC1+ 2 

CMPA A, U 
JG
IMP *+2 
HIC1+ 1

and the pointer in index register h is incremented only about half as 

often in the inner loop. This important coding technique should be 

used to improve the efficiency of Quicksort in a production situation,



It turns out that we can save a little more by introducing some 

duplicate code. If we apply the example above to our programs, then 

the overhead associated with comparisons is reduced, but the overhead 

associated with exchanges is increased slightly because of the 

" JMP *+2 11 instruction. This can be eliminated by including two 

copies of the code following the loop, one for the case where register U 

has to be incremented and the other for the case where it does not. 

Applying this idea to both of our comparison loops, we have the second 

half of our final implementation of the algorithm.
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P a rtit io n in g  Method 3 -1A (A lte rn a te  irepleaiejitjiftjjsn: P a r '-2  )

a n *  1,2 
E3rr> 0,3
J H P  ISC/Jt 

LOOP iDX A, *•
m i  a , i*
MOVE A, 5 
SIX A, 5 

ISC AN CXI* A* 1,1*
j l e  cc rsrsscAS

D C l  2 
CMFA A, i 
JG  ISC AS 

K3CA5 CXPA A-l, 5
J Se. C Z ? d  E3?

I SC 5 2 
CMFA A, 5 
J L  KSCAS 

TEST 3CTC C,i
TSCX C, 5 
JXN ICC?
cx? sc.-jocse

b .  * . A S  * J . 1  _

CHCA A- l , ;

CXPA A , 5 

CL C C FT?3C AS ■

SSOC C,t
iso: c,;
0 3  IC C ?

TY? 3C A M IC E S

TEST
ESTX

or?

A
A
A
B
B
B
B

C1
C1
C2

2̂
~2
?
c;
ci
CL
C,’

2 * 
X f

«•** *

X-Xf
: 3 _ : i

5CAS2DC5E LOT a, 5 
STA A, 5 
TTX A-l,

APCX52

i  t*Xi 
j  :=  r ;  

g o to  i n t o ;  

loop:

A| i J : = : A [J]i
1 ocp until done odd or acre even:

i f  AI i- 1  ] >  v  t h e n  done odd endi 
i := i-2;
if Ali] >  v then done even endif;

— er none even =  _ooo u ntil done odd or done even

~2oinii f  Ajj-1] <  v  then done 

j := 3-2;
i f  At ; ]  <  v  th e n  done ever, endif;

j !«

if At 3-1 
3 := 3-2 
i f  a ! 3.1 <  V

<  V " f t  — — —

At;;;
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T h is  in v o lv e s  q u i te  a b i t  more code th a n  o u r p re v io u s  im p le m e n ta tio n s  

o f  t h is  in n e r  lo o p  ( f o r  example th e  la s t  20 l in e s  o f  p a r t i t io n in g  

Method 8.1A) b u t i t  is  much f a s te r .  I t  r e q u ire s

12A + llB + + 3C2 +lC, + 3C^+X time units as opposed to 11A + 11B + U’

for the previous implementations, where C^+C^ + Ĉ  + C^ = C , so that 

the savings is C2 + C^-A-X. It is shown below that on the average 

this savings is asymptotically ( i ^ - 2 In 2 JC « . UU70 , which 

is quite substantial.

There are many examples in the text of a simple change to the 

algorithm having a major impact on the analysis, and the study of the 

effects of unwrapping the inner loop is yet another example of this.

The analysis is not at all trivial, and is only sketched here. Also, 

to simplify the description, we will first consider the application of 

this technique to Program 2.1+A (using the same code, with the first two 

and last instructions modified in the obvious way).

We begin, as usual, by finding the savings achieved on the first 

partitioning stage. Consider the keys A[2],...,A[s] , and suppose 

that exactly t of them are < s , As we saw in Chapter this occurs

( St1 ) )with probability ----/ N 1 \----- • The savings resulting from
( s- 1 )

unwrapping the loop is dependent on the distribution of the keys < s . 

For example: if t = 0 , there is no savings (the instructions counted

by C 2  are not executed); and if t = s-1 , then the savings is J ” j 
(every other comparison is counted by C2 ); but if t = 2 there may be 

a savings of one or two depending on whether or not the keys < s are 

adjacent. In general, for each run of adjacent keys < s of length u ,
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the savings is m  , so the total number of comparisons counted

by C2 is

— + 2 (# °dd length runs of adjacent keys < s )

An entirely symmetric argument holds for the right hand side. Similarly, 

the contribution of the first stage to X is 1 if A[s+1], . ..,A[N] 

begins with an even number of keys < s , so we are led to the following 

expression for the total average savings achieved on the first 

partitioning stage:

Here is defined to be the total number of odd length runs of 0's

when t 0's and s-t l's are randomly arranged in all 

ways, and E ̂  is defined to be the number of times such a random 

arrangement of 0's and l's begins with an even length run of D's . 

This equation simplifies to

N 1 <s <N

-  1



To evaluate E . and , it is not difficult to derive the

recurrences

E s t  -  ( V )  + C t -1 )  ' E ( s - l ) ( t - 1)

and

Qst Q(s-l)t + Q(s-l)(t-l) + E(s-l)(t-l) " I ( t-l) + E(s-1 ) (t-l'

which have the solution

Q = (1+s-t) Z = (l+s-t)E
st 0 <k < s V t k / st

Substituting this into our formula, summing first on t and then 

on s , we get the expression

|  (w-i) - 1 + z (-1)k
0<k<N-2  ̂ ^  '

for the total savings on the first partitioning stage. Unfortunately 

there is no simple expression for this last sum, though we can estimate 

it closely to get the approximation

G  + ! - 2in2)(N+l) T + 5 * 2 1 n 2 ) + l n 2  - 1 - § +

2where |r| < — , for the savings on the first stage due to loop unwraprin. 

Now, we can solve recurrences as we did in Chapter J to find the total 

savings achieved, and it comes out to be

- 2 1 n 2 ) < 2 l W 21W  + 1 > * G  2 - f  X 2 s i  -  0  +
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I I  ̂ J-
Where l€l < 2 (Mf 1)^27 '

For M = 9 > t h i s  i s  a p p ro x im a te ly

.89(N+1) InN - 2.12N + c + 0(1) , where |e| < .02 N ,

a very substantial savings.

