
Acta Informatica 7, 327--355 (1977)
�9 by Springer-Verlag 1977

The Analysis of Quicksort Programs*
Robert Sedgewick

Received January 19, t976

Summary. The Quicksort sorting algorithm and its best variants are presented
and analyzed. Results are derived which make it possible to obtain exact formulas de-
scribing the total expected running time of particular implementations on real com-
puters of Quick, sort and an improvement called the median-of-three modification.
Detailed analysis of the effect of an implementation technique called loop unwrapping
is presented. The paper is intended not only to present results of direct practical utility,
but also to illustrate the intriguing mathematics which arises in the complete analysis
of this important algorithm.

1. Introduction

In t96t-62 C.A.R. Hoare presented a new algorithm called Quicksort [7, 8]
which is suitable for putting files into order by computer. This method combines
elegance and efficiency, and it remains today the most useful general-purpose
sorting method for computers. The practical utility of the algorithm has meant
not only that it has been sfibjected to countless modifications (though few real
improvements have been suggested beyond those described by Hoare), but also
that it has been used .in countless applications, often to sort very large, f i les .
Consequently, it is important to be able to estimate how long an implementation
of Quicksort can be expected to run, in order to be able to compare variants or
estimate expenses. Fortunately, as we shall see, this is an algorithm which can be
analyzed. (Hoare recognized this, and gave some analytic results in [8].) I t is
possible to derive exact formulas describing the average performance of real
implementations of the algorithm.

The history of Quicksort is quite complex, and a full survey of the many variants
which have been proposed is given in [t 7]. In addition, [t 7] gives analytic results
describing many of the improvements which have been suggested for the purpose
of determining which are the most effective. There are many examples in [~ 7]
which illustrate that the simplicity of Quicksort is deceiving. The algorithm has
hidden subtleties which can have significant effects on performance. Furthermore,
as we shall see, simple changes to the algorithm or its implementation can radically
change the analysis. In this paper, we shall consider in detail how practical
implementations of the best versions of Quicksort may be analyzed.

In this paper, we will deal with the analysis of: (i) the basic Quicksort algo-
ri thm; (ii) an improvement called the "median-of-three" modification which
reduces the average number of comparisons required; and (iii) an implementation
technique called "loop unwrapping" which reduces the amount of overhead per
comparison. These particular methods not only represent the most effective vari-

* This work was supported in part by the Fannie and John Hertz Foundation, and
in part by the National Science Foundation Grants No. GJ-28074 and MCS75-23738.
22 Acta Informatica, Vol. 7

328 R. Sedgewick

ants of Quicksort, but also they illustrate the interrelationships between algo-
rithm, implementation and analysis.

A purpose of this paper is to demonstrate that a program of practical utility
and importance can be tully analyzed mathematically. This analysis will show us
precisely how effective our improvements are, and it will allow us to predict
exactly how long we may expect the programs to run. The analysis is sometimes
difficult and complicated due to the many details which must be accounted for,
but it is also sometimes elegant and fascinating. We shall make use of a variety
of techniques and concepts from concrete mathematics, and this paper is as much
about the analysis of algorithms as it is about Quicksort.

I t is common in studying the performance of programs to carry out an approx-
imate analysis by (i) characterizing the program in terms of a few basic operations
(such as "comparisons" and "exchanges" for sorting programs) ; or (if) dealing only
with the "leading term" of the running time. While such approximate results can
be useful in classifying algorithms, it can be dangerous to use them to compare
specific programs, and many erroneous conclusions have been drawn in the litera-
ture. In this paper we shall derive exact formulas for the total average running time
of the programs as implemented on a typical computer. These results allow us to
properly choose parameters left unspecified during the implementation, to in-
telligently compare the programs, and to accurately predict their performance.

The two main topics of this paper, analysis of algorithms and Quicksort, have
been treated extensively elsewhere in the literature. Hoare's original paper [8]
and 'Sedgewick's thesis [17] cover most of wha t is known about the -Quicksort
algorithm and its analysis; and.Knuth 's series of books [9, t 0, t 1] describe most
of the techniques that are known about algorithmic analysis in general. (In addi-
t ion, [~1] contains an excellent treatment of Quicksort.) A full t reatment of
practical issues involved in real implementations can be tound in [t 9]. This paper
complements these works in the following ways. First, the best of the algorithms
are chosen, based on the results in [t 7], and those specific algorithms analyzed.
Second, the analysis of loop unwrapping is much more complete than that given in
[t 7]. In particular, a new analysis of the effect of multiple unwrapping is given.
Third, the analysis of Quicksort and the median-of-three modification is organized
in a manner less specific to the algorithms, so that it may be used directly in the
analysis of future modifications. Also, the algorithms have been updated so that
they work efficiently when equal keys are present (see [t8]). Although this paper
has been designed to stand alone, a reader who feels that details are lacking
should consult [t 7] ; someone wishing to implement a practical sorting program
should read [t9]; a reader interested in the analysis of algorithms should be
familiar with [9-t t] ; and anyone interested in Quicksort should certainly read [8].

2.1. Basic Algorithm

Quicksort is a "divide and conquer" procedure which sorts a file A [t]
A [N] by first rearranging it to make the condition A [t] A[i -- t] ~ A [1"]

A ~" + t], . . . , A IN] hold for some/', then recursively applying the same proce-
dure to the subfiles A [t] A ~' -- t] and A [j" + t] A IN]. There are several
ways to specify this rearrangement procedure, which is called "parti t ioning". (Due
to the many details which must be attended to, nearly all published implemen-

The Analysis of Quicksort Programs 329

tations of Quicksort differ.) The following method has been shown to have several
desirable properties:

procedure quicksort (integer value l , r) ;

corn m e n t The array A is declared to be A [1 : N + ~], with A IN + t] = ~ ;
if r - - l > M then

i : - - l;j:---- r + t ; v : = A [l];
l oop:

loop: i : = i + t ; whi le A [i] < v repeat;
loop: i : = i - - t ; whi l e A [j'] > v repeat ;

until i < i :
A [q : = :A [:'];

repeat;
A [t] :---- :A [i];
i f i - - l < r - - i + t

then quicksort (1, i - - t) ; quicksort (i, r);
e lse quicksort (i, r); quicksort (l, i - - t) ;

endif;
endif;

(This program uses an exchange operator : = : and the control constructs loop. . .
repeat and i f . . . endi f , which are like those described by D. E. Knuth in [t2].)

If M ---- 0 and all the keys are distinct, then the~rogram operates exactly as de-
scribed above. First the file is partitioned: the leftmost element is chosen as the
partitioning element; then the rest of the array is divided by scanning from the
left to find an element > v, scanning from the right to find an ;element < v,
exchanging them, and continuing the process until the pointers cross. The loop
terminates with /" + t----i at which point the exchange A [l] : = :A []] completes
the job of partitioning A [l] A [r]. (The notation A [N + t] = c~ is meant to
indicate that A IN + 1] must be _~ all of A [t] A IN]: this condition is
included to stop the i pointer in the case that v is the largest of the keys.) After
partitioning, the smaller of the two subfiles is sorted first to limit the recursive
depth required. The procedure call "quicksort (t, N)" will therefore sort A [t],
. . . . A [N] (if M-----0).

The parameter M is included in response to the observation that the program
is not particularly efficient for small files. A method which is known to be efficient
for small files is insertion sorting: scanning through the file, inserting each element
into place among those previously considered by moving smaller elements up to
make room. It may be implemented as follows:

procedure insertionsort (l, r) :
l oop for r - - t > i > l :

i fA [i] > A [i + t] then
v:= A[i]; j : = i +t ;
loop: A [3"- t] : = A [J]; i :---- i + t whi l e A [j] < v repeat;
A [./'--t] : = v;

endif;
repeat;

22*

330 R. Sedgewick

3 1 4 1 5 9 2 6 5 3 5 8 9 7 4 3
Quicksort: 2 1 3 t 3 3 9 6 5 5 5 8 9 7 9 4

7 6 5 5 5 8 4 9 9 9
4 6 5 5 5 7 8

Inse~ionsort: 2 1 3 1 3 3 4 6 5 5 5 7 8 9 9 9
5 5 5 6

1 3
1 1 2

a 1 2 3 3 3 4 5 5 5 6 7 8 9 9 9

Fig. 1. Quicksorting

(The notation r - - 1 ~ i ~ l means that i takes on the values r - - i , r - - 2 , . . . ,
l + l, l in that order.) The obvious way to improve Quicksort is to replace the last
" e n d i f " with "e l se insertionsort (l, r) end i f" . However, it turns out to be better
to ignore small subfiles during partioning, then insertion sort the whole file alter-
wards. The procedure calls

i f N > M then quicksort (t, N) endif;
insertionsort (1, N);

will quite efficiently sort A [t ~ A IN D. One aim of the analysis of these pro-
cedures below is to determine the best value for the parameter M.

