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Summary. The Quicksort sorting algorithm and its best variants are presented 
and analyzed. Results are derived which make it possible to obtain exact formulas de- 
scribing the total expected running time of particular implementations on real com- 
puters of Quick, sort and an improvement called the median-of-three modification. 
Detailed analysis of the effect of an implementation technique called loop unwrapping 
is presented. The paper is intended not only to present results of direct practical utility, 
but also to illustrate the intriguing mathematics which arises in the complete analysis 
of this important algorithm. 

1. Introduction 

In t96t-62 C.A.R. Hoare presented a new algorithm called Quicksort [7, 8] 
which is suitable for putting files into order by computer. This method combines 
elegance and efficiency, and it remains today the most useful general-purpose 
sorting method for computers. The practical utility of the algorithm has meant 
not only that  it has been sfibjected to countless modifications (though few real 
improvements have been suggested beyond those described by Hoare), but also 
that  it has been used .in countless applications, often to sort very large, f i les .  
Consequently, it is important to be able to estimate how long an implementation 
of Quicksort can be expected to run, in order to be able to compare variants or 
estimate expenses. Fortunately, as we shall see, this is an algorithm which can be 
analyzed. (Hoare recognized this, and gave some analytic results in [8].) I t  is 
possible to derive exact formulas describing the average performance of real 
implementations of the algorithm. 

The history of Quicksort is quite complex, and a full survey of the many variants 
which have been proposed is given in [t 7]. In addition, [t 7] gives analytic results 
describing many of the improvements which have been suggested for the purpose 
of determining which are the most effective. There are many examples in [~ 7] 
which illustrate that  the simplicity of Quicksort is deceiving. The algorithm has 
hidden subtleties which can have significant effects on performance. Furthermore, 
as we shall see, simple changes to the algorithm or its implementation can radically 
change the analysis. In this paper, we shall consider in detail how practical 
implementations of the best versions of Quicksort may be analyzed. 

In this paper, we will deal with the analysis of: (i) the basic Quicksort algo- 
ri thm; (ii) an improvement called the "median-of-three" modification which 
reduces the average number of comparisons required; and (iii) an implementation 
technique called "loop unwrapping" which reduces the amount of overhead per 
comparison. These particular methods not only represent the most effective vari- 

* This work was supported in part by the Fannie and John Hertz Foundation, and 
in part by the National Science Foundation Grants No. GJ-28074 and MCS75-23738. 
22 Acta Informatica,  Vol. 7 



328 R. Sedgewick 

ants of Quicksort, but  also they illustrate the interrelationships between algo- 
rithm, implementation and analysis. 

A purpose of this paper is to demonstrate that a program of practical utility 
and importance can be tully analyzed mathematically. This analysis will show us 
precisely how effective our improvements are, and it will allow us to predict 
exactly how long we may expect the programs to run. The analysis is sometimes 
difficult and complicated due to the many details which must be accounted for, 
but it is also sometimes elegant and fascinating. We shall make use of a variety 
of techniques and concepts from concrete mathematics, and this paper is as much 
about the analysis of algorithms as it is about Quicksort. 

I t  is common in studying the performance of programs to carry out an approx- 
imate analysis by (i) characterizing the program in terms of a few basic operations 
(such as "comparisons"  and "exchanges" for sorting programs) ; or (if) dealing only 
with the "leading term" of the running time. While such approximate results can 
be useful in classifying algorithms, it can be dangerous to use them to compare 
specific programs, and many erroneous conclusions have been drawn in the litera- 
ture. In this paper we shall derive exact formulas for the total average running time 
of the programs as implemented on a typical computer. These results allow us to 
properly choose parameters left unspecified during the implementation, to in- 
telligently compare the programs, and to accurately predict their performance. 

The two main topics of this paper, analysis of algorithms and Quicksort, have 
been treated extensively elsewhere in the literature. Hoare's original paper [8] 
and 'Sedgewick's thesis [17] cover most of wha t  is known about the -Quicksort 
algorithm and its analysis; and.Knuth 's  series of books [9, t 0, t 1 ] describe most 
of the techniques that  are known about algorithmic analysis in general. (In addi- 
t ion,  [~1] contains an excellent treatment of Quicksort.) A full t reatment of 
practical issues involved in real implementations can be tound in [t 9]. This paper 
complements these works in the following ways. First, the best of the algorithms 
are chosen, based on the results in [t 7], and those specific algorithms analyzed. 
Second, the analysis of loop unwrapping is much more complete than that given in 
[t 7]. In particular, a new analysis of the effect of multiple unwrapping is given. 
Third, the analysis of Quicksort and the median-of-three modification is organized 
in a manner less specific to the algorithms, so that  it may be used directly in the 
analysis of future modifications. Also, the algorithms have been updated so that  
they work efficiently when equal keys are present (see [t8]). Although this paper 
has been designed to stand alone, a reader who feels that  details are lacking 
should consult [t 7] ; someone wishing to implement a practical sorting program 
should read [t9]; a reader interested in the analysis of algorithms should be 
familiar with [9-t t ] ; and anyone interested in Quicksort should certainly read [8]. 