The analysis for the alternate implementation of Program S.2A as 

it stands is very similar to the above, and it turns out that the savings 

on the first partitioning stage is

We shall refer to the complete Quicksort program obtained by 

insertings parts 1 and 2 of this alternate implementation of Partitioning 

Method 8.1A into Program 2.1a fin place of all of the instructions 

between FAKTITICII ana PAH7DCIIZ -1 ) as Program 3.2A. The analysis 

above (and in Chapter t) shows that its total running time is about

and it is an extremely efficient implementation of Quicksort which can

where

and the total savings is about

l.Co(!J+l) InN - 5.0JIJ+ € + C (1) , where |c| < .IK .

9-57!? In II + l-ll:



APPENDIX B

The emphasis in the mathematical analysis of the various algorithms 

in the text is on obtaining exact answers to the problems which arise.

We normally deal with functions whose domain is the integers, and 

manipulate them using the "finite difference calculus" (which parallels 

the more familiar "differential calculus" which is appropriate for 

dealing with functions defined on the reals). In fact, most of the 

problems arising in the analysis of Quicksort reduce to the evaluation 

of finite summations involving only a few kinds of functions: harmonic

numbers and binomial coefficients. This Appendix will be largely devoted 

to such problems, although it turns out that a variety of techniques are 

needed for their solution. We will also consider: the solution of

recurrence relations; the use of generating functions, especially 

probability generating functions; and some simple asymptotic representations. 

Recognizing that many readers may not be familiar with this kind of 

mathematics, we shall derive most of the identities that are used in the 

text rather than simply state them. (However, since we shall only deal 

with Quicksort-related problems, a reader completely unfamiliar with such 

topics should study the more general treatment given by Knuth [ 16]•)

An index to the notations used in this thesis appears at the end of 

this Appendix.

Central to the study of Quicksort are the harmonic numbers, which 

are defined by the formula

H n
1

( 1)
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S  "i> = 7T > (*)
3 >1 J

which is a value of Riemann's "zeta-function". (This is a well-known 

result from classical mathematics which we shall not prove here.)

Often in our analysis we are faced with summations involving 

harmonic numbers. There is a seemingly endless variety of these, 

but they do provide a good exercise in working with the S  operator.

For example, the simplest sum to consider might be

Z H. = Z Z i .
l<k<n l<k<n ^

To evaluate this, we interchange the order of summation to get a trivial 

inner sum:

L  h = L  S  i
l<k<n l<j<n j<k<n J

z 4 z i
l<j<n j < k < n

Z
1 < j <n 0

fn+1 ) S  i- Tj 1
1 < ,j < n J 1 < j < n

Lj H = fn+l)H -n = (n+1) (H - 1) . (U)
l^k^n

For a slightly harder problem, we might consider the sum of the squares 
of the harmonic numbers:



z
1 <k <n

*■>
vL>

1 <k <n l<j <'

K i  < n
T

’ <> <n

1 <: <n
21

1 <k <n
L>

i <><: ■0

i ?(n+l)En - n - j 'H..-1))
1 <: <n

fn+l)E - nH_ -n n z (h .-i)
1 < j <n

= (n+l)H„ - '2n+l)Hn + 2n = 'n+l) (Hn+1 -1) - H ^ + n + 1
X < k < n n n+l n+l ( ;

:his, of course, is not to be confused with

r ( 2 )  V  V  1H, = L
1 < k < n * l<k<n 1 <„1 <k j£

sr r.-c+l
i— t

1 < j <n

= (n+l)E^ ->H = fn+l)H tI -I*,n n n+l n+l (6)

Similarly, the stun of the "convolution" of the series is an interesting 

exercise, though it is a bit more difficult. We start in the same way 
as above
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5  HkHn+l-k ?  j . ] ?  Hn+l-k1 <k <n 1 < j <n ° j <k <n

T  Z_, H,
l<j<n  ̂ l<k<n+l-j

L  i ((n+2-j)H , . - (n+l-j))
1 <j <n J J

-i= (n+2) £  . J - £  H - (n+l)H +n
l<j<n J l<j<n n+1"J

= (n+2) L  - 2(n+l) (H .-1) ,
l<j <n J

but we have only succeeded in reducing it to another sum, which involves 

one harmonic number. The best that we can do with this is to reduce it 

to yet another sum as follows:

H a.1 • H • 1Z -fijli. = Z L  m
l<j<n 0 l<j<n J 1 < j <n J'1*'1”'”

H . H
L  - ^ +  2 - 4

1 < j <n-l J n+1

Now th e  f i r s t  te rm  on th e  l e f t  i s  th e  same as th e  e x p re s s io n  on th e  r ig h t ,  

excep t w i th  n reduced  by one. We can th e r e fo re  i t e r a t e  t h i s  e q u a tio n  

ag a in  and a g a in  (n  t im e s )  to  g e t th e  id e n t i t y  

H , . H,
L  -Still = 2  L

1 < j <n 0 1 <k <n k+1
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(This technique of evaluating a sue by identifying and re-expressing the 

last tern and then "telescoping" back to a different sum is important 
and should be studied carefully.) Finally, the evaluation of this 

summation provides a good example of manipulating indices of summation:

K F
2 7  —  - Y  ‘k p «r 1k+1 “ ^  IT ^  ~2l<k<n 1 <k <n+l l<k<n+l k

Z Z 4  -
1 <k<n+l 1 < j < k J

= 2 £  7  A  _ ai'2)
1 < j <n+l J <k <n+l

= 2 7  7  A  ~ h  ̂  2)
1 <k <n+i > < j < n+1 11+1

where the last two steps were to interchange the order of summation, then
P6I18i!16 Mm • , t ̂ Z as k . 3ut now consider the second and fourth
lines above. Tn cne i^g,. for j < k , in +he other it is

& — *• ’ ““e summand is the same. This means that we can get
».ame a..s*er b;. simply summing over all i , except we must add another

term for > - - . .«. y *.*100. must ce counted twice.

2 L — iL 
1 < k < r. ”" 1 I  f  7  A *  7  i V f f l ' 2)

-<x<n+l V !<:'<n+l ^  j = k ^  J  n+J"

+ w'2) . p,/2)
n+l “n+l

“n+l



Substituting this into the equations derived above, we have our answers

and

h  - = 2 L  -p- = H2 - H(2] (7)n ^ ^ J ^ k+1 n+1 n+11 <j <n 0 1 <k<n

V n . w t - W < r H S > - 2 ( " t l > ( W 1 )  •  ( 8 )1 <k <n

Implicit in the evaluation of sums using the "telescoping" technique

illustrated above are recurrence relations, which arise frequently in

our analysis. Often, when we are trying to find an explicit formula

for a sequence lxn} n = 0,1,... we are able to express x^ in terms

of x , , as follows: n-l

x = a x .. + b n > 0  (9)n n n-l n

where an and bn are some known quantities, and the "initial value"