�9 When we refer to the "basic Quicksort algorithm" below, we will be ;onsider-
ing' these two procedures, invoked in this way.

If equal keys are present in the files to be sorted, the reader, may verify that
the programs abov.e still operate properly and efficiently, though not ~xactly as
described above. The subject of Quicksort with equal keys is treated in detail
in [18]. In this paper, we shall assume throughout that the keys being sorted are
distinct.

Figure ~ shows the operation of Quicksort, with M = 5, on the first t 6 digits
of ~. Each line in the Quicksort section is the result of one "partitioning stage",
and boldface elements are those put into position by partitioning. Each line in
the insertionsort section is the result of a non-trivial insertion, and the elements
shown are those moved.

2.2. Analysis of the Basic Algorithm

The total running time of the sorting method described above can, for most
implementations, be described in terms of the five variable quantities

A -- the number

B -- the number

C -- the number

D -- the number

E -- the number

of partitioning stages,

of'exchanges during partitioning,

of comparisons during partitioning,

of insertions, and

of keys moved during insertion.

In the Quicksort procedure above, C is the number of times i : = i q- t is executed
plus the number of times/' : = j -- 1 executed within the scanning loops; B is the

The Analysis of Quicksort Programs 331

number of times ,4 [i] : ~ : A ~'] is executed in the partitioning loop; and A is the
number of times the main loop is iterated. In the insertionsort procedure, D is
the number of times v is changed, and E is the number of times A [3" -- t] : ~ A ~']
is executed within the inner loop.

Other quantities may be involved in some implementations. For example, the
two alternatives of the statement " | f i - - ! < r -- i . , ." might require the execution of
different amounts of code on some computers, because of lack of symmetry in the
instruction set or too few general registers. In this case, it would be necessary to
know the number of times the left subtile is smaller than the right. Such quanti-
ties can be studied in exactly the same way as the standard ones, using the
methods described below.

As another example, consider what happens if the recursion in the Quicksort
program above is transformed into an iteration based on an explicit stack. The
standard way to effect this transformation involves moving the test for small sub-
files to the point of invocation of the recursion, so that subfiles of M or fewer
elements never are put on the stack. In this case, the total running time of the
program will depend on an additional quantity

S -- the number of stack pushes.

This is the number of times both subfiles have more than M elements. I t will arise
in determining the running time of careful implementations of Quicksort.

The goal of our analysis in this paper will be to find the average values of
the various quantities under the assumption that the keys A [1] A [N] are
distinct and randomly ordered. From this information it is easy to calculate the
total expected running time for .any particular implementation..(It is also poss-
ible to find the maximum and minimum possible values of the running time, and to
estimate the variance [17]. Furthermore, some results have been obtained for the
case when equal keys are present [t8].)

To calculate the total running time, it is necessary to determine the overhead
associated with each quantity. For the model in [11] and [t 7], where instructions
which do not reference memory cost one time unit and instructions which do
reference memory cost two time units, the total running time is

24A --b t t B ..b 4C .-k9S "-k 3D "-k 8E --b 7N

(with 3 D + 8E "b 7 N - 6 contributed by the insertionsort). The relative values of
these coefficients are typical, and similar expressions can easily be derived for any
particular implementation on any particular real machine.

The basis for the analysis is to take advantage of the recursive structure of
the program to set up recurrence relations describing the average value of the
various quantities. I t is not difficult to verify that the subfiles produced by
partitioning in the Quicksort program above are random (although some partition-
ing methods do not preserve randomness [t 2, t 7]). This means that by calculating
the average values of the quantities for the first partitioning stage, we can set up
equations describing their average values for the whole program.

When a random file of N elements is partitioned, the kth smallest is used as
the partitioning element with probability t /N, leaving random subfiles with k -- t
and N - - k elements. Therefore, all of the quantities satisfy recurrences of the

332 R. Sedgewick

form
t

F~,=/N--k 7 ~, (Fk_I+FN_k) f o r N > M , (t)

where F N denotes the average value of some quanti ty when a random arrangement
of N items is sorted, and /N denotes the average value of that quanti ty for the
first partitioning stage. (For the quanti ty S, the recurrence holds only for
N > 2M + t ; in the solution for S we will substitute 2M + t for M everywhere.)

The validity of (t) for the quantities D and E depends on some particular
properties of insertionsort. Full details may be found in [t7]. Both quantities
count combinatorial properties of the permutation being sorted: D is the number of
keys which have at least one smaller element to their right (or N minus the number
of "right to left minima"), and E is the number "inversions" (the number of
pairs i, i such that A [i] is smaller than and to the right of A [3"]). For random
files, it turns out that DN -- N -- H~, and E N = N (N -- 1)/4. These are our answers
for N ~ M. The total expected running time of insertionsort (and of Quicksort for
N_~M, except that the cost of the test " i f N > M " must be added) is 2N ~ +
8 N - 3 H N - 6 time units. For N > M we notice that, a f t e r partitioning, all keys
smaller than and to the right of any key must be in the same subffle as that key.
Therefore, the values of D and E for the whole file after partitioning are simply the
sums of the values for the subfiles, and (1) holds with fN = 0 . It is this property
which allows us to insertionsort the whole file after partitioning rather than
having to inserfionsort the small subfiles during partitioning.

Using standard manipulations, we can explicitly solve the recurrence (t) to
get a formula for F N in terms of IN. First, change k to N + t -- k in the second part
of the sum :

F~ '= /~ '+ -~ r ' E Fk-1 f o r N > M .

Next multiply by N and subtract the same formula for N - - t :

NF~r -- (fir _ 1) F~,_, ---- VN/N + 2F~_ x for N -- t > M.

We have used the "backward difference operator" notation 17 in this equation.
(For convenience, we adopt the convention that VN/N =---V (N[N) = N / N -
(N--1) ~N-v) Simplifying and dividing by N (N + t), we have

F ~ _ FN_ ~ VNI~
N + t ~ + N (N + I) for N > M + t .

This immediately telescopes to the solution

F N = (N + t) \-M---+-2- + ~_a g for N > M. (2)
M+2~h~ k(k + t)]

Now, depending on the form of the function/k, the evaluation of this sum could
involve some tedious calculations. We can simplify it by first rearranging the terms,

~ k Vkh lk - h - ~

+ r ~ M+2~k~_N

[k--1
+ k(k+~)'

M+ ~ N

The Analysis of Quicksort Programs 333

and then applying "summat ion by parts" to the second sum, as follows:

= 5:, h+----i- - - - i - - k + ~ '
M+2NkNN M+2Nk~N M+ N

17h IM +_______~ IX
=2 ~ k+----i- + M+~ g + ~

M+2Nk<N

Substituting, we have an alternate form of the solution to the recurrence (t):

V l k . N + t
F x = 2 (N + I) ~, k + t " ~ (/M+I+FM+I) - j x f o r N : > M . (3)

Summation by parts is a useful technique for manipulating differences within
summations tha t we shall encounter again (see [9]).

From these general formulas we can easily derive the solutions given in [1 r]
and [t 7] for the average values of the various quantities. For example, for the
number of comparisons, Ix = N + t, 171~ = 1, and /M+X = FM+I = M + 2, so the
solution Cx = (N + t) (2 Hx+ 1 - - 2 HM+ 2 + t) follows immediately. For the number

N + 1
of partitioning stages, we have IN =/M+I = FM+I = t and 171~ = 0, so A N = 2 M +-"'--'~

For the. insertionsort quantities, we have Ix = 0 from the discussion, above,
N + t

s o D x = M+9- DM+xandE N = N + I M + 2 E'~I+1' The values of DM+ a and EM+ x fol-

low from (1} and the values for random fries:

and

2
"LIM+I - - M + 1 - - X<k~M+l (k- - t --Hk_x) = M-.b 2 - - 2HM+I;

2 (k -- I) (k--2) M (M - - I)
E ~ + ~ - M +----7 ~ ' 4 - 6

l ~ k ~ M + l

The func t i on /x for the number of stack pushes is slightly more complicated.
If N ~ 2 M + 2 , then there will be no stack push, since one of the subfiles must
have ~ M elements. In particular, F2M+~=O. For N > 2 M + 2 there is a stack
push if and only if the rank of the partitioning element is between M + 2 and

N - - M -- t , so the average number of stack pushes i -~ - (N - - 2 M -- 2). Therefore

Vk/k = 1 for k > 2M + 2, 0 otherwise, and from the solution (2) we find that Sx =
N + t

1.
2 M + 3

To find B x, we have to first calculate the average number of exchanges used
during the first partit ioning stage. If A [1] is the kth smallest element in the file,
this is the number of keys among A [2] A [k] which are > A [t]. There are

exactly l such keys with probabili ty t k -- t -- t] / \ k -- t]" Averaging,

and removing the condition on k, we have an expression ~ r the average number

334 R. Sedgewick

of exchanges used during the first partitioning stage:

1 - z Z Z
l~k<N ONtNk--1 (:-_:)

1 N - - k

l<k~N (~--t) ONt~k--1
N--k--t/(k--I

f-1] kk- l - t]"

N - - 2
Two applications of Vandermonde's convolution lead to the result ~ . There~

t 1
fore by the linearity of the recurrences, B N = -~ CN -- -~ AN.