2.1. Basic Algorithm 

Quicksort is a "divide and conquer" procedure which sorts a file A [t ] . . . . .  
A [N] by  first rearranging it to make the condition A [t ] . . . . .  A[ i  -- t ] ~ A [1"] 

A ~" + t ], . . . ,  A IN] hold for some/', then recursively applying the same proce- 
dure to the subfiles A [t ] . . . . .  A ~' -- t ] and A [j" + t ] . . . . .  A IN]. There are several 
ways to specify this rearrangement procedure, which is called "parti t ioning".  (Due 
to the many  details which must be attended to, nearly all published implemen- 
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tations of Quicksort differ.) The following method has been shown to have several 
desirable properties: 

procedure quicksort ( integer value l ,  r )  ; 

corn m e n t  The array A is declared to be A [1 : N + ~ ], with A IN + t] = ~ ;  
if r - -  l > M then 

i : - -  l;j:---- r + t ;  v : =  A [l]; 
l oop:  

loop:  i : =  i + t  ; whi le  A [i] < v  repeat;  
loop:  i : =  i - - t  ; whi l e  A [j'] > v  repeat ;  

until  i < i :  
A [q : =  :A [:']; 

repeat;  
A [t] :---- :A [i]; 
i f i - - l < r - - i + t  

then quicksort (1, i - - t ) ;  quicksort (i, r); 
e lse  quicksort (i, r); quicksort (l, i - - t ) ;  

endif;  
endif; 

(This program uses an exchange operator : =  : and the control constructs loop. . .  
repeat  and i f . . . endi f ,  which are like those described by D. E. Knuth in [t2].) 

If M ---- 0 and all the keys are distinct, then the~rogram operates exactly as de- 
scribed above. First the file is partitioned: the leftmost element is chosen as the 
partitioning element; then the rest of the array is divided by scanning from the 
left to find an element > v, scanning from the right to find an ;element < v, 
exchanging them, and continuing the process until the pointers cross. The loop 
terminates with /" + t----i at which point the exchange A [ l ] : =  :A []] completes 
the job of partitioning A [l] . . . . .  A [r]. (The notation A [N + t ]  = c~ is meant to 
indicate that  A IN + 1 ]  must be _~ all of A [t] . . . . .  A IN]: this condition is 
included to stop the i pointer in the case that  v is the largest of the keys.) After 
partitioning, the smaller of the two subfiles is sorted first to limit the recursive 
depth required. The procedure call "quicksort (t, N)" will therefore sort A [t], 
. . . .  A [N] (if M-----0). 

The parameter M is included in response to the observation that  the program 
is not particularly efficient for small files. A method which is known to be efficient 
for small files is insertion sorting: scanning through the file, inserting each element 
into place among those previously considered by moving smaller elements up to 
make room. It  may be implemented as follows: 

procedure  insertionsort (l, r) : 
l oop  for  r - - t  > i > l :  

i fA  [i] > A  [ i + t ]  then 
v:= A[i]; j : = i  +t ;  
loop:  A [3"- t ] : =  A [J]; i :---- i + t whi l e  A [j] < v repeat;  
A [./'--t] : =  v; 

endif;  
repeat;  

22* 
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3 1 4 1 5 9 2 6 5 3 5 8 9 7 4 3  
Quicksort: 2 1 3  t 3 3 9 6 5 5 5 8 9 7 9 4  

7 6 5 5 5 8 4 9 9 9  
4 6 5 5 5 7 8  

Inse~ionsort: 2 1 3 1 3 3 4 6 5 5 5 7 8 9 9 9  
5 5 5 6  

1 3  
1 1 2  

a 1 2 3 3 3 4 5 5 5 6 7 8 9 9 9 

Fig. 1. Quicksorting 

(The notation r - - 1  ~ i  ~ l  means that  i takes on the values r - - i ,  r - - 2 ,  . . . ,  
l + l, l in that order.) The obvious way to improve Quicksort is to replace the last 
" e n d i f "  with "e l se  insertionsort (l, r) end i f" .  However, it turns out to be better 
to ignore small subfiles during partioning, then insertion sort the whole file alter- 
wards. The procedure calls 

i f  N > M then quicksort (t, N) endif; 
insertionsort (1, N); 

will quite efficiently sort A [t ~ . . . . .  A IN D. One aim of the analysis of these pro- 
cedures below is to determine the best value for the parameter M. 

�9 When we refer to the "basic Quicksort algorithm" below, we will be ;onsider- 
ing' these two procedures, invoked in this way. 

If equal keys are present in the files to be sorted, the reader, may verify that  
the programs abov.e still operate properly and  efficiently, though not ~xactly as 
described above. The subject of Quicksort with equal keys is treated in detail 
in [18]. In this paper, we shall assume throughout that  the keys being sorted are 
distinct. 

Figure ~ shows the operation of Quicksort, with M = 5, on the first t 6 digits 
of ~. Each line in the Quicksort section is the result of one "partitioning stage", 
and boldface elements are those put into position by partitioning. Each line in 
the insertionsort section is the result of a non-trivial insertion, and the elements 
shown are those moved. 

2.2. Analysis of the Basic Algorithm 

The total running time of the sorting method described above can, for most 
implementations, be described in terms of the five variable quantities 

A -- the number 

B --  the number 

C --  the number 

D -- the number 

E -- the number 

of partitioning stages, 

of'exchanges during partitioning, 

of comparisons during partitioning, 

of insertions, and 

of keys moved during insertion. 