Xq is known. This linear, first order recurrence can be solved

explicitly. (Recurrences of higher order contain terms involving
2x _,x ,... , and non-linear recurrences contain terms like xn-2 n-y n

or xnxn ]_ • It is not always possible to solve such recurrences, but 

they are best attacked with the use of generating functions, as discussed 

below.) For example if a = 1 , then the recurrence telescopes:

x = x . + b n n-l n

= x + b , + b n-2 n-l n

= x * + b ,̂ + b , + b  n-3 n-2 n-l n

Xn ' x0 + . \
1 <k <n
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we transform the recurrence into one thatTo solve for general an , 
does telescope by dividing both sides by the “snnmation factor"

TT :
l<j<n “

-X Z  ^n n-1 _ .  n---
TT TT . I I .1 < i <n v 1 < j <n-1 - ̂  J < n

a. a.
.1 J

= X + L
K k < n  TT

l<.j <>V tJ

so that the solution to the recurrence f$) is

z  = TT 'r + r  b TT r -  i (I-
n

Cf course, this is valid only if TT —  is defined. Other
i<i <> aj

summation factors may sometimes be convenient: another that is often

useful is TT a- iav-} and {fc } are simple sequences, as
•>n+l ; ** n>

they often are in cur analysis, then this formula is not nearly so

formidable as it seems, .-or example, if a = ——  , then TT
n n K i  <n

& .

i s  juso • Suer. sirrole sumr.auion factors can ciUen be d i s c o v e r e d ,

rv st — T-. v sxsnir.iii? ur.e recur^^nc^•
>  V as rr.pcruar.u as u’r.e harrronic r.ur.bers in cur analysis are

tr.e Dmomia. coefficients, which are usually defined by the formula

(0  ■ integers n > > > 0 .



T h is  is  th e  number o f  d i f f e r e n t  ways to  choose k o b je c ts  o u t o f  a se t 

o f  n d i s t i n c t  o b je c ts .  The ta b le  be low , th e  w e l l  known P a s c a l’ s

The l i s t  o f  in te r e s t in g  id e n t i t i e s  in v o lv in g  th e s e  numbers i s  e n d le s s , 

and th e y  a r is e  in  many, many a sp e c ts  o f  m a th e m a tic a l a n a ly s is .  We s h a l l  

t r y  to  r e s t r i c t  o u rs e lv e s  to  th e  p ro p e r t ie s  o f  b in o m ia l c o e f f ic ie n t s  

t h a t  a re  u s e fu l in  th e  s tu d y  o f  Q u ic k s o r t .

F i r s t ,  i t  i s  u s u a l ly  c o n v e n ie n t t o  w ork w i th  a le s s  r e s t r i c t i v e ,  

more g e n e ra l d e f in i t i o n :

T h is  is  e q u iv a le n t t o  th e  above d e f in i t i o n  when r  is  an in te g e r  > k  , 

b u t i t  extends th e  d e f in i t i o n  to  a l lo w  any r e a l  number as an upper in d e x .

t r ia n g le ,  shows th e  v a lu e  o f

row n is and th e  la s '

f o r  s m a ll n . The f i r s t  number on

so f o r  example

n

0 1

1 1 1

2 1 2  1

3
h

1 3  3 1

1 k 6 U 1

5
6

1 5  10 10 5 1

1 6 15 20 15 6 1

r r  TT ( r - k + j )  in te g e r  k > 0  
K * 1 <  j  < k

0 in te g e r  k  <  0

(12)
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an.

= 1  and = r for all real

positive integers we have the symmetry property

for all real r , ' 1

integer n > C .'1U

Also for positive integers, the table is nearly half zeros:

integers k > n > C 15)

These are all obvious from the combinatorial interpretation of binomial 

coefficients ('for example, there are no ways to choose 3 objects out 

of a set of 7 objects) and they also follow immediately from the

if k > n > 0 )• The last two identities don't hold for negative 

upper indices, but it is apparent from the table that there is a simple 

relation between binomial coefficients with negative and positive 

upper indices. This is

which is easily proved from the definition, by negating each term, in 
the product.

if k is positive and r > 1 , then the upper index will always 

be greater than the lower index on the right hand side of (lc), 

wnich says that there are no zeros in the upper half of our table. 

Another obvious characteristic of the table is that if we add any two 

adjacent numbers, we get a number on the row below. This "addition

definition 'for examule "ff (n-k+j) will include a 3 factor
K.1 <k

formula’1



( 0  + ( j J  - (s i) (i7>
ho lds fo r  a l l  r e a l r  , and a l l  in te g e rs  k  , and is  e a s i ly  p roved  from  

our d e f in i t io n :

CS!)■(».) ■ A f  " , < ■ - « > - " < - “ *•>

M i

> 
i

1 < j  < k  1 < j < k  j
1 7 ( C1^ 1 ) T T  ( r - k + j )  -  ( r - k )  ] J  ( r - k + j )

£7  T T  ( r - k + j )
1 <  j  < k

S im ila r ly ,  we can p rove  from  th e  d e f in i t io n  th a t

(J) - £(£) ■ M z 1) ^
when no d iv is io n  by  zero  is  in v o lv e d .  I t  i s  o f te n  c o n v e n ie n t to  

separa te  ou t fa c to rs  in  b in o m ia l c o e f f ic ie n ts  in  t h is  way.

Most o f  ou r m a n ip u la tio n s  w ith  b in o m ia l c o e f f ic ie n ts  in v o lv e  f i n i t e  

summations o f  some k in d .  For example, th e  fo rm u la  we use most o f te n  

in vo lve s  add ing numbers in  th e  same column in  th e  ta b le ,  w h ich  produces 

a number in  th e  n ex t column:

0 <k<n n’m - °  ' (19>

Th is  id e n t i t y  can e a s i ly  be proved by in d u c t io n ,  u s in g  th e  " a d d it io n  

fo rm u la " (17) • U n fo r tu n a te ly ,  th e re  is  no ana logous s im p le  fo rm u la  

fo r  p a r t ia l  sums o f  a row o f  th e  ta b le ,  a lth o u g h  th e  sum o f  th e  e n t ir e

^02



row is simply evaluated:

Z QQ = 2n . (20)

(This is a direct consequence of the Binomial Theorem discussed below.) 