To summarize, we know that Quicksort requires, on the average,

N + I
A N = 2 M + 2 l stages,

B x = (N + I) HN+I-- "~ HM+2+ 6 M + 2 + ' ~ exchanges,

C N = (N + I) (2 HN+ 1 -- 2HM+ 2 + 1) comparisons,

HM+I / insertionsl D ~ = (N + t) (1 -- 2 - - ~ - ~]

M(M--~)
E~T---- (N -k t) 6 - ~ +-2~ moves during insertion,

N + i
and Sx-- aM q- 3 - - ! stack pushes.

(The formula for S N is valid for N > 2M + t ; the others are valid for N > M.)
By assigning appropriate coefficients to these expressions, we can compute the
total average running time. These coefficients are dependent on the amount of
time required by each of the instructions of the program. This is of course depen-
dent on the particular compiler and machine used. For the typical machine cited
above and described in El t] and [17], the total running time is 24A § t I B + 4C +
3D.-k8E..b9S+TN time units. Notice that the quantities which have high
average values, B and C, have low coefficients. This is what makes Quicksort
quick, and no matter what compiler or machine it is implemented on, these
coefficients can and should be kept low. (Any algorithm can be improved either by
reducing the average value of the various quantities or by lowering the coefficients,
so a proper implementation is very important.) Using these coefficients, we find
that the total average running time of Quicksort is

3_~5 (N + 1) HN+ 1 69
3 2 (4)

l (270 54 2~ HM+x I
+ ~ - (N + t) 8 M + 7 t - - 7 0 H M + ~ - + - M + 2 "+" 2M-b3 - - ~ - M ' ~]

time units. This formula is accurate for N > 2M + 1 only; for M < N ~ 2M + t
there are no stack pushes so 9SN must be substracted; and for ~ ~ N ~ M the
time is 2N ~- + 8N -- 3 Hb, -- 3, contributed entirely by insertionsort.

The Analysis of Quicksort Programs 335

0 1 1 I I

-10-

f(M)

15

10

5-

M

Fig. 2a. Contribution of M in Quicksort

Time (+ 10 6)
1 . 3 ~

1.2

1.i

1~0] - -

0 I I I I M
5 I0 15 20

Fig. 2b. Total running time of Quicksort for N = 10,000

From this exact formula, we can evaluate the effect of using insertion sort
for small files, and also choose the best value of the parameter M. Figure 2a
shows the values of the function

6 (270 54 HM+xl
/(M) = 8M'+'7t ~. 70HM+2+ M+------'~ + 2 M + 3 36 M + 2 /

and Figure 2b shows the total running time for N = t0,000, for small values of M.
The best value is M = 9. Although M does not affect the "leading te rm" of the
total running time, the proper choice of this value does have a significant effect,
because in practical s i tuat ions/(M) is about as large as HN+ x. For example, if we
take M = t, which occurs in naive implementations, we have a program which is
t8 % slower when N = t,000, and t4 % slower when N = t0,000. T h e optimum
value M - 9 of course depends on the particular coefficients that we have used,
but Figures 2 a and 2 b show that the precise choice is not highly critical and any

336 R. Sedgewick

value between 5 and 20 would do about as well. Notice that although all of the
quantities participate in] (M) the main tradeoff is between the inner loop of
insertion sort (represented by 8M, which comes from EN) and the inner loop of
Quicksort (represented by 7OHM+ v which comes from Bw and C~,).

t
Using the apprioximation H N = In N + y + - ~ - + 0 (t /N 2) (where y = 0.5772 t . . .

is Euler's constant), our exact formula reduces to

(N+I) in N+(N+I) ~ + / (M) --17+0 �9

Substituting for ? and the optimum value/(9) = --8.476. . . , we get the approxi-
mate formula

i 1.6667 (N +I) in N -- 1.743 N -- 19 (5)

for the average total running time of Quicksort. (We started with an exact formula,
so we could of course carry out this derivation to any asymptotic accuracy
desired.) The total running time is reasonably stable about this average, because
it has been showm (see [t 73) that the standard deviation is about N]/7 -- 2 ~*/3, or
approximately 0.648 N.

3.1. Median-of-Three Modification

One way to improve Quicksort is to use the median of a sample of three
elements from the file as the partitioning eIement at each stage. This tends to
produce bet ter partitioning splits, and so reduces the averag~ running time. Care
must be taken not to disturb the partitioning process when implementing this
modification. In the procedure above, if we assume that M ~ 3, we can insert the
statements

if A [l + t J > A Er3 then A [/ + t ~ : = :A [rJ endif;
i fA [lJ > A [rJ then A [lJ:-----:A [r] endif;
i rA F/+1] > A [l] t h e n A [l + l] : = : A [l~ endi f ;

at the beginning (after " i f r - - l > M then") . This makes A[l + t3 < A Ill < A [rj
before partitioning, so A [lj is the median of these three. Furthermore, the out-
come of the first comparison in each inner loop is determined, so a slight savings
could be achieved by changing the pointer initializations to " i : = l + t ; / : = r" .
Otherwise partitioning proceeds as before. In practical situations it might be
desirable to make the worst case unlikely by, for example, inserting the statement

A [(l + r) + 2] : = : A [l + t]

before the if statements above. (This idea was suggested by Singleton [203. To see
its value, consider what happens when the programs are used to sort a file which
is already in increasing or decreasing order. See [t 7] for a more complete discus-
sion of the worst case of Quicksort.)

3.2. Analysis of the Median-of-Three ModificatiOn

The running time of the median-of-three Quicksort depends on the same six
abstract quantities as did the running time of the basic algorithm, but their

The Analysis of Quicksort Programs 337

average values are different. The coefficients of all the quantities in the expression
for the total running time are the same, except that the coefficient for A increases to
reflect the cost of finding the median. (For the model in [t t] and [t 7] it rises from
24 to 53~, on the average.) Finding the median of three elements is a relatively
expensive operation to be performing on each partitioning stage, but, as we shall
see, it is well worthwhile.

For the median-of-three Quicksort, the average values of the quantities all
satisfy recurrences of the form

F1C~/N+ Z (N--k)(k-- l) (F,_a+F~c_k) f o r N > M : > 3

since the probability that the kth smallest element is the partitioning element is

N) . quantities we /~r = 0 as before, now (N- -k) (k - - t) / 3 For the insertionsort have

and for the Quicksort quantities, we take F~r ---- 0 for N <: M. It will be convenient
to work with a slightly different form of this recurrence:

As before,-F~r denotes the average value of some quantity, when a random file of N
elements is sorted. For the Quicksort quantities,/~r represents the average contribu-
tion of the first partitioning stage, as' before. For the insertionsort quantities, we

d e f i n e / ~ , b y t h e e q u a t i o n (~)] ~ r = 2 oak,~t ~ ' (N--k- - t)kFk . Thisallowsustotreat

all of the quantities uniformly.

To find the solution to the recurrence (6), it is convenient .to use generating
functions. Multiplying both sides by z ~r and summing on N leads to the differen-
tial equation

F' (~)
F ' " (z) = / " ' (z) + t 2 (9 -~)"

where F (z) = ~,, FNz "v and/(z) = ~ /zcz 2v. This third order differential equation
N > M N > M

might appear difficult to solve, but it is actually quite manageable. Multiplying
both sides by (1 --z) 3 gives an equation where the degree equals the order of each
term. Differential equations of this type can be decomposed and solved by intro-
ducing an operator which both multiplies and differentiates. In this case, the
appropriate operator is

OF(z) =-- - (t - z) F ' (z).