In the Quicksort procedure above, C is the number of times i : = i q- t is executed 
plus the number of times/' : = j -- 1 executed within the scanning loops; B is the 
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number of times ,4 [i] : ~ : A ~'] is executed in the partitioning loop; and A is the 
number of times the main loop is iterated. In the insertionsort procedure, D is 
the number of times v is changed, and E is the number of times A [3" --  t ] : ~ A ~'] 
is executed within the inner loop. 

Other quantities may  be involved in some implementations. For example, the 
two alternatives of the statement " | f i  - - !  < r -- i . , ."  might require the execution of 
different amounts of code on some computers, because of lack of symmetry in the 
instruction set or too few general registers. In this case, it would be necessary to 
know the number of times the left subtile is smaller than the right. Such quanti- 
ties can be studied in exactly the same way as the standard ones, using the 
methods described below. 

As another example, consider what happens if the recursion in the Quicksort 
program above is transformed into an iteration based on an explicit stack. The 
standard way to effect this transformation involves moving the test for small sub- 
files to the point of invocation of the recursion, so that  subfiles of M or fewer 
elements never are put  on the stack. In this case, the total running time of the 
program will depend on an additional quantity 

S -- the number of stack pushes. 

This is the number of times both subfiles have more than M elements. I t  will arise 
in determining the running time of careful implementations of Quicksort. 

The goal of our analysis in this paper will be to find the average values of 
the various quantities under the assumption that  the keys A [1 ] . . . . .  A [N] are 
distinct and randomly ordered. From this information it is easy to calculate the 
total expected running time for .any particular implementation..(It  is also poss- 
ible to find the maximum and minimum possible values of the running time, and to 
estimate the variance [17]. Furthermore, some results have been obtained for the 
case when equal keys are present [t8].) 

To calculate the total running time, it is necessary to determine the overhead 
associated with each quantity.  For the model in [11 ] and [t 7], where instructions 
which do not reference memory cost one time unit and instructions which do 
reference memory cost two time units, the total running time is 

24A --b t t  B ..b 4C .-k9S "-k 3D "-k 8E --b 7N 

(with 3 D + 8E "b 7 N -  6 contributed by the insertionsort). The relative values of 
these coefficients are typical, and similar expressions can easily be derived for any 
particular implementation on any particular real machine. 

The basis for the analysis is to take advantage of the recursive structure of 
the program to set up recurrence relations describing the average value of the 
various quantities. I t  is not difficult to verify that  the subfiles produced by  
partitioning in the Quicksort program above are random (although some partition- 
ing methods do not preserve randomness [t 2, t 7]). This means that  by calculating 
the average values of the quantities for the first partitioning stage, we can set up 
equations describing their average values for the whole program. 

When a random file of N elements is partitioned, the kth smallest is used as 
the partitioning element with probability t /N, leaving random subfiles with k -- t 
and N - - k  elements. Therefore, all of the quantities satisfy recurrences of the 
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form 
t 

F~,=/N--k 7 ~, (Fk_I+FN_k) f o r N > M ,  (t) 

where F N denotes the average value of some quanti ty when a random arrangement 
of N items is sorted, and /N denotes the average value of that  quanti ty for the 
first partitioning stage. (For the quanti ty S, the recurrence holds only for 
N > 2M + t ; in the solution for S we will substitute 2M + t for M everywhere.) 

The validity of (t) for the quantities D and E depends on some particular 
properties of insertionsort. Full details may be found in [t7]. Both quantities 
count combinatorial properties of the permutation being sorted: D is the number of 
keys which have at least one smaller element to their right (or N minus the number 
of "right  to left minima"), and E is the number "inversions" (the number of 
pairs i, i such that A [i] is smaller than and to the right of A [3"]). For random 
files, it turns out that DN -- N -- H~, and E N = N (N -- 1)/4. These are our answers 
for N ~ M. The total expected running time of insertionsort (and of Quicksort for 
N_~M,  except that the cost of the test " i f  N > M "  must be added) is 2N ~ + 
8 N -  3 H N -  6 time units. For N > M we notice that,  a f t e r  partitioning, all keys 
smaller than and to the right of any key must be in the same subffle as that  key. 
Therefore, the values of D and E for the whole file after partitioning are simply the 
sums of the values for the subfiles, and (1) holds with fN = 0 .  It  is this property 
which allows us to insertionsort the whole file after partitioning rather than 
having to inserfionsort the small subfiles during partitioning. 

Using standard manipulations, we can explicitly solve the recurrence (t) to 
get a formula for F N in terms of IN. First, change k to N + t --  k in the second part 
of the sum : 

F~ '= /~ '+ -~ r '  E Fk-1 f o r N > M .  

Next  multiply by N and subtract the same formula for N - - t  : 

NF~r -- (fir _ 1 ) F~,_, ---- VN/N + 2F~_ x for N --  t > M. 

We have used the "backward difference operator" notation 17 in this equation. 
(For convenience, we adopt the convention that  VN/N =---V (N[N) = N / N -  
(N--1) ~N-v) Simplifying and dividing by N (N + t), we have 

F ~ _  FN_ ~ VNI~ 
N + t  ~ + N ( N + I )  for N > M + t .  