When a summation involves a product of two binomial coefficients, it 

can often be reduced to Vandermonde's convolution:

integer m . (21)

This important formula is most easily proved using generating functions 

and it is left as an example for the discussion of the Binomial Theorem 

below. It has a simple combinatorial interpretation when r and s are 

integers: both sides count the number of ways of choosing m cards out

of a deck containing r black cards and s red cards. The identity 

takes on several forms since it is valid for all real r and s . For 

example, if r is an integer, then we know from equations (ll+) and (I* ) 

that

then we can apply this same equation to all three binomial coefficients 

in Vandermonde's convolution to get the identity

( k )  = (r-k) = (_1)r~k( r-'k) ‘ If S is als° ^  inteSer

y  , ,>r-k( -k-l'N, ^s-m+k/" -m+k- 1 A _ , ^r+s-m f  -m- 1 j 
T 1 ( r-k ’ V  s-nd-k J ~ ' ^r+s-m J  '

After cancelling the (-1) factors and replacing k by k-n-1 , where 

n is an integer, we have

y  f n-k -m-n-2+k f -m-1
\^r+n+l-k y\_s-m-n-l+k / ~ V^r+s-m/k

Then, if we change variables to m = -m-n-2 , r • -r-1 , and s = -s-1 , 

the equation becomes



H n - r - O C - * )  * (

m+n+1 "\
r + s + 1  J

Now, if 0 < n-r-k < n-k and 0 < m-s+k < m+k , then equation (lk) 

applies, and we have Vandermonde's convolution on the upper index:

2  = f ^ s + l )  R e g e r s  n > s > 0  ; m , r > 0  . (22)
0 <k<nv- / \ / \

We have seen how to evaluate sums involving binomial coefficients 

and sums involving harmonic numbers: we also must consider sums involving

both binomial coefficients and harmonic numbers. The simplest is

1 <k <n C:>2  i r jhk

where m is fixed. (Notice that all of the terms for 1 < k < m are 0 

it is often convenient in such sums to include these terms rather than 

bothering with maintaining the exact lower bound.) We can easily 

evaluate this sum using the same techniques as above:

2  f k V  = z  f k )
1 <k <n ^ m ' l<k<n^-m 'l<k<n v 7 l<j<k

O2  I Zj1 <j <n j <k<n

£  i  S  ( k ) -  s i  2  f M

l<j<n J 0 <k < n ^ m ' l<j<n J 0 <k<j-lv- '

K J c n  3 ( " * 0  j ( " > 0

jok



f  n + 1 > \ H _ _ J L f  111 ^
m+l J n nH-lv. m+1 J

n-m
(m+l) (n+l)

f n + i y  + JL_____ 1_^
^m+l/^ n n+l m+l J

,< L . O X  ■ C : 0 ( V l  ' r?I I • <23>

Notice that this checks with Eq. (*+) above when m = 0 .

The analogous sum over the lower index is more difficult to evaluate:

z  = z  f n: 1 V  + 2:
l<k<n ^ ' l<k<n^ " ' l<k<n^- ~ ' Hk

2JL iC ? )H I J

2 z
1 <k <] k+l

2 i  tl<k<n-ix ' 0 <k<n-lv

2 Z
1 <k <n-lC-20 H + - (2n-l) k n v '



The summation factor for this first order linear recurrence is 2n 

(see Eq. (10)), which leads to the solution:

4
2 1 <k <r\ '

= H - £  1k n .. . , „k1 <k <n k2

Unfortunately, there is no simple exact formula for the remaining sum. 

But it does converge, since we know from the Taylor expansion of 

In y—  (see (3 )̂ below) that

£  = I n  2 ,

k >1 k2

so

£  - V  = In 2 + £
l<k<n k2 k >n k2k

This remainder term is very small: 0 < £  \ —
k >n k2 k >0 (k+n)2

1 rp 1 1<  — L> -r-  =   , and therefore
(rtf-l)2 k >0 2 2n"m(n+l)

1 <k <„o>v / n >hv = 2n(Hn -In 2) + e , 0 < f < ^ j  . (2k)

Many of the finite summation problems that we have encountered 

above become much easier to understand if we recognize the correspondence 

between the discrete quantities with which we are dealing and more 

familiar concepts in differential calculus. For example, just as we 
have defined



the natural logarithms can be defined by

x lIn x = f ± dt 
J1 t

This duality between summation and integration is present in many of 

the formulas above. If we rewrite Eq. (U) in the form

E  Hk = n(Hn"1)
0 <k <n

then we should not be surprised by the result since we know that 
x
f In t dt = x(ln x - l)
0

Similarly, Eq. (5) is the discrete analog of

„ . 2 2I (In t)‘ dt - x(ln x) - 2x In x + 2x ,
,Jo

though this formula shows that we can't always rely upon an exact analog. 

The reason for this in this case is that powers do not carry the corres

pondence. This is where binomial coefficients fit in. The discrete

analog of tm is

. m , / k 'N k- = mil ]V m J
the "falling factorial" powers. Now F,q. (19) can be rewritten as

2; m'/k ) = . -1 . (mti). / ~)
0 <k <n V m+1 / 111+1 U l ;

or
m+l

E  k1m n
0 <k <n mfl

which is analogous to
x ntf-1
[ tm dt = *—
J0 m+1
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intuition. We should be able to evaluate a sum which corresponds to an 

elementary integral; we may have difficulty evaluating one that is net.

Because factorial powers occur "naturally" in the finite difference 

calculus, it is often convenient to be able to convert from them to

regular powers. In other words, if we treat a binomial coefficient as

a polynomial in the variable in the upper index (of degree given by the

lower index) we want to know the coefficients of that polynomial. These

coefficients are called Stirling numbers of the first kind and are 

defined by the formula

'2' )

f V  — iT̂he coefficient l-lj '' is included to make the Stirling numbers all 

positive.) There are Stirling numbers of the second kind to convert 

from powers to binomial coefficients. Since the polynomial n(n-l) ... (n-k+1) 

has a constant term if and only if k = 0 , we know that

[?] ■ m  ■oa ,  • ( 2 7 )Ok

Also, we can use the fact that kl^” ^ = (k-l)'.^^11̂  "Vn-k+1) tc

develop an "addition formula" analogous to Eq. (1

L<-l)k"j[ - ] n j = (n-k+1) X« (-l)k-1~^ f k”1] ^

2) f-l)k_1-J ^T1 Jn '̂ +1 - Tj (k-l)(-i)k~1 ~5£ lt71 Jnj

\' / ,v k-(-1)

and setting coefficients of n,J equal we get
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[J] ■ [ £ ] + (k'i)Ckj1] (28)

From these formulas, we can build up a table of the Stirling numbers:

m 0 1 2
J
s k 5 6

0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

2 0 1 1 0 0 0 0

k 3 0 2 3 1 0 0 0

U 0 6 11 6 1 0 0

5 0 2b 50 35 10 1 0

6 0 120 27 U 225 85 15 1

and from this table, we can guess some more special values which are 

easily proved from the definition:

[ l ] - 1  • [k-l] - ( 2) ; 3,1,1 ( 0 = ( *-1)! *”•*><>• (29)

Also, we have the non-trivial identity

(30)

This follows from (28), since £ 2 ]  = f  ^i^ J + (^_1) £ ^2^ J  = 

fk-2)!+ (k-l) [ “ ] * After dividing by the summation factor (k-l)'. 

we get the recurrence

m
(k-l)• [? ]

(k-2) + k+1 

and (JO) follows immediately.
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We often encounter more complex recurrence relations and summation: 

than we have discussed so far, and we need more powerful tools for 

dealing with them. Probably the most important such tool is the 

generating function. The idea is to represent a sequence (â > by a 

single function, the generating function, defined by the formula

A(z) = E  a^zk 
k >0

For example, the infinite series expansions that we know from Taylor's 

Theorem lead to the generating functions for many sequences. The 

generating function for / ̂ 7 y is ez since

ez = Z  £  , (;D
k >0

sinceand the generating function for ^ i ̂  is In ( £ )

K & )  - = T  • <*>

The generating function for the binomial coefficients is given by the 

well-known Binomial Theorem:

(l+z)n = E  (k)zk . (33)
k >0 >■ J

This important equation is easily proved by induction, using (17), or 

by a simple combinatorial argument. If we apply (16) to this we get

(l+z)n = E
k >0 v K y
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the generating function for the binomial coefficients with the lever

Important special cases of this last formula are

1 y 'f- ,'2=\Zj z

and

T- h z“ . (Jo)

Similarly the generating function for the Stirling numbers of the first 
hind follows directly from the definition (2 )̂:

tt 'z+j-i) = i  r >i
1 < .1 < n zK • (1 1 )

generating functions are useful because they provide such a compact 

representation of sequences. Also, simple algebraic manipulations with 

generating functions often correspond to nontrivial transformations on



the sequences that they represent. For example, the Binomial Theorem 

(33) leads to an easy proof of Vandermonde's convolution (21):

. s ( i y  s ( ; )
k >0 ' ' m >0 ̂  '

k >0 ̂  ' m>k^ '

mz

mz

Z  Z
m >0 0 <k <m(OU)s A m z

and also

r,,. Ns \r+s ^  f r+s a m
m(1+z) (1+z) = (1+z)- = Z

m >0

For these two infinite series to be identical, all of the coefficients 

must be equal, and setting coefficients of zm equal leads to (21). It 

is true in general that convoluting sequences corresponds to multiplying 

generating functions: if A(z) is the generating function for (a > and.K
B(z) is the generating function for (b ) , then by a manipulation just

like the one above A(z)B(z) is the generating function for
/  Z  a .b . \  :
\  0 < j <k J k‘V

A(z)B(z) = Zi f  Z  a -b, . | zk when A(z) = Z  a, zk 
k >0 I 0 <j <k J k >0 k

and B(z) Z  b. z . ( o)
k >0
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A very important special case of this occurs when 3(z) = -—  . Then
J . “  "Z*

we see that A(z) is the generating function for /  H  a.
' " z V < j < k  H

For example, we could have used this to derive (3c) from ( 3 5 ) • As 

another example, we get the generating function for the harmonic numbers 

from (3m):

1 1 tt- k
tit = ^  H-z . ;:?)1-z 1-z , “  kk > 1

Conversely, if â  = C it is easy to see that A(z) is the
genera ti ng  f u n c t i o n  f o r  { la ,  } :kJ

— A'z) = S  LSl, zk when A(z) = Z, a zK . (bo)
2 k >0 * k>l k

It is also useful to manipulate generating functions by differentiation

and integration. Differentiating both sides of ( 3 5 ) leads to ( 3 c ) ;  and

i n t e g r a t i n g  both s i d e s  o f  (3 5 ) g i v e s  ( 3 9 ) • I n g e n e r a l ,  i f  A(z)  i s  t h e

generating function for (a, ) , then zA'(z) is the generating function

for (kâ .) . Furthermore, we can take multiple derivatives to see that

. / f k \  \m, is the generating function for ( ( )av/ •
m. (m) 

z A ’

m, (m) , s. / ,  \
- ”, = L  (m )akz when A(z) = D  a zk . (bl)

k > 0 Vmy k k >C

For example, it is interesting to apply this to ( 3 9 )

-  S c ( n ) v n '' n > G v- y
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The evaluation of this derivative is a little tricky, but the pattern 

develops readily:

- ^ ( in^ +0

= ( 1” ^  + £ )

This leaves us with the identity

, In rr̂— +  i - H  = E  f n>lH zn . (U2)Nm+-1 1 -z , virH-1 ra I m i n(1-z) (1 -z) n > 0 v 7

Now, the second term on the left is just (3̂ ), the generating function 

for the binomial coefficients, and the first term is the convolution of 

(32) and (3*0, so we have

S  Z  ( k H : z k + Z ( n> z n = z f n V z n ,
n > l  0 < k < r A  n x A ” '  m n  > < A  m '  "

and setting coefficients of z11 equal tells us that

0 <
E = f n l(H -H ) • (*0), _ I m yn-k V m yv n mk <n v 7 v 7
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This family of useful identities would be very difficult to derive 

without the use of generating functions, and they illustrate the power 

of generating functions as a tool for the evaluation of summations.

Generating functions are also useful for solving recurrence relations. 

As an example, suppose we have a sequence (an) defined by

a_ = 0 ; a., = 2 : a = Ua - Ua n > l
0 1 n n-l n-2

To solve this problem using generating functions, we first assume that 

an = 0 for n < 0 , and then write down a single equation that holds 

for all n :

a = Ua - Ua _ + 26 . n n-l n-2 nl

nNow, multiply both sides of the equation by z and sum over all n :

Z  a z11 = U Z  a ..z11 - U Z  a zn + 2 E  6 , zDn n-l n-2 nln n n n

= I\ a z11 - bz^ Z  a z11 + 2z n nn n

This is now a simple equation which can be algebraically solved for the

generating function

«/ \ 2zA(z) = -------- ?
1 - bz + bz

2z
(l-2z)2

Z  n (2z)n 
n >0

Therefore, setting coefficients of z equal, we have shown that a^ = n2n .
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This same technique can be extended to derive a general solution

for linear recurrence relations with constant coefficients. It is also

appropriate to use generating functions to attack more difficult problems

such as non-linear recurrences or recurrences with non-constant

coefficients, although more complex functional equations will be involved.

There are many examples of this in the text.