In this notation our differential equation becomes

- 0 (0 - t) (0 - 2) F (z) --- - t 2 OF (z) + (t - z) 3 1 ' " (z)

which factors to yield

- 0 (- 2 - 0) (5 - o) F (~) = (t - z p / ' " (z) .

338 R. Sedgewick

Therefore, by successively solving three first-order differential equations:

- 0 g (z) = (1 - z)~ I ' " (z),

(-- 2 - - 0) T (z) = U (z),
and

(5 - 0) F (z) = T (z),

we could get explicit formulas for F (z) and F N. However, the parameter M com-
plicates / (z), and it is best to translate back to power series. If we define U (z) =

Y, UN zN and T (z) = Y, TN z~', the difierential equations correspond exactly to
N > M N > M

the difference equations

(% (N + I)U~v+~ =NU:,,+6V~ t~v+3

(N + !) TN+ ~ = (N +2) ~v q- U~-,

and
(g + ~)F~§ = (N-- 5)~:~, + T~., ~V>M.

Knuth [t 11 shows that we can successively solve these difference eqfiations (for
the specific values o f / ~ which arise) to get the average values of the median-oh
three Quicksort quantities (also see [t 7]). However, we can proceed further; and
get an explicit solution for F~:.

The first recurrence telescopes immediately, and we find that

N U,v = 6 [7~/.~.+, (N ; 2) �9

The recurrence for T N must be divided by the summation factor (N q- t) (N -+- 2)
before it will telescope:

V'/k(k)
r~, _ TM+~ + ~ ____2_3..

Finally, if N > 5, the recurrence for F~ telescopes when it is multiplied by 6 (5) :

z (:t 31 + 2 M+~<iN~V

The initial values FM+ 1 and TM+ x can be obtained from (6). The sum in the second
term is a sum of binomial coefficients on the upper index, which evaluates simply

t ~ N + I) 7 -- (M 7+ 2)" After interchanging the ~ ~ summati~ in the d~

sum, we get the same thing for the inner sum. Performing all of the these cal-

The Analysis of Quicksort Programs 339

culations leads to the solution

As with Equation (2), the calculations involved in evaluating this function can
become exceedingly tedious i f / , is at all complicated, and the summations can be
simplified somewhat. Two applications of summation by parts lead to the remark-
ably simple expression

F, 12h _(k FN=lar+ (N)M<.<.U (k + 2) (h + t) ((N 7 + t) 42))7 N > m a x (M , 5) (8)

for the solution to the recurrence (6). The dominant term is 2,~(N + t) ~, /k/
M<k<N

(k -4- 2) (k A- t). This is the same sum that we encountered in the analysis of normal
Quicksort, where we further simplified it with one more application of summation
by parts. The result is

t2 N + I /M+I---~ " t2 @ ~ tr/~
t ar = 7 M + 2 (N--t)M+~-k:;N hWI

From these solutions to the recurrence (6) we can easily calculate the results
given in [t 1] and [t 7] for the average number of partitioning stages, exchanges,
comparisons, stack pushes, insertions, and moves during insertion for median-of-
three Quicksort.

The average number of partitioning stages is found by taking/M+I = Jar = /k = t

and 17]~ = 0 in (9), with the result Aar = 12 N + t 7 M + 2 ! -t-0 (N-6). For the av-

erage number of comparisons, we take /N =N- t -1 and V[k = t, with the result
t2 3.~__7 (N_I_I) 24 N + I

C~=--~- (N +t)(Htc+x--HM+2) A" " ~ ~ 7 M + 2 + 2 + 0 (N - 6) " Acal-

culation similar to the one for normal Quicksort shows that the average number
N - - 4 l 3

of exchanges on the first partitioning stage is ~ , so BN = -~- Car -- -~- A ~.

The calculation for S is similar. In this case we have

M+~Nk~N--M--1

As before, the recurrence (6) holds for N > 2 M A - I , so we replace M

everywherein the solution. Since V 2 (:) / , = k - - 2 , i t i smostconvenient by 2 M h - t

to use the form (7) of the solution. Substituting the values/2M+~ = 0 and/2M+S =

340 R. Sedgewick

(M-+-1)2/(2M3-+-3), the solution

3 5 M + 3
S~--- 5- (N + I) (2M+3) (2M+1) - - t +O(N -6)

follows immediately.

The results for the insertionsort quantities D and E are also most easily
/7 \

calculated using the form (7)of the solution, since in this case ~72~k ~R ~ : 0 . We
therefore have k)/

Dlv: N+I (ffdM+, + 6) ---r ~ d~+l +O(N -6)

and a similar formula holds for E. The initial values follow directly from the defini-
tion of/2v for the insertionsort quantities. For example,

2 2
and similarly dM+2----M+2--2H~+2+ -~, so Vd.~+~=t M+--------2 and

4 N + t
D x = N + t 7 m+--------2 (3HM+I--t) '

The calculation for E follows precisely the same steps.

In summary,.these calculations tell us that Program 3 requires
o

t2 N + I
A x = 7 M + 2 - - t stages,

12 37 12 N + t
B ~ , = - ~ (N+I)(H~,,+I--H~r ~ (N + I) 7 M+-----~ + t exchanges,

37 24 N +1
C x = 7 (N+I)(Hx+I--HM+~)+ ~ - (N + t) 7 M + 2 + 2 comparisons,

4 N + ~
Dzr (N + t) 7 M + 2 (3HM+x+I) insertions,

t 6 N + I
E~.:--~N+Ij~6M--17j+/ ~' x 7 m + 2 moves during insertion,

and
3 52~r + 3

SN=-~- (N + t) (2M+3) (2M+1) - - t stack pushes.

These formulas are all accurate to within 0 (N -e) and they are valid for N >
max (M, 5) except SN, which is valid forN > max (2M + 1, 5). Notice that, although
the number of partitioning stages and comparisons is significantly lower than for
Program 2, the other quantities, particularly the number of exchanges, are all
slightly higher.

The total average running time on the typical machine that we have been con-
sidering is 53�89 + t t B +4C~, + 3 D x + 8 E N +9Sx + 7 N , and substituting the

The Analysis of Quicksort Programs 341

expressions above we get the exact formula

372 111 1 /48
35" (N'+'t)HN+x ----~- +-7 (N +t) ~---g- M+ 529 372 HM+~

7 5
450 27(5M+3) 36HM+1 / (10)

M + 2 ~- (2 M + 3) (2 M + I) M+-2 7"

Again, this holds for N > 2 M + t ; for M < N ~ 2 M + t , we substract 9SN, and
for N ~ M the insertionsort time holds. The best value of M is again 9, and for this
choice of M the total average running time of Program 3 is about

t0.6286 (N + t) In N + 2 . 1 1 6 N - - 7t (l l)

as compared with l t .6667 (N + t) In N + t .743 N -- t 9 for the basic algorithm.
For N = t,000 this is a 4 % improvement; for N = t 0,000 it is about 5 % ; as N gets
very large it approaches 8.8 %, but for practical values of N the improvement is
limited to about 6 %.

3.3. Larger Samples

A further improvement in the performance might be expected if we were to use
the median of a larger sample as the partitioning element. To analyze this case
where the method is extended to employ samples of 2t + 1 elements, it is necessary
to solve recurrences of the form

\~"~/ (:t~,l. I (~ ' i + F ~ - - ,) f o r N > M ~ 2 , + I .

I f IN = N + 0 (r then methods similar to those above can be used to show that the
number of comparisons is given by

I
F~.= H,,+~--H,+I (N+I)H~+I+0(N).

(This result was first obtained by van Emden [21]; also see [I I] and [I 7]. Exact
formulas, even for IN = r have not been derived for t > I.) As t gets large, this
approaches the theoretic minimum N logaN + 0 (N) (see [14]), but very slowly.
The average namber of exchanges for the first partitioning stage comes out to be
t + 1
4 t +-~-6- N + 0 (I). Therefore, for the machine model that we have been using, the

total running time of a median-of-(2t + t) Quicksort (when t = 0 (l)) will be

I t+1 I
4 +, , / -~-+- -6] N in N + 0 (N).
H~t+t--Ht+a

The coefficient evaluates to about 1t.67, t0.66, t0.3t, t0.t2, for t = 0 , t , 2, 3 and
approaches (very slowly) the value 27/4(ln 2) ~ 9.73. Most of the improvement
occurs for t ---- 1, and larger samples will probably not be wortwhile. The cost of
finding the median, which is hidden in the 0 (N) terms above, will cancel out the
small improvement in the leading term.