This immediately telescopes to the solution 

F N = (N + t) \-M---+-2- + ~_a g for N > M. (2) 
M+2~h~ k(k + t ) ]  

Now, depending on the form of the function/k, the evaluation of this sum could 
involve some tedious calculations. We can simplify it by first rearranging the terms, 

~ k  Vkh lk - h - ~  

+ r ~ M+2~k~_N 

[k--1 
+ k(k+~)' 

M+ ~ N  
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and then applying "summat ion  by parts"  to the second sum, as follows: 

= 5:, h+----i- - - - i - -  k + ~ '  
M+2NkNN M+2Nk~N M+ N 

17h IM +_______~ IX 
=2 ~ k+----i- + M+~ g + ~  

M+2Nk<N 

Substituting, we have an alternate form of the solution to the recurrence (t): 

V l k  . N + t  
F x = 2 ( N + I )  ~, k + t  " ~  ( /M+I+FM+I) - j x  f o r N : > M .  (3) 

Summation by  parts  is a useful technique for manipulating differences within 
summations tha t  we shall encounter again (see [9]). 

From these general formulas we can easily derive the solutions given in [1 r ] 
and [t 7] for the average values of the various quantities. For example, for the 
number  of comparisons, Ix  = N + t, 171~ = 1, and /M+X = FM+I = M + 2, so the 
solution Cx = (N + t) (2 Hx+ 1 - - 2  HM+ 2 + t) follows immediately. For the number  

N + 1  
of partitioning stages, we have IN =/M+I = FM+I = t and 171~ = 0, so A N = 2 M +-"'--'~ 

For the. insertionsort quantities, we  have Ix  = 0 from the discussion, above, 
N + t  

s o D x =  M+9-  DM+xandE  N =  N + I  M + 2 E'~I+1' The values of DM+ a and EM+ x fol- 

low from (1} and the values for  random fries: 

and 

2 
"LIM+I - -  M + 1 - -  X<k~M+l (k- -  t --Hk_x) = M-.b 2 - -  2HM+I; 

2 (k -- I ) (k--2)  M ( M - - I )  
E ~ + ~  - M +----7 ~ '  4 - 6 

l ~ k ~ M + l  

The func t i on /x  for the number  of stack pushes is slightly more complicated. 
If  N ~ 2 M + 2 ,  then there will be no stack push, since one of the subfiles must  
have ~ M  elements. In  particular, F2M+~=O. For N >  2 M + 2  there is a stack 
push if and only if the rank of the partitioning element is between M + 2 and 

N - - M  --  t ,  so the average number  of stack pushes i -~ - (N - -  2 M  --  2). Therefore 

Vk/k = 1 for k > 2M + 2, 0 otherwise, and from the solution (2) we find that  Sx  = 
N + t  

1. 
2 M + 3  

To find B x, we have to first calculate the average number of exchanges used 
during the first partit ioning stage. If  A [1 ] is the kth smallest element in the file, 
this is the number  of keys among A [2] . . . . .  A [k] which are > A [t ]. There are 

exactly l such keys with probabili ty t k --  t -- t ] / \  k --  t ]" Averaging, 

and removing the condition on k, we have an expression ~ r  the average number  
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of exchanges used during the first partitioning stage: 

1 - z Z  Z 
l~k<N ONtNk--1 (:-_:) 

1 N - - k  

l<k~N (~--t ) ONt~k--1 
N--k--t/( k--I 

f-1 ] kk- l - t ]"  

N - - 2  
Two applications of Vandermonde's convolution lead to the result ~ .  There~ 

t 1 
fore by the linearity of the recurrences, B N = -~ CN -- -~ AN. 

To summarize, we know that Quicksort requires, on the average, 

N + I  
A N = 2 M + 2 l stages, 

B x = ( N + I )  HN+I-- "~ HM+2+ 6 M + 2  + ' ~  exchanges, 

C N = (N + I) (2 HN+ 1 -- 2HM+ 2 + 1) comparisons, 

HM+I / insertionsl D ~ =  (N + t )  (1 -- 2 - - ~ - ~ ]  

M(M--~) 
E~T---- (N -k t ) 6 - ~  +-2~ moves during insertion, 

N +  i 
and Sx--  aM q- 3 - - !  stack pushes. 

(The formula for S N is valid for N > 2M + t ;  the others are valid for N > M.) 
By assigning appropriate coefficients to these expressions, we can compute the 
total average running time. These coefficients are dependent on the amount of 
time required by  each of the instructions of the program. This is of course depen- 
dent on the particular compiler and machine used. For the typical machine cited 
above and described in El t ] and [17], the total running time is 24A § t I B + 4C + 
3D.-k8E..b9S+TN time units. Notice that  the quantities which have high 
average values, B and C, have low coefficients. This is what makes Quicksort 
quick, and no matter  what compiler or machine it is implemented on, these 
coefficients can and should be kept low. (Any algorithm can be improved either by 
reducing the average value of the various quantities or by lowering the coefficients, 
so a proper implementation is very important.) Using these coefficients, we find 
that  the total  average running time of Quicksort is 