When generating functions are used to represent probability

distributions, they have several other useful properties. Suppose

that (p,) represents the probability that sane random variable X K
defined in nonnegative integers takes on the value k . In particular, 

the sequence has the properties

p, > 0 k = 0,1,2, ...

and

A  Pk = 1 ■k >0

Then the "probability" generating function

P(z) = Z Pkzk 
k >0

is a very useful way of describing the distribution of values of X . 

First, notice that P(l) = 1  by definition. Next, the average value 

of X is simply

Z kp. = P'(l) (1*6)
k >0

and the variance is

Z (k-P'(l))2p = P"(l) + pt(i) - (P»(l) ) 2 . (1*7)
k >0
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These fo rm u la s  a re  e s p e c ia l ly  s ig n i f i c a n t  because, i f  we a re  in te r e s te d

o n ly  in  know ing th e  average  and s ta n d a rd  d e v ia t io n ,  th e n  we need n o t

know th e  s p e c i f ic  va lu e s  o f  ( p . )  i f  we can f in d  th e  g e n e ra t in g  fu n c t i  n

H ig h e r moments o f  th e  d i s t r ib u t i o n  can be o b ta in e d  in  a s im i la r  m anner.

Suppose t h a t  we have tw o  p r o b a b i l i t y  g e n e ra t in g  fu n c t io n s

P (z) = E  Pvz and Q (z) = E  q ,z  . C o n s id e r th e  p r o b a b i l i t y  
k  > 0  k  > 0

g e n e ra tin g  fu n c t io n  form ed by  ta k in g  th e  p ro d u c t o f  th e s e  tw o :

R(z) = P (z )Q (z )  = E  E  p q zn
n > 0  0 < k  < n  *  n " K

Then th e  mean o f  th e  d i s t r ib u t i o n  d e s c r ib e d  by R(z) i s

R ' ( l )  = E  E  n Pk qn . k  
n > 0  0 < k  < n

i ^  k ̂ n-kk >0 n >k

E  E  (n+k)p q 
k >0 n >0

E  p, E  n q + E  k  p E  q
k  > 0  n > 0  n k  > 0  n > 0  n

R'(l) = Q*(l) + P’(l) , (18)

o r  th e  mean o f  th e  p ro d u c t i s  th e  sum o f  th e  means. S im i la r ly  th e  

v a r ia n c e  o f  th e  p ro d u c t i s  c a lc u la te d  by  f i r s t  f in d in g  th e  second 

d e r iv a t iv e  e v a lu a te d  a t 1 :
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„,,(!) , 2 z  n(n-l)pk q„_kn >0 0 <k <n

£ E (n+k) (n+k-1) p. q k >0 n >0 k n
E E (n(n-l) + k(k-l) + 2nk) p, q 

k >C n >0 K n

p E n(n-l)q + E k(k-l)p E q + 2 E kpR E n qn k>0 n >0 k >0 n >0 k>0 n>0

= Q"(l) + P"(l)+ 2P*(1)Q'(1)

so that the variance of the product is

R"(l) + R'(l) - (R1 (1)

= Q"(l) +P,,(1) + 2P'(1)Q'(1) + P'(l) + Q' (1) - (P’(l) +Q'(1) ) 2 

= Q"(l)+Q*(1) - (Q'(l))2 +P”(l) + P'(l) - (P(l) ) 2 , (̂ 9)

the sum of the variances. This property of probability generating 

functions (actually we have not even used the fact that the coefficients 

are nonnegative) is very important in a practical sense because it 

says that we can calculate the mean and variance of distributions 

described by complex generating functions by expressing the generating 

function as a product of simpler generating functions, then summing their 

means and variances.

In all of the methods involving generating functions, we have 

stressed formal manipulations of power series, without regard to the 

fact that the manipulations are valid only if the series converges for 

some value of the argument z . We will ignore questions of convergence 

because we are using generating functions only as a problem solving tool.
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It is not worthwhile to concern ourselves with convergence because we 

can nearly always use induction to prove that our answers are correct.

In fact, it is occasionally the case, as we have seen in our brief look 

at the finite difference calculus, that what seem to be invalid formal 

manipulations lead us to a correct answer. This does not occur in the 

study of Quicksort, however, and all of the power series dealt with in 

the text do behave properly.

Most of the analysis in the text is concerned with finding the 

values of some function , where N is the size of the file being 

sorted. In most of the problems, we are able to get simple exact 

expressions for X^ , but in a few cases the exact answers are too 

complex and it is necessary to resort to asymptotic representations, 

where we derive an answer that is very close to X^ for large values 

of N • (The methods that we use have the property that we can theoretically 

extend the accuracy as much as we might desire.) Because such cases are 

rare in the analysis of Quicksort, we shall only lightly treat this topic.

A much fuller explanation may be found in Knuth ([16], Section 1.2.11).

The basis for asymptotic analysis is the "0 " notation, which 

enables us to conveniently suppress details of the approximation. When 

the notation 0(f(N)) appears on the right hand side of an equation, it 

means that the quantity X^ represented by 0(f(N)) satisfies the 

inequality |x | < M|f(N)| for some constant M , when N is larger 

than some constant N„ • For example, the tail end of any absolutely 

convergent power series can be bounded by a constant so that, for 

example, we have

In N 2 2N
1 1 (50)
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and

+ 1 +  +  • • • +  _ L k  +  ° f  t s t !  •  ( 5 1 )N 2N k'.rr \ N J

The notation is convenient because it allows us to express the error 

involved in our approximations in one term, omitting all the details. 

There are several elementary properties which are easily proven from 

the definition: for example we can replace 0 ( I )  + l b* ° ( s )  *

N0( ? )  by ° ( i )  ; ° ( i ) i C ( ? )  by  ° ( i ) ! e t c - we

are generally content, from a practical standpoint, to get answers 

accurate to within 0 ( I )  , since this means that if N is bigger 

than 1000 or so, the answer will probably be accurate to within a 

few decimal places.

In addition to the power series described above, we use only some 

very simple asymptotic formulas. We have already referred to one such 

formula,

H,, = + , (52)

and a few others are used in the text:

4 2) - T - | + 0 ( ^ )  > (53)

i >N ia fa-l)Na_1 2N& •cO ) (5*0

and
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The formulas ($2), (5̂+) > and. (55) follow directly from the Euler-McLaurin 

summation formula which is an important equation that provides a 

quantitative correspondence between finite sums and definite integrals —  

see Knuth ([16], Section 1.2.11). Equation (55) then follows directly 

from (5) and (5 )̂.