342 R. Sedgewick

4.1. Loop Unwrapping

The performance of assembly language implementations of Quicksort can
sometimes be improved with a technique called loop unwrapping. Unlike the
median-of-three modification, which should be used in all implementations of
Quicksort, this improvement is useful only when the sorting routine is to be used
often or for a very large file, i.e. when it is worthwhile to implement it in assembly
language. We consider it here for three reasons. First, it illustrates how a minor
change to the implementation of an algorithm can have a major impact on the
analysis (and it demonstrates the utility of the general formulas (3) and (9) derived
above). Second, Quicksort implemented in this way might be characterized as the
fastest known sorting algorithm, so it merits careful study. Third, the general
characteristics of loop unwrapping are not well understood, and this particular
example illustrates the complexities that it can introduce and the limits of its
usefulness.

One many computers, the inner loops

loop i := i + t while A [i]<v repeat;
loop j :---- 1' - -1 whi le A ~'J > v repeat;

can be implemented with only three instructions each. For example, the first loop
above might consist of the code:

INC I, t Increment register i by 1.
CMP V, A (I) Compare v with A [i].

JG �9 " 2 Go bac1~ two instructions if v > A [i].

(Here the mnemonics I , V are symbolic register names, and the notation A (I)
denotes the memory location whoseaddress is at A plus the contents of I, or A [iJ.)
One iteration of these instructions involves four memory references; hence the
coefficient of C is 4 in our expressions for the total running time of the programs.
Loop unwrapping is a technique for reducing the pointer arithmetic overhead by
making two copies of the loop, one for A [i] and one for A [i + I ~. The code

CMP V, A + l (I)
JLE OUT1

LOOP INC I, 2
CMP V, A (I)
JLE OUT
CMP V , A + I (I)
JG LOOP

OUT1 INC 1,1
OUT :

is exactly equivalent to the code above, but the I pointer is incremented only about

as often. More precisely, there is a savings of [2 J time units each time the half

loop is iterated s times. The j loop can obviously be unwrapped in the same way.
Loop unwrapping must be carefully implemented to be effective (see [5, t l,

t9]). Although the method above always reduces the number of instructions
required no matter how many times the loop is iterated, loop unwrapping may not

The Analysis of Quicksort Programs 343

be desirable for some computers and applications more sophisticated than the
simple model considered here. For example, a few computers have "compare and
skip" and "increment and jump" instructions which allow the inner loops to be
implemented in two instructions and obviate the need for loop unwrapping. Other
computers have "instruction buffers" which make it undesirable to enlarge the
inner loops. If multiword items are being sorted, the improvement due to loop
unwrapping will be less significant. Nevertheless, the technique is of practical
interest for many sorting applications and for most computers, and we shall now
study its effectiveness.

4.2. Analysis of Loop Unwrapping

This improvement affects only a small section of the programs, so we will ana-
lyze the total average savings due to loop unwrapping and then simply subtract
the result from the formulas that we have already derived for the total average
running time of the programs. This analysis is more complicated than that we have
seen so far, because the savings on the first partitioning stage depends heavily
on the distribution of keys in the subfiles. For example, suppose that the file

7 1 8 2 9 3 1 0 4 5 6

is to be partit ioned in the normal way. The result, after 8: ---- : 6, 9: ---- : 5, t 0: = : 4,
and then 7: ---- : 4, is

4 1 6 2 5 3 7 1 0 9 8 .

Now suppose that the inner loops are unwrapped. Each loop is executed four
times: the number of iterations is 2, 2, 2, t for the i loop and t, 1, 1, t for the f loop.
Therefore the total savings is 3- But now consider the file

7 1 6 2 8 9 1 0 4 3 5

which is also partitioned, after 8: = :5 , 9: = :3 , 10: = :4 , and then 7: = : 4 , into

4 I 6 2 5 3 7 t0 9 8.

Again, each loop is executed four times, iterating 4, t, t, t times for i and t, 1, 1, t
times for f, and the savings is only 2. The numbers of exchanges, comparisons, par-
titioning stages, etc. for these two files are identical, since none of these quantities
depend on the distribution of the keys in the subfiles, but the savings due to loop
unwrapping differ. This effect makes the average saving on the first partitioning
stage difficult to derive and it complicates the calculation of the total savings.

First, we shall deal with the analysis of the application of loop unwrapping
to the Quicksort algorithm. In order to capture in the analysis the complications
described above, we must determine exactly what factors contribute to the savings.
Suppose that the partitioning element is the kth smallest in the file, and consider
the left subfile. The savings in i movements is determined by how the keys among
A [2] A [k] which are less than the partitioning element are organized. There

are r such keys with probability k - - t - - t k - - t ' as we saw when we

calculated Bar. And any time a " run" of s such keys occurs consecutively, we have

23 Aeta Infommti~a, Vol. 7

344 R. Sedgewick

a savings of I s 2+-~1J----I2]. Removing the condition on k, t a n d s , we f i n d t h a t the

average tota l savings in the left subtile on the first par t i t ioning stage is

I X E
l<:k~N l~t<k lts<t

N - , t
t] \ k - - t - - t] r s q

where Pkt, is the probabi l i ty tha t , when A [i J is the kth smallest element, a " r u n "
of length s occurs in the t keys among A E2] A Ek] which are < A [tJ. I t is

sl ightly more convenient to work with the quan t i ty Pkts, which we shall

denote by At,. By our randomness assumpt ions we can make the more abs t r ac t
in terpre ta t ion tha t ~ t , is the n u m b e r of runs of s consecutive zeros which occur in

all k - - t digit b inary numbers with t zeros and k - - 1 -- t ones (there are such

numbers) . Fur thermore , an a rgumen t complete ly symmet r ic to the above holds
for the right subtile, with exac t ly the same result. Also, since the program can be
character ized in this way even when the loops are unwrapped more than once, we

more general by writ ing g(s) ra ther than [-~] for the shall make this derivat ion

savings when the inner loops are i tera ted (s + 1)' t imes. Although implementa t ion
of mul t ip le unwrapping is difficult, it is clear by extending the technique shown
above t ha t the savings is no more than g(s) =(p - - t i Ls/pJ + s rood p when the
loop is unwrapped p times, or

I
g (s) = -~- ((p - - t) s + s mod p).

The tota l average savings due to loop unwrapping in Program 2 m a y therefore be
described by the expression

N - - k

2 (k - - 1 - - t) ~tsg(s). (12) s 2 N - ,
l'<'k~N l~-t<k l!$'~l (k - - l)

To calculate Pku, we can derive a recurrence relation by set t ing up a correspon-
dence between k - - I digit b inary strings with t zeros and certain k - - 2 digit b inary
strings. (The reader might find it useful to refer to Figure 3, which shows the
str ings and non-zero values of P,u for 2 ~_ k ~ 5. Notice t h a t P~u = P~k-s+~) (t-~+l)t.)
Specifically, all k - i digit b inary numbers with t zeros can be formed by (i) ap-
pending a t at the right of all k - - 2 digit numbers with t zeros and (ii) append ing

a 0 a t the right of all k - - 2 digit numbers with t - - ! zeros. Now, exact ly t - - s - -

(k - - s - - 2) of the m of the la t ter k -- 2 digit strings ended with exac t ly s zeros, and t - - s

ended with exac t ly s - - t zeros. All other runs of consecutive zeros are unaffected.

The Analysis of Quicksort Programs 345

0 1
k = 2 1 0 "
k = 3 t t 01 O0

t 0
k = 4 t t t t t 0 001

101 010
01 t 1 O0

k - - 5 t t l l t t 1 0 1100
1101 1010
t 0 t t 0 1 t 0
011t t001

010t
00t I

t

2 3 4

000

5
P ~ l l = t
Pro----2

P~s2 ~ t

'P~n = 3
~ t l = 2 P m = 2

~ 3 3 ~ t

0001 0000 P6n = 4
OOiO Psm=6 P5~2 = 3
0 t 0 0 ~aI=2 ~a~-----2 Pss,=2
1000 Ps4~ = t

Fig. 3. Counting runs in binary strings

Therefore, we have the recurrence

~"=~*-~"+~-'~"-~'-\t-s-t/ ~, t - s

23*

so w e have

�9 < , ~ ; ~ (k _ t , ~ , < , \ k - - 2 - - t] t - -s

�9 ~ , < , \ k - - t - - t] \ t - s / /"

o r

k - - s - - ~u--~(k-x)u+P(k-1)(t-ll'+(t-- s 3)"
This recurrence may be solved by transforming it into a recurrence on the generat-
ing function Pks (z) ----~ P~uz t, which telescopes on k. The solution is

t

~ . - (k - t) (t3) \ t - s / ..
which holds for all t < s _~ t < k.