3_~5 (N + 1) HN+ 1 69 
3 2 (4) 

l ( 270 54 2~ HM+x I 
+ ~ - ( N + t )  8 M + 7 t - - 7 0 H M + ~ - + -  M + 2  "+" 2M-b3 - - ~ - M ' ~ ]  

time units. This formula is accurate for N > 2M + 1 only; for M < N ~ 2M + t 
there are no stack pushes so 9SN must be substracted; and for ~ ~ N  ~ M  the 
time is 2N  ~- + 8N -- 3 Hb, -- 3, contributed entirely by insertionsort. 
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0 1 1 I I 

-10-  

f(M) 

15 

10 

5- 

M 

Fig. 2a. Contribution of M in Quicksort 

Time (+ 10 6) 
1 . 3 ~  

1.2 

1.i 

1~0] - -  

0 I I I I M 
5 I0 15 20 

Fig. 2b. Total running time of Quicksort for N = 10,000 

From this exact formula, we can evaluate the effect of using insertion sort 
for small files, and also choose the best value of the parameter M. Figure 2a 
shows the values of the function 

6 (  270 54 HM+xl 
/(M) = 8M'+'7t ~. 70HM+2+ M+------'~ + 2 M + 3  36 M + 2 /  

and Figure 2b shows the total running time for N = t0,000, for small values of M. 
The best value is M = 9. Although M does not affect the "leading te rm"  of the 
total running time, the proper choice of this value does have a significant effect, 
because in practical s i tuat ions/(M) is about as large as HN+ x. For example, if we 
take M = t,  which occurs in naive implementations, we have a program which is 
t8 % slower when N = t,000, and t4  % slower when N = t0,000. T h e  optimum 
value M -  9 of course depends on the particular coefficients that  we have used, 
but Figures 2 a and 2 b show that  the precise choice is not highly critical and any 
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value between 5 and 20 would do about as well. Notice that although all of the 
quantities participate in ] ( M )  the main tradeoff is between the inner loop of 
insertion sort (represented by 8M, which comes from EN)  and the inner loop of 
Quicksort (represented by 7OHM+ v which comes from Bw and C~,). 

t 
Using the apprioximation H N = In N + y + - ~ -  + 0 ( t /N 2) (where y = 0.5772 t . . .  

is Euler's constant), our exact formula reduces to 

(N+I) in N+(N+I) ~ + / ( M )  --17+0 �9 

Substituting for ? and the optimum value/(9) = --8.476. . . ,  we get the approxi- 
mate formula 

i 1.6667 (N +I) in N -- 1.743 N -- 19 (5) 

for the average total running time of Quicksort. (We started with an exact formula, 
so we could of course carry out this derivation to any asymptotic accuracy 
desired.) The total running time is reasonably stable about this average, because 
it has been showm (see [t 73) that the standard deviation is about N ]/7 -- 2 ~*/3, or 
approximately 0.648 N. 

3.1. Median-of-Three Modification 

One way to improve Quicksort is to use the median of a sample of three 
elements from the file as the partitioning eIement at each stage. This tends to 
produce bet ter  partitioning splits, and so reduces the averag~ running time. Care 
must be taken not to disturb the partitioning process when implementing this 
modification. In the procedure above, if we assume that M ~ 3, we can insert the 
statements 

if A [l + t J > A Er3 then A [ / +  t ~ : = :A [rJ endif; 
i fA [lJ > A  [rJ then A [lJ:-----:A [r] endif; 
i rA F/+1] > A  [l] t h e n  A [ l + l ] :  = : A  [l~ endi f ;  

at the beginning (after " i f  r - - l > M  then") .  This makes A[l  + t3 < A  Ill < A  [rj 
before partitioning, so A [lj is the median of these three. Furthermore, the out- 
come of the first comparison in each inner loop is determined, so a slight savings 
could be achieved by changing the pointer initializations to " i  : = l + t ; / : = r" .  
Otherwise partitioning proceeds as before. In practical situations it might be 
desirable to make the worst case unlikely by, for example, inserting the statement 

A [(l + r )  + 2] : = : A  [ l + t ]  

before the if statements above. (This idea was suggested by Singleton [203. To see 
its value, consider what happens when the programs are used to sort a file which 
is already in increasing or decreasing order. See [t 7] for a more complete discus- 
sion of the worst case of Quicksort.) 

3.2. Analysis of the Median-of-Three ModificatiOn 

The running time of the median-of-three Quicksort depends on the same six 
abstract quantities as did the running time of the basic algorithm, but their 
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average values are different. The coefficients of all the quantities in the expression 
for the total running time are the same, except that the coefficient for A increases to 
reflect the cost of finding the median. (For the model in [t t ] and [t 7] it rises from 
24 to 53~, on the average.) Finding the median of three elements is a relatively 
expensive operation to be performing on each partitioning stage, but, as we shall 
see, it is well worthwhile. 

For the median-of-three Quicksort, the average values of the quantities all 
satisfy recurrences of the form 

F1C~/N+ Z (N--k)(k-- l )  (F,_a+F~c_k) f o r N > M : > 3  

since the probability that  the kth smallest element is the partitioning element is 

N) .  quantities we /~r = 0 as before, now (N- -k ) (k - - t ) /  3 For the insertionsort have 

and for the Quicksort quantities, we take F~r ---- 0 for N <: M. It will be convenient 
to work with a slightly different form of this recurrence: 

As before,-F~r denotes the average value of some quantity, when a random file of N 
elements is sorted. For the Quicksort quantities,/~r represents the average contribu- 
tion of the first partitioning stage, as' before. For the insertionsort quantities, we 

d e f i n e / ~ , b y t h e e q u a t i o n ( ~ ) ] ~ r = 2  oak,~t ~ '  (N--k- - t )kFk .  Thisallowsustotreat 

all of the quantities uniformly. 