525



f =0

* 0 0
>

—  ; —  y — - j • •

>



m

In x 

lg x 

7

See Eq. (26)

£  A
k >0

k!

loge x

log2 X

lun (H - In n) v n 'n -*oo

Stirling number of the first kind.

base of natural logarithms,

natural logarithm.

binary logarithm (to the base

Euler's constant,

x

LXJ

r x  i

(x)

x mod y

6 . . ij

0(f(n))

-x if x < 0 ; 
x otherwise

greatest integer < x

least integer > x

x - [_xj

-y LvJ
1 if i = j ,
0 otherwise.

See comments preceding 
Eq. (52)

absolute value.

floor function, 

ceiling function, 

fractional part.

the remainder when x is divided
t>y y •

Kronecker delta function.

notation for asymptotic 
approximation.

n = 3-lUl5926535

n2 = 9.86960IIOIO

In 2 = = 0.6931171805

lg e = = 1.UU2695010888963107359921681001

7 = 0.57721566I9 
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APPENDIX C

In this Appendix we shall examine some of the issues involved when 

it comes to programming Quicksort in real programming languages and 

running it on a real computer. Of course we cannot treat this topic 

exhaustively, but the few examples studied will bring out a number of 

important issues. We shall study implementations of Program 2.1+ in 

ALGOL W and FORTRAN H for the IBM S/3f<i0, and we shall look at some 

compiled code for these programs and compare it with an efficient 

assembly language implementation of the inner loop. Some final comments 

are included on the conditions under which the programs that we have 

studied are appropriate.

To begin, let us consider the implementation of Program 2.1+ in a 

real "Algol-like" language which is like the mythical Algol-like language 

used in the text: namely ALGOL W. (This language is described by

R. L. Sites, "ALGOL W Reference Manual", Stanford University Computer 

Science Report STAN-CS-71-230.) There are two main problems which 

arise. First, there is no "exchange" statement, and we must replace 

exchanges such as " A[i] : = : A[,i] " with three assignments:

" t := A[i]; A[i] := A[j]; A[j] := t ". Second, there is no control 

construct as general as loop ... while ... repeat , and our various 

loops must be implemented using the simple for or while statements, 

or go to statements.

There are four loops to consider in the partitioning phase: the

outermost loop, which terminates when the stack is empty; the partitioning 
loop, which terminates when the i and j pointers cross; and the two



innermost scanning loops, which involve the actual key comparisons.

The scanning loops are simple repeat constructs and can be programmed 

using a standard transformation:

loop i := i+1 while A[i] < v repeat; 

is exactly equivalent to

i := i+1; while A[i] < v do i := i+1; 
in ALGOL W. The partitioning loop is an example of a loop which is 

performed " n and a half 11 times (see [ ]): when it is implemented 

with a while statement in ALGOL W, it results in an extraneous test 

on entry to the loop and an extra exchange on exit. We could eliminate 

the former by jumping into the loop; and the following implementation 

of Partitioning Method 2.h shows that the exchange is not too costly.

i := f; j := r+1; r := A[I]; 
while i < j do begin

i := i+1; while A[i] < v do i
j := j-1; while A[j] > v do j
t := A[j]; A[j] := A[i]; A[i]
end;

A[i] :=A[j];A[j] :=A[i];A[f] := t;

= i+1 ; 
= j-i;
= t;

(The last three assignments implement " A[i] :=: A[j] ", to undo the 

extra exchange, followed by " A[j] :=: A[£] ".) The fourth loop, the 

outermost, is best implemented using a go to structure in the manner 

of the assembly language implementation given in Appendix B. Otherwise, 

since ALGOL W doesn't have "event variables" we would find ourselves 

testing to see if the stack is empty even on occasions when we haven't 
touched it.
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The following four pages are the listing of a run of an ALGOL W 

program embodying these ideas. The first page is a listing of the

program, which includes code to initialize the array A to a sequence

of 1+00 pseudo-random numbers and to print them out. (The value M = 9

is used as the cutoff for small subfiles: the best value must be

determined from the compiled code.) The second and third pages are 

the unsorted and sorted sequences as printed out by the program, and 

the fourth page shows the instruction frequency counts for this run of 

the program. These can be checked with the formulas for the expected 

values of the various quantities derived in Chapter 5. For example, the 

program used 2359 comparisons in the scanning loops and Chapter 5 tells 

us to expect about 1+Cl'Ĥ -, + 1) 521+9 comparisons. The various

other quantities can be similarly checked, though we haven't yet looked 

at the coefficients of any of the quantities.
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Our second example is an implementation of Program 2.U in FORTRAN H. 

Because of the rather limited control constructs allowed by FORTRAN, 

this implementation is a direct adaptation of the assembly language 

implementation given in Appendix A. The following four pages are the 

listing of a run of this program, under the same conditions as the 

ALGOL W program just presented.
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In order to study the efficiency of these programs we have to 

look at the compiled code to get some idea of what the coefficients 

of the various quantities are. This is of course highly dependent on 

the kind of compiler used and the design goals of the compiler writer.

To focus our attention on the issues involved let us examine the compiled 

code for just one statement in the inner loop of the programs above:

the statement which implements the right pointer scan,

loop: j := j-1; while A[jJ > v repeat;

in Program 2.b. The table below shows the code produced for the corresponding 

statements in the programs above by the ALGOL W and FORTRAN H compilers 

in operation on the IBM S/360-67 at Stanford University on March 2, 1975.

The third column is the result of the "optimizing" phase available for 

the FORTRAN H compiler, and the fourth is the code that a good assembly 

language programmer would produce (corresponding to Program 2 .Ua ) .

ALGOL W FORTRAN H FORTRAN H hand-coded
(optimized) j

L 2,J SCAN L 0,J SCAN SR 7,11 SCAN SR 7,11
S 2,=F'l' s 0, =F*1' A 5>=F'-V C 9,A(7)
ST 2,J ST 0,J LR 10,5 BH SCAN
L 2,J LR 6,0 L 9>a (5)
SLL 2,2 SLL 6,2 c 9, V (Reg. 11
AL 2, A L 0,A(6) BH SCAN contains 1+)
L 2,0(2) C >0

C 2, V L 5, =A' SCAN1 (Reg. 11
BNH OUT EHR 5 contains 1 )
L 2, J
S 2,=F*1» 
ST 2, J 
B SCAN

OUT
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(This code has been "dressed up" a little with labels to make it more 

readable.)

We can find simple reasons for nearly all of the discrepancies in 

this table. First, the ALGOL W code is slightly longer than the 

FORTRAN H code only because we had to use the while ... do statement.