Substituting, we have a still formidable-looking triple sum describing the to ta l
average savings due to loop unwrapping in Program 2:

--k 2 s (k--t)(kNl-- --t)(k-tls-2) g(s)

N--I
~ $, . . < k ~ N (k - - 1)

This sum can be evaluated by summing first on t, then on k, and leaving the sum on
s until last. The sums turn out to be simple convolutions, but we have to rearrange
the binominal coefficients, and pay careful attention to the limits of summation.

First,
N - - k N - - k

= --t-- -- t - - t]
N - - k N - - k

346 R. Sedgewick

The inner sums are both instances of Vandermonde's convolution. The first

(N-~-~ / (~'-,-2t, evaluates to \ k - s - 2] ' and the second to \ k - s - t] which leaves

2 y, g(,) Z ~ k - , - 3 / 2 Z g(,) Z k - , -
~,-r,,,<N ,<,,,,. (.u - - + ~ , , < ~ . .<,,,, (N- I /

k - ~ \k - a]

Eliminating zero terms and separating out the last term (for s = N - - l) in the
second sum, this is

N -- s
2

N - - I
s+2<k<N-1 (k - - l)

(N - - s - - 2 ~
2 \ k - - s - - l] g (N - - l)

+ 7 F, e(sl Y, (:"-'1 + 2 - -
l < s < N - - 2 s+ l NkNN- -1 N

I k - a/

Now, by manipulating the binominal coefficients, we find that

-

\ k - - t] s+ . t s + l \ s + l] 2 2
and, similarly,

(~ " - ' - 31 �9 2; (N - - k) \ k _ s 2]
s+2:Kk<N--i

-

Therefore, the total savings is

N (N + I)

/N -- 1~

N

g (s) g (s) g (N -- 1)
2 g(s....__~) Z s + 3 + 2 s + 2 "1-2 N '

or, changing the index of summation from s to s - l in the first two sums and
noting that g (0) = 0, we have the result

2 g(s - - t) + / ,~' Vg(s) +_2 g (N - - l)

I<sNN--2 I<sNN-2 +2
3

This formula can be simplified further with summation by parts. In general, for
any function a (s) and any integer t ~ 2, we have the identity

a(s) ~-~ t (t - - l) a(s)

,n<si;n
t --2 '((~ - , - 1 2 (s+,-1 + . , + , - , ?-~-,~ ~

,.~v~,,+z \ t - - I t - - I \ t - - l] l

The Analysis of Quicksort Programs 347

Therefore, in particular,

17=g (s) Vg (N -- t) 17g (s) = 2 Z 2
Z /s+2\ s + , N

I<s~N--2 I) l~s~N--1
2

(,) Notice that g (- - t) = -- - ~ (- - p + t + (-- t rood p)) = 0 , so gg(O) = 0 . Also, ap-

plying (t4) twice,

V~g(s -- t) Vg(N--t) 3 g(N--2) g(s-t) =3 ~ 3
Z s + - - - - - T s + t N + t 2 N t "

,a,a~'-2()3 ,~,aN (:)
Substituting these last sums into our result and collecting terms, we find that the
average savings on the first partitioning stage due to the application of loop
unwrapping to Quicksort is

2 (N + t) ~, lT,g (s -- t) 17,g(s)
2a~,:N s + t + 2 ~ s+-----~--2Vg(N--l). (15)

155~N

In the case that the loop is unrolled only once, this formula assumes a particularly

simple form. For this case, we know that g (s) = = ~ (s + s mod 2), so 17g (s) =
t 1

~- (t + s rood 2 -- (s -- t) rood 2) = ~ (t -= (.-- t)'), and 173 g (s) = (-- t)s+l. Therefore,

from (t 5) the average sayings on the first partitioning stage due to unwrapping
the loop .once is

2 Y: (_,),+I ~ a , . : ~ s + I �9 s +----------7 - - 1 + (- - t) N - r .
I~$<:N--1

This can be more concisely expressed in terms of the sum of the alternating har-
monic series, ~ (--1)'Is, which we shall denote by / ~ . In this notation, we
have la,aN

- - 2 N R ~ . - - N + (-- t) N (t6)

for the average savings on the first partitioning stage due to unwrapping the loop
once.

We shall be encountering a number of other variations on the harmonic
numbers in the analysis below. Before continuing with the analysis, it will be
convenient to summarize the various notations. The four sequences that arise in
the study of loop unwrapping are

H . = ~, ' ' ' (') la ,a . -k =Inn +Y + 2n 12nt + 0 ~ ,

n.= s
' "

Z k , - 6 + 0 , l<k'~.

, ~ = _ _ n t 0 [l o g n \ 2 l<k~ n k 2

348 R. Sedgewick

The asymptotic estimates for H. and H~) are well-known (see [1, 11]); the esti-
mate for ~,, is elementary; and the reader may find the estimate for H,* an
interesting exercise.

Returning to the analysis, we have yet to determine the total average savings
due to unwrapping the loop once in Quicksort -- we have only dealt with the
first partitioning stage. But finding the total savings is simply a matter of substi-
tuting our formula for the average savings on the first partitioning stage, -- 2 NHN
- - N + (-- t)~', into the general formula (3) that we derived for the average values
of all the quantities upon which the running time of Quicksort depends. In (3),
we have Ix = -- 2NR2v-- N + (-- 1)N,/m+x =FM+a = -- 2 (M + 1) HM+ x -- (M + I) --
(- - t) M, and [7 /k = -- 21~rk_ x - t, SO we find that the average total savings is

- 2 (; v + 1) ~, 2g~_~+~ N + ~ �9 M+2~;k~N k + l - - 2 ~ (2(M + l)Rm+l + (m + 1)+ (-7 t)M)

+ 2N/Tx + N- - (-- t)x.

To evaluate this sum, the main step is to note that

~<k$N k

After evaluating the sum and clearing up the other terms, we end up with an
exact formula for the total average savings due to unwrapping the inner loops of
Quicksort once:

- - 2) l ~ H x + l + (N + t) (4H*+1 + 1 + 4Rm+2RM+ 2 4/: /x+l-- (N+ 10/:/~+1--
(17)

+ 2H~r_~2__ 4H~+2__ t 2R~ ~q. 4 H'-M~-I + 2 + 6 (- t) M ~ ~ ~ 'r) - - 2 H N - - t + 5 (- - 1) x.

This formula is admittedly a bit unwieldy, but it is an exact result. We can
subtract this formula from our formula (4) for the total running time to get a
formula for the total running time of Quicksort with the inner loops unwrapped
once. From that expression, it turns out that the best choice of M is still M = 9.
Collecting the terms involving M into a function g (M) and applying the asymp-
totic expressions given above for the variants on the harmonic series, we find that
the asymptotic expression for our total savings is

(41n 2-- 2)NlnN + (4 y l n 2 - - 2 , + 2 (ln 2)2---~ - 101n2--t + g (M)) N + O (l o g N)

or, since g(9) --8.243, about
0 . 7 7 2 6 N l n N - - 1. 5 7t N

and the total average running time of the basic Quicksort program with the loops
unwrapped is approximately

t0.894t N l n N ~ 0.t 7 2 N . (18)

Therefore, this programming technique achieves a 5 % improvement in the total
running time of the program for all but small values of N,

The Analysis of Quicksort Programs 349

4.3. Multiple Unwrapping

Having completed this analysis, the next question that we must answer is
whether or not it is worthwhile to unwrap the loop further. As remarked above, it
is much more difficult to unwrap the loop more than once, so in most situations we
probably wouldn't be interested in doing so unless the savings were significant.
In the limiting situation (if we unwrap the loop enough times), the pointer incre-
ments can theoretically be moved out of the "comparison" loops (which are iterat-
ed at total of 2 N l n N + O (N) times) andinto tile "exchange" loop (which is iterat-
ed { N l n N + O (N) times). The savings is ~ N l n N + O (N), nearly twice the savings
that we get by unwrapping once. We cannot hope to achieve this limit because
(for example) space might be a constraint, but we must investigate how close we
can get to the limit by unwrapping the loop two, three, four times.

Most of the analysis is not at all different from what we have already done,
and as indicated above some of the results that we have derived were kept in a
general form so that we could more easily study the effects of multiple unwrapping.
Specifically, we can use Equation (t5) to find the average savings on the first

t
partitioning stage, with g(s) -- p + 1 (ps + smod(p + 1)), if the loop is unwrapped

p times. To use (t 5), we need to calculate the first and second differences of the
function g (s). I t is easily verified that, for p > 1,

Vg (s) = and P'~g (s) s rood p = t
otherwise otherwise.

Now, substituting this into (t 5), we find that the total savings on the first par=
titioning stage, when the inner loop is unwrapped (p - - t) times, is

~ -I s + t ~' + 0 (t) .
2 ~ r < N - - t s + t

\(s--X) moo p- - I (s--l) rnod p=O

Here we are dealing only with the "leading term". We could proceed as above and
get complete exact answers, but it will not be necessary to do so. Now, we can
also include the "tails" of the sums in the 0(t) term, and we can rewrite the sums
to get the expression

t I

These remaining sums are yet another variant of the harmonic numbers which
were discovered by Gauss and have been studied by Knuth in conjunction with
the analysis of Euclid's algorithm [9, t0]. Knuth defines an extension of the
harmonic numbers to cover non-integral indices:

n > l n -~- X

If x is an integer, this agress with the standard definition. But now take x = 3/P.
Then we have

t l ~ = P p n + 3 Hall' = n 3
n +-~ ,

350 R. Sedgewick

(1 ,)
Similarly, H~/p=p ~, p-n p n + 2 ' so, in this notat ion, our expression for

n~gl

the savings on the first part i t ioning stage becomes

2N p (P+H21p--Ha/,) +00)"

Therefore, from (3) the total average savings due to unwrapping the inner loops
of Quicksort (p- -1) times is

p (P + H,/p--H3/t,) NlnN +O(N). (19)

This surprisingly simple formula allows us to accurately estimate the benefits
of multiple unwrapping. Knu th shows tha t when x is a rational number less than
one, H~ can be explicitly evaluated (see E9]):

Hp /q= ~- - - - ~ ~co t ~--In2q+2 qcos in s i n - - ~,
i~ .< ~ q q

and he tabulates some small values. Table I shows the formulas for H2/p and Ha/p for
2 < p <--6, along with formulas and values for the coefficient of NInN in the total
savings due to loop unwrapping. In the line for p = 5, ~b denotes the "golden rat io" ,

�89 (V5 + 1) = t.61803 and x denotes the quan t i ty -- �89 (2 + q~)In 5 + (q~-- �89
ln(2+~b), which cancels between the two terms. Now, the coefficient of NlnN
in the original program is t ~ .66667 and as we have seen, the improvement in
this coefficient due to umvrapping the.loop once is about 6.6 %. Unwrapping the
loop a second time will yield an additional 2.29/0 improvement in the leading
t e rm; a third will yield an additional t . 0% ; a four th an additional 0.5 % ; and a
fifth an addit ional 0.4 %. The savings approaches the limit of 4/3 very slowly,
and most of the improvement is gained by unwrapping the loop just once.

Table 1. Savings for multiple unwrapping

4 (p + H~lp _ Halp) .,~ P H.,lp Hs/p p
S

2 t - - - -2 In 2 4 in 2 - - 2 0.77259
3

3 rr 3 2rt
3 -~ + ~ -- -~- In 3 1 9_ -- 9_ in 3 + 3]/7 1.01197

4 ~r ~z
4 2 - - 2 1 n 2 - f +-~- -- 3 In 2 2- - -~- + I n 2 1.12235

5 2 2 ~112-+--~ + x

n 3 I n 3 6 3 - z V ~ 2

oo 0

5 1 rr 4 rr
-X- + + X 2 1.18339

2 ~ g ~ 5 ~ 1 / ~
rr 4

2 -- 2 In 2 2 -- ~ + -~- In 2 -- in 3 1.22098
m

4
0 -~- 1.33333

The Analysis of Quicksort Programs 351

5. Median-of-Three with Loops Unwrapped

These results lead us to expect that the most effective sorting program that
we can devise will be the result of applying both sampling and loop unwrapping
once, that is, unwrapping the inner loops of median-of-three Quicksort once. But
we have yet to analyze precisely the effect of this. Sampling complicates the
analysis of the savings due to loop unwrapping just as it complicated the analysis
of all the other quantities upon which the running time of the program depends.
However, the analysis is very similar to many of the derivations that we have
already done, so we shall often refer to the analysis above for details.

First, we must determine the average savings on the first partitioning stage.
Using the notation of (t2) above, and arguing exactly as we did in Section 4.2,
we find that the savings is given by the expression

N--3

The difference between this expression and (t2) is that the probability that the

--''/(N), and then kth smallest element is used for partitioning is (k-- t) (N-- k) j \ !3 . only

N - - 3 elements (k -- 2 of which are smaller than the.partitioning element) participate
N N - - 3

in the partitioningprocess. Now,.(.k-- !) (N.-- k) / (3) (k '._ 2) simplifiesi.mmediately

to 6IN k - - t ' and we know that P c k _ l ~ . = (k - - t - - t) t - - s

we have to evaluate

t2
-z 5:

(k__t__t)l k__2__t) k--s--3

in order to find the average savings on the first
wrapping the inner loops of the median-of-three

To evaluate this triple sum, we use precisely

partitioning stage due to un-
Quicksort.
the same procedure as above.

IN- -k - - t \ N k t I N - k - 2 \ (N--k-- t~
First, wewri te (k - - t - - t) ~ k _ 2 _ t) = (-- --) ~ k _ 3 _ t) + \ k _ 2 _ t] and

apply Vandermonde's convolution to the sums on t. Then we manipulate the bi-
nomial coefficients to move those involving k to the numerator, so that the sums
on k can be easily evaluated. (As before, this must be done carefully--zero terms
must be eliminated in the sums to aviod binomial coefficients with negative upper
indices.) Performing these manipulations, we have a result analogous to (t5),
before we applied summation by parts:

3 (N + t) +

\ 3] - \ 3]

12g(N--3)
N (N - - I)

352 R. Sedgewick

And, as we did to get (t 5), we can further simplify this formula by applying sum-
mation by parts, formula (14). Applying the formula three times to the first sum
and twice to the next two, we get the final expression

V3g (s - 2) peg (s - 2)
t 2 (N + t) 2 s + l 24 2 s + l

3N.s~N 3~s~N--1

(1 2 1 7 2 g (N _ 2)) (21) V~g(s-- 1) _ (N + t) + 3
+ 1 2 2 s + l N

2<s~,V-1

for the average savings on the first partitioning stage.

We are most interested in the case where the inner loops are unwrapped once.
For this case, we have seen that 172g (s) = (-- t) ~+1, and so IT~g (s) = 2 (-- t)'+1.
Using these values in (2t), and expressing the result in terms of /7x , we get the
answer

24 NH.v + 17N-- t 2/7N_ 1 - 1 2 (-- 1)to-- 9 (22)

for the average savings on the first stage when the inner loops of the median-of-
three Quicksort are unwrapped once. Notice that for large N this is about
(24/7 x + t 7) N"- 0.3644 N, as compared with the (-- 1 -- 2 Ha,) N -~ 0.3863 N savings
that we achieved with Quicksort.

Finally, just as we did for the basic algorithm, we can substitute our formula
for the average savings on the first stage, (22), into the general formula (9) that
we found for the totals of our quantities. To make this substitution we first find

from (22) that V/k = 24/7k_~ + t7 - - ~ 2(- t) k-z After the substitution, ' the first
�9 k - - t "

sum in (9) is easily evaluated as above. The second sum introduces a number of

new terms, but can be evaluated exactly with the use of the icienfities Y'o,k,. (kt) =

t = - 3 - + �9 o~.k~;,~ o~k,::,~ t - - t - 2 - t

For brevity, we .shall not write down the very small terms and be content to
derive the answer correct to within 0 (1). The entire second sum is then simply

12
49 (N + t) (24/7N + ~ 7) + 0 (1). After evaluating the other sum and collecting

terms, we have the result

I~27 (24/Tx+l+I7)(N+t)Hx+a+-7 (N + t) (- - 2 4 H } + z - - /TN+x

629 - , /.7
+ ~ -- 24H,~I+~HM+~-- 17HM+2+ 24Hm+2+ 72 M+2 (23)

(__ |)M - - 2 6)) + 0 (t) . 1 (- 3 6 / / M + a - 3 6 (- I) M - 6 ~ 7 - ~ +

Subtracting this "exact" formula from (10), we get the total average running
time of Program 3 with the loops unwrapped once. From that expression, it
again turns out that the best choice of M is still M = 9. Collecting terms involving
M into a function h (M), we get the asymptotic expression

x2 (t 7--241n2)N lnN "-w

+ . ~ (1 7 y _ 2 4 y l n 2 _ t 2 (l n 2) 2 + 2 ~ 2 + _ ~ 2 1 n 2 + %~9 +h(M))N+O(logN)

The Analysis of Quicksort Programs 353

for the total savings due to loop unwrapping in the median-of-three Quicksort, or,
since h (9) "~ -- 65.08, about

0.6248NlnN-- t.414N
and the total average running time of the median-of-three Quicksort with the
loops unwrapped once is approximately

t0.00381nN--3.530N. (24)

The time gained by loop unwrapping is about 4 % of the total running time of the
program for N = 10,000.

We wouldn't expect multiple unwrapping to be any more effective for the
median-of-three method than for normal Quicksort. This suspicion can be con-
firmed by an analysis similar to that preceding (t9). From (2t), we find that the
savings due to unwrapping the inner loops of the median-of-three method (p-- 1)
times is (for p >3)

t44
7P (-~ + H3I'--2H'lt'+ H~I') NlnN +O(N)"

For P=3, 4, 5 the coefficient evaluates to 0.8133, 0.897t, 0.94t5 as compared
with the coefficient 0.6248 just derived for single unwrapping. The savings ap-
proaches the limit of -~{Nln N+O (N) as p gets large.

6. Conclusion

The total improvement from a .good implementation .of Quicksort to an
"optimized" implementation, the median-of-three method with inner loops un-
wrapped once, can be found by comparing (5),

1 t.6667(N+ t) lnN-- t.743 N-- 19
with (24),

10.0038NlnN+ 3.53oN,

the equations for the total running time. The improvement is about t0 % for files
in the practical size range. If a sorting program is to be used extensively, or for
very large files, as Quicksort often is, the slight extra effort required to implement
the median-of-three modification and unwrap the inner loop will be well worth-
while.

We have dealt with efficient versions of the programs which are based upon
several ideas introduced in [17]. Complete justification for the particular methods
used in the context of the countless variations which have been proposed may be
found in [t 7]. The median-of-three modification and loop unwrapping illustrate
how the practical utility of improvements to the algorithm and its implementa-
tion can be demonstrated through exact analysis. Normally, one analyzes a pro-
gram before attempting to improve it, for the analysis tells where the improvements
can do the most good. The programs presented here are the product of many
iterations of implementation and analysis.

Naturally, the implementation of a sorting algorithm for a particular applica-
tion can involve many issues not considered here. For example, we have ignored the

3 54 R. Sedgewick

problem of translating the algorithm from the high-level language descriptions
given to the efficient machine-language implementations assumed in the analysis.
This and other practical issues are treated in detail in It 7] and [t9]. However, the
analyses given in this paper make it possible to derive exact formulas for the aver-
age running time of particular implementations of Quicksort on real computers.
Many implementations differ only in the coefficients to be used for the number of
partitioning stages, comparisons, exchanges, stack pushes, insertions, and moves
during insertion, and the results given here apply directly. Other implementations
may involve new quantities, but these can be analyzed using the general solutions
(3) or (9) to the Quicksort recurrences. In addition, the general solutions may
prove useful studying the effect of future modifications to Quicksort.

Many readers may find the analysis extremely complicated, and question
whether it is worthwhile to so relentlessly pursue the exact answers to our prob-
lems. Part of the reason for this is that readers are unfamiliar with the finite
difference calculus, techniques such as summation by parts, etc., which are the
basis for many of the manipulations. This kind of mathematics arises naturally
in the analysis of algorithms and it must be mastered if we are to understand how
programs perform. The analysis of the basic Quicksort algorithm is actually
quite simple. For this program it is easier to derive the exact answer than it is to
estimate it. (See, for example, [2] for a typical , 'approximate" derivation of the
number of comparisons used by Quicksort, and compare with the derivation of
(2).) The more advanced programs require more advanced analysis, and the
mathematics involved becomes interesting in itself.

A prime attraction of the study of Quicksort is that it teaches us so much.
Proper implementation of tl)e algorithm involves a variety of techniques in
program optimization such as special handling of small cases and loop unwrapping.
Proper analysis of the algorithm invoh,es a variety of techniques in algorithmic
analysis such as summation by parts and generating functions. This combination
of algorithm and analysis makes the study of Quicksort very fruitful. I t is impor-
tant not only as a useful algorithm in practical sorting applications, but also as a
showcase for the analysis of algorithms.

Acknowledgements. Many of the derivations in this paper require painstaking
attention to detail, and the referees must be thanked for their careful checking of
the various formulas. One of the referees wishes to acknowledge the help of MACSYMA,.
a computer system whose development was supported by the Advanced Research
Projects Agency of the U. S. Government.

References

l. Abramowitz, M., Stegun, I. A. : Handbook of mathematical functions. New York:
Dover Publications 1970

2. Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The design and analysis of com-
puter algorithms. Reading (Mass.): Addison-\u 1974

3. Boothroyd, J. : Sort of a section of the elements of an array by determining the
rank of each element (Algorithm 25) ; Ordering the subscripts of an array section
according to the magnitudes of the elements (Algorithm 26). Computer J. 10,
308-310. [See also notes by R. S. Scowen in Computer J. 12, 408-409 (t969)
and by A. D. XVoodall in Computer J. 13 (1970)]

4. Brawn, B. S., Gustavson, F. G., Mankin, E.: Sorting in a paging environment.
Comm. ACM 13, 483-494 (1970)

The Analysis of Quicksort Programs 355

5. Cocke, J., Schwartz, J. T.: Programming languages and their compilers. Pre-
liminary notes. Courant Inst. of Math. Sciences, New York University (t970)

6. Frazer, Vr D., McKellar, A. C.:" Samplesort: a sampling approach to minimal
storage tree sorting. J. ACM 17, 496-507 (197o)

7. Hoare, C. A. R. : Partition (Algorithm 63) ; Quicksort (Algorithm 64) ; Find (Algo-
rithm 65). Comm. ACM 4, 321-322 (t961). [See also certification by J. S. Hill-
more in Comm. ACM 5, 439 (1962) and by B. Randell and L. J. Russell in Comm.
ACM 6, 446 (t963)]

8. Hoare, C. A. R.: Quicksort. Computer J. 5, 10-15 (1962)
9. Knuth, D. E.: The art of computer programming 1: Fundamental algorithms.

Reading (Mass.) : Addison-Wesley 1968
10. Knuth, D. E.: The art of computer programming 2: Seminumerical algorithms.

Reading (Mass.) : Addison-Wesley 1969
11. Knuth, D. E.: The art of computer programming 3: Sorting and searching.

Reading (Mass.) : Addison-Wesley 1972
12. Knuth, D. E.: Structured programming with go to statements. Computing

Surveys 6, 261-301 (1974)
13. Loeser, R. : Some performance tests of "quicksort" and descendants. Comm. ACM

17, 143-152 (1974)
14. Morris, R.: Some theorems on sorting. SIAM J. App1. Math. 17, 1-6 (t969)
15. Rich, R. P. : Internal sorting methods illustrated with PL/ I programs. Englewood

Cliffs (N.J.): Prentice-Hall 1972
16. Scowen, R. S.: Quickersort (Algorithm 271). Comm. ACM 8, 669-670 (t965).

(See also certification by C. R. Blair in Comm. ACM 9, 354 (1966))
t 7. Sedgewick, R. : Quicksort. Stanford University, Stanford Computer Science Re-

port STAN-C.S~75-492, P h . D . Thesis, May t975
18. Sedgewick, R. : Quicksort with equal keys. SIAM J. -Computing (to appear)
t9. Sedgewick, R. : Implementing Quicksort programs (to appear)
20. Singleton, ~R. C. : An efficient algorithm for sorting with minimal storage (Algo-

ri thm 347). Comm. ACM 12, t85-187 (1969). [See also remarks by R. Gritfin and
K. A. Redish in Comm. ACM 13, 54 (1970) and by R. Peto in Comm. ACM 13,
624 (1970)]

:2t. van Emden, M. N. : Increasing the efficiency of quicksort (Algorithm 402). Comm.
ACM 13, 693-694 (1970). [See also the article by the same name in Comm. ACM 13,
563-567 (1970)]

22. Wirth, N.: Algorithms -k Data Structures ~Programs . Englewood Cliffs (N. J.):
Prentice-Hall 1976

Prof. Robert Sedgewick
Program in Computer Science
Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912, USA