To find the solution to the recurrence (6), it is convenient .to use generating 
functions. Multiplying both sides by z ~r and summing on N leads to the differen- 
tial equation 

F'  (~) 
F ' " ( z )  = / " ' ( z )  + t 2  (9 -~)" 

where F (z) = ~,, FNz "v and/(z) = ~ /zcz 2v. This third order differential equation 
N > M  N > M  

might appear difficult to solve, but it is actually quite manageable. Multiplying 
both sides by (1 --z) 3 gives an equation where the degree equals the order of each 
term. Differential equations of this type can be decomposed and solved by intro- 
ducing an operator which both multiplies and differentiates. In this case, the 
appropriate operator is 

OF(z)  =-- - ( t - z) F '  (z). 

In this notation our differential equation becomes 

- 0 (0 - t )  (0 - 2) F (z) --- - t 2 OF (z) + (t - z) 3 1 ' "  (z) 

which factors to yield 

- 0 ( -  2 - 0) (5 - o) F (~) = (t  - z p / ' " ( z ) .  
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Therefore, by successively solving three first-order differential equations: 

- 0 g (z) = (1 - z)~ I ' "  (z),  

(-- 2 - -  0) T (z) = U (z), 
and 

(5 - 0 ) F  (z) = T (z), 

we could get explicit formulas for F (z) and F N. However, the parameter M com- 
plicates / (z), and it is best to translate back to power series. If we define U (z) = 

Y, UN zN and T (z) = Y, TN z~', the difierential equations correspond exactly to 
N > M  N > M  

the difference equations 

(% (N + I)U~v+~ =NU:,,+6V~ t~v+3 

(N + ! )  TN+ ~ = (N +2)  ~v q- U~-, 

and 
(g  + ~)F~§ = (N--  5)~:~, + T~., ~V>M. 

Knuth [t 11 shows that we can successively solve these difference eqfiations (for 
the specific values o f / ~  which arise) to get the average values of the median-oh 
three Quicksort quantities (also see [t 7]). However, we can proceed further; and 
get an explicit solution for F~:. 

The first recurrence telescopes immediately, and we find that 

N U,v = 6 [7~/.~.+, ( N ;  2) �9 

The recurrence for T N must be divided by the summation factor (N q- t) (N -+- 2) 
before it will telescope: 

V'/k(k) 
r~, _ TM+~ + ~ ____2_3.. 

Finally, if N > 5, the recurrence for F~ telescopes when it is multiplied by 6 (5) :  

z (:t 31 + 2  M+~<iN~V 

The initial values FM+ 1 and TM+ x can be obtained from (6). The sum in the second 
term is a sum of binomial coefficients on the upper index, which evaluates simply 

t ~  N + I  ) 7  -- ( M  7+ 2)" After interchanging the ~ ~ summati~ in the d~ 

sum, we get the same thing for the inner sum. Performing all of the these cal- 
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culations leads to the solution 

As with Equation (2), the calculations involved in evaluating this function can 
become exceedingly tedious i f / ,  is at all complicated, and the summations can be 
simplified somewhat. Two applications of summation by parts lead to the remark- 
ably simple expression 

F, 12h _(k FN=lar+  (N)M<.<.U ( k + 2 ) ( h + t ) ( ( N 7 + t )  42))7 N > m a x ( M ,  5) (8) 

for the solution to the recurrence (6). The dominant term is 2,~(N + t) ~, /k/ 
M<k<N 

(k -4- 2) (k A- t). This is the same sum that  we encountered in the analysis of normal 
Quicksort, where we further simplified it with one more application of summation 
by parts. The result is 

t2 N + I /M+I---~ " t2 @ ~ tr/~ 
t ar = 7 M + 2  (N--t)M+~-k:;N hWI 

From these solutions to the recurrence (6) we can easily calculate the results 
given in [t 1 ] and [t 7] for the average number of partitioning stages, exchanges, 
comparisons, stack pushes, insertions, and moves during insertion for median-of- 
three Quicksort. 

The average number of partitioning stages is found by taking/M+I = Jar = /k  = t 

and 17]~ = 0 in (9), with the result Aar = 12 N + t  7 M + 2 ! -t-0 (N-6). For the av- 

erage number of comparisons, we take /N =N- t -1  and V[k = t, with the result 
t2 3.~__7 (N_I_I) 24 N + I  

C~=--~- (N +t)(Htc+x--HM+2) A" " ~  ~ 7 M + 2  + 2 + 0 ( N - 6 ) "  Acal-  

culation similar to the one for normal Quicksort shows that the average number 
N - - 4  l 3 

of exchanges on the first partitioning stage is ~ ,  so BN = -~- Car -- -~- A ~. 

The calculation for S is similar. In this case we have 

M+~Nk~N--M--1 

As before, the recurrence (6) holds for N > 2 M A - I ,  so we replace M 

everywherein the solution. Since V 2 ( : ) / , = k - - 2 ,  i t i smostconvenient  by 2 M h - t  

to use the form (7) of the solution. Substituting the values/2M+~ = 0  and/2M+S = 
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(M-+-1)2/(2M3-+-3), the solution 

3 5 M + 3  
S~--- 5- ( N + I )  ( 2M+3) (2M+1)  - - t  +O(N -6) 

follows immediately. 

The results for the insertionsort quantities D and E are also most easily 
/7 \  

calculated using the form (7)of  the solution, since in this case ~72~k ~R ~ : 0 .  We 
therefore have k)/ 

Dlv:  N+I  (ffdM+, + 6 ) ---r ~ d~+l +O(N -6) 

and a similar formula holds for E. The initial values follow directly from the defini- 
tion of/2v for the insertionsort quantities. For example, 

2 2 
and similarly dM+2----M+2--2H~+2+ -~, so Vd.~+~=t M+--------2 and 

4 N + t  
D x = N + t  7 m+--------2 (3HM+I--t) '  

The calculation for E follows precisely the same steps. 

In summary,.these calculations tell us that Program 3 requires 
o 

t2 N + I  
A x =  7 M + 2  - - t  stages, 

12 37 12 N + t  
B ~ , = - ~  (N+I)(H~,,+I--H~r ~ ( N + I )  7 M+-----~ + t  exchanges, 

37 24 N +1 
C x =  7 (N+I)(Hx+I--HM+~)+ ~ - ( N + t )  7 M + 2  + 2  comparisons, 

4 N + ~  
Dzr ( N + t )  7 M + 2  (3HM+x+I) insertions, 

t 6 N + I  
E~.:--~N+Ij~6M--17j+/ ~' x 7 m + 2  moves during insertion, 

and 
3 52~r + 3 

SN=-~- ( N + t )  (2M+3)  (2M+1)  - - t  stack pushes. 

These formulas are all accurate to within 0 (N -e) and they are valid for N > 
max (M, 5) except SN, which is valid forN > max (2M + 1, 5). Notice that, although 
the number of partitioning stages and comparisons is significantly lower than for 
Program 2, the other quantities, particularly the number of exchanges, are all 
slightly higher. 

The total average running time on the typical machine that  we have been con- 
sidering is 53�89 + t t  B +4C~, + 3 D  x + 8 E  N +9Sx + 7 N ,  and substituting the 
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expressions above we get the exact formula 

372 111 1 /48 
35" (N'+'t)HN+x ----~- +-7 (N +t) ~---g- M+ 529 372 HM+~ 

7 5 
450 27(5M+3) 36HM+1 / (10) 

M + 2  ~- ( 2 M + 3 ) ( 2 M + I )  M+-2 7" 

Again, this holds for N > 2 M + t ;  for M < N ~ 2 M  + t ,  we substract 9SN, and 
for N ~ M the insertionsort time holds. The best value of M is again 9, and for this 
choice of M the total average running time of Program 3 is about 

t0.6286 (N + t )  In N + 2 . 1 1 6 N - -  7t ( l l )  

as compared with l t .6667 (N + t) In N + t .743 N -- t 9 for the basic algorithm. 
For N = t,000 this is a 4 % improvement; for N = t 0,000 it is about 5 % ; as N gets 
very large it approaches 8.8 %, but for practical values of N the improvement is 
limited to about 6 %. 

3.3. Larger Samples 

A further improvement in the performance might be expected if we were to use 
the median of a larger sample as the partitioning element. To analyze this case 
where the method is extended to employ samples of 2t + 1 elements, it is necessary 
to solve recurrences of the form 

\~"~/ (:t~,l. I ( ~ ' i  + F ~ - - , ) f o r  N > M ~ 2 , + I .  

I f  IN = N + 0 (r then methods similar to those above can be used to show that the 
number of comparisons is given by 

I 
F~.= H,,+~--H,+I (N+I)H~+I+0(N). 

(This result was first obtained by van Emden [21 ];  also see [I I ] and [I 7]. Exact 
formulas, even for IN = r have not been derived for t > I.) As t gets large, this 
approaches the theoretic minimum N logaN + 0  (N) (see [14]), but very slowly. 
The average namber of exchanges for the first partitioning stage comes out to be 
t + 1  
4 t +-~-6- N + 0 (I). Therefore, for the machine model that we have been using, the 

total running time of a median-of-(2t + t) Quicksort (when t = 0  (l)) will be 

I t+1  I 
4 +, , / -~-+- -6]  N in N + 0 (N). 
H~t+t--Ht+a 

The coefficient evaluates to about 1t.67, t0.66, t0.3t,  t0.t2, for t = 0 ,  t ,  2, 3 and 
approaches (very slowly) the value 27/4(ln 2 ) ~  9.73. Most of the improvement 
occurs for t ---- 1, and larger samples will probably not be wortwhile. The cost of 
finding the median, which is hidden in the 0 (N) terms above, will cancel out the 
small improvement in the leading term. 
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4.1. Loop Unwrapping 

The performance of assembly language implementations of Quicksort can 
sometimes be improved with a technique called loop unwrapping. Unlike the 
median-of-three modification, which should be used in all implementations of 
Quicksort, this improvement is useful only when the sorting routine is to be used 
often or for a very large file, i.e. when it is worthwhile to implement it in assembly 
language. We consider it here for three reasons. First, it illustrates how a minor 
change to the implementation of an algorithm can have a major impact on the 
analysis (and it demonstrates the utility of the general formulas (3) and (9) derived 
above). Second, Quicksort implemented in this way might be characterized as the 
fastest known sorting algorithm, so it merits careful study. Third, the general 
characteristics of loop unwrapping are not well understood, and this particular 
example illustrates the complexities that it can introduce and the limits of its 
usefulness. 

One many computers, the inner loops 

loop i := i + t  while A [ i ]<v repeat; 
loop j :---- 1' - -1  whi le  A ~'J > v  repeat;  

can be implemented with only three instructions each. For example, the first loop 
above might consist of the code: 

INC I, t Increment register i by 1. 
CMP V, A (I) Compare v with A [i]. 

JG �9 " 2  Go bac1~ two instructions if v > A [i]. 

(Here the mnemonics I ,  V are symbolic register names, and  the notation A (I) 
denotes the memory location whoseaddress is at A plus the contents of I,  or A [iJ.) 
One iteration of these instructions involves four memory references; hence the 
coefficient of C is 4 in our expressions for the total running time of the programs. 
Loop unwrapping is a technique for reducing the pointer arithmetic overhead by 
making two copies of the loop, one for A [i] and one for A [i + I ~. The code 

CMP V, A + l ( I )  
JLE OUT1 

LOOP INC I, 2 
CMP V, A (I) 
JLE OUT 
CMP V , A + I ( I )  
JG LOOP 

OUT1 INC 1,1 
OUT : 

is exactly equivalent to the code above, but the I pointer is incremented only about 

as often. More precisely, there is a savings of [2 J  time units each time the half 

loop is iterated s times. The j loop can obviously be unwrapped in the same way. 
Loop unwrapping must be carefully implemented to be effective (see [5, t l, 

t9]). Although the method above always reduces the number of instructions 
required no matter how many times the loop is iterated, loop unwrapping may not 
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be desirable for some computers and applications more sophisticated than the 
simple model considered here. For example, a few computers have "compare and 
skip" and "increment and jump" instructions which allow the inner loops to be 
implemented in two instructions and obviate the need for loop unwrapping. Other 
computers have "instruction buffers" which make it undesirable to enlarge the 
inner loops. If multiword items are being sorted, the improvement due to loop 
unwrapping will be less significant. Nevertheless, the technique is of practical 
interest for many sorting applications and for most computers, and we shall now 
study its effectiveness. 

4.2. Analysis of Loop Unwrapping 

This improvement affects only a small section of the programs, so we will ana- 
lyze the total average savings due to loop unwrapping and then simply subtract 
the result from the formulas that we have already derived for the total average 
running time of the programs. This analysis is more complicated than that we have 
seen so far, because the savings on the first partitioning stage depends heavily 
on the distribution of keys in the subfiles. For example, suppose that  the file 

7 1 8 2 9 3 1 0 4 5 6  

is to be partit ioned in the normal way. The result, after 8: ---- : 6, 9: ---- : 5, t 0: = : 4, 
and then 7: ---- : 4, is 

4 1 6 2 5 3 7 1 0 9 8 .  

Now suppose that  the inner loops are unwrapped. Each loop is executed four 
times: the number of iterations is 2, 2, 2, t for the i loop and t, 1, 1, t for the f loop. 
Therefore the total savings is 3- But now consider the file 

7 1 6 2 8 9 1 0 4 3 5  

which is also partitioned, after 8: = :5 ,  9: = :3 ,  10: = :4 ,  and then 7: = : 4 ,  into 

4 I 6 2 5 3 7 t0 9 8. 

Again, each loop is executed four times, iterating 4, t, t, t times for i and t, 1, 1, t 
times for f, and the savings is only 2. The numbers of exchanges, comparisons, par- 
titioning stages, etc. for these two files are identical, since none of these quantities 
depend on the distribution of the keys in the subfiles, but the savings due to loop 
unwrapping differ. This effect makes the average saving on the first partitioning 
stage difficult to derive and it complicates the calculation of the total savings. 

First, we shall deal with the analysis of the application of loop unwrapping 
to the Quicksort algorithm. In order to capture in the analysis the complications 
described above, we must determine exactly what factors contribute to the savings. 
Suppose that  the partitioning element is the kth smallest in the file, and consider 
the left subfile. The savings in i movements is determined by how the keys among 
A [2] . . . . .  A [k] which are less than the partitioning element are organized. There 

are r such keys with probability k - - t - - t  k - - t  ' as we saw when we 

calculated Bar. And any time a " run"  of s such keys occurs consecutively, we have 

23 Aeta Infommti~a, Vol. 7 
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a savings of I s  2+-~1J----I2]. Removing the condition on k, t a n d s ,  we f i n d t h a t  the 

average  tota l  savings in the left subtile on the first par t i t ioning stage is 

I X E 
l<:k~N l~t<k lts<t 

N - ,  t 
t ] \ k - - t - - t ]  r s q  

where  Pkt, is the probabi l i ty  tha t ,  when A [i J is the kth smallest  element,  a " r u n "  
of length s occurs in the t keys among  A E2] . . . . .  A Ek] which are < A [tJ. I