If ALGOL W allowed us to write repeat j := j-1 until A[j] < v; then 

we might imagine that the compiler would produce the same code, except 

with the last four instructions deleted, the label SCAN moved to the 

first instruction, and " BNH OUT 11 changed to " BH SCAN ". The first 

two columns would then be comparable (and very inefficient). Both use 

three memory reference instructions to decrement the pointer, then load 

A(j) and compare it with V in memory. The ALGOL W program has an 

unnecessary " L 2,J " instruction at SCAN , and it takes two instructions 

to load A(j) when one (" L 2,A(2) ") would suffice; but the FORTRAN H 

program has an unnecessary " LR 6,0 " instruction (since 0 can’t be 

used as an index register) and it takes two instructions for the branch 

at the end when one (BH SCAN) would suffice. Since the s/360 has 
byte addressing, both programs need to compute the displacement to A(j) 

by multiplying J by four (" SLL 2 "). Any assembly language programmer 

will avoid this by simply representing J by U*J throughout the program, 

but the compilers have difficulty doing this. In fact, nearly 10$ of the 

instructions in the ALGOL W and FORTRAN H compilations of the complete 

Quicksort programs given above are " SLL 2 " instructions. Even in the 

optimized code, this leads to inefficiency: registers containing both

J and U*J are maintained.
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A more interesting inefficiency in the FORTRAN H optimized program 

is that it did not decide to keep V in a register, but rather to load 

A(j) into a register and then compare it with V in memory. To see a 

reason for this, let us examine the full inner loop:

FORTRAN H
(optimized) hand-coded

B INTO B INTO
LOCF ST 9»A(U) LOOP L 9,A(7)

ST 8,A(10) L 8,A(6)
LSCAN AR 6 ,11 ST 9,A(6)

A U,=F'U» ST 8,A(7)
INTO L 8,A(U) LSCAN AR 6 ,1 1

C 8,7 INTO C 5,A(6)
BL LSCAN BH LSCAN

R5CAN SR 7,11 RSCAN SR 7,11
A 5, =F' C 5,A(7)
LR 10,5 BL RSCAN
L 9,A(5) CR 6,7
r> 9,V BH LOOP
EH RSCAN
CR 6,7 (Reg. 11 contains
BH LOOP

('Reg. 11 contains 1)

We now see that the reason that A(l) and A(j) are loaded into 

registers is to make the exchange efficient: it requires only two store

instructions. This is of course less efficient than the hand-coded 

version, since the two load instructions saved are effectively pushed 

into the inner loop.



However, we should not be too harsh on the FORTRAN compiler, 
because the optimized code is actually quite good. If we look at the 
code produced by another widely used compiler, we can get a much better 
idea of the "pitfalls of compilation". It is easy to produce a PL/l 
program from the ALGOL W program just given, almost by direct translation. 
The following code was produced by the PL/l Optimizing Compiler 
(version 1 R 2.1 FTF56) on the IBM S/36O-67 at Stanford University on 
April 10, 1975 for the statement

J = J-l; DO WHILE (A(J) > V); J = J-l; END; 
which corresponds to those we studied above.

unoptimized optimized
0PT=TIME; (REORDER)

L 15,J L 15, J
S 15,=F'V S 15, =F' V
ST 15, J ST 15, J
L 9>J LH 8,=H*U'
SLA 9 , 2 MR lU,8

L 6 , a (9) SLDA lU, 52
C 6 ,  v ST lU, FOURJ
BNH OUT LR K,lh
L 15,J SCAN L 7 , FOURJ
S 15, "F’V L 6 , A ( 7 )
ST 15, J C 6 ,  v
B SCAN BNH OUT

AH 7 , = H ’ - U ’
ST 7 , FOURJ
L 15,J
S 15, =F'U*
ST 15, J
B SCAN

OUT
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The compiler recognized that the " SLA 9,2 " is undesirable and could 

be removed by keeping a variable with the value U*J . But this does 

not lead to a savings because the obvious optimizations of keeping J , 

POURJ , and F'U* in registers are missed entirely. The optimized

code is far less efficient than the unoptimized.

Although it is fascinating to study the comparative efficiencies 

of compiler produced code in this way, we have begun to stray some from 

our topic. We are interested in the implementation of Quicksort, not 

of optimizing compilers. It is no surprise to a student of compiler 

construction that a good optimizing compiler will produce good code 

(though Quicksort will give it a workout), but which is not quite as 

efficient as a hand-coded version. Fortunately, the Quicksort algorithm 

is not very difficult to program in assembly language and if the program

is to be run often, or on a very large file, it is worthwhile to do so.

Of course, the median-of-three method described in Chapter 8 should be 

used to reduce the average values of the various quantiti es involved in 

the running time of the program, and the "loop unwrapping" technique 

described at the end of Appendix A should be used to reduce the 

coefficient of the overhead associated with each comparison. On the 

other hand, if we are only going to use the program a few times, and 

space is not a problem, Program 2.2 may well be quite acceptable. Some 

of the tradeoffs involved in choosing a proper implementation are 

summarized in the following diagram:
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size of files to be sorted

(The numbers in this diagram represent the various programs that we have 

studied. The dotted lines in the areas for Programs 2.2 and 8.1 are 

meant to indicate when it might be worthwhile to modify those programs 

to ignore small subfiles and insertion sort after partitioning.) Near 

the bottom of this diagram, the methods are ordered by their relative 

ease of implementation; near the top, they are ordered by the average 

running times that we have calculated. For example, the crossover point 

between Program 2.UA and Program 8.2A is approximately where

11.67(N+l) InN - I.7UN - 1 8.7U = 9• 57 N In N + 7 • l^N , or at about N = 67 . 

Program 2.UA will always be faster for files smaller than this, and 

Program 1.JA will be even faster for very small files.

3^3



It is entertaining to construct such diagrams, and we could include

more based upon other parameters. However, the final choice of

implementation obviously depends on the circumstances under which the

program will be used, and the reader that has persisted this far

should have little difficulty making the proper choices for his

application. One final caution: all of our deliberations have been

based on the assumption that the programs run on a conventional computer,

and sort records on well-distributed keys which all fit into memory.

There are a variety of situations where Quicksort might be not at all

appropriate: for example if people's lives depend on the speed of the
2sorting program, then the 0(N ) worst case may be unacceptable. If a 

large amount of auxiliary memory is available, then a distribution type 

sort (address calculation) may be faster. In addition, exotic hardware 

features may make the tradeoffs involved very different. For example 

Quicksort may not be very good for computers which allow parallelism, 

and there are better methods for processors with highly optimized 

arithmetic units. Loop unwrapping may be disastrous on computers which 

have instruction stacks, and it might be best to insertion sort small 

subfiles when they are encountered in a paging environment. However, 

in a large variety of situations, Quicksort is the method of choice, 

and the programs that we have studied are extremely useful in practical 
applications.
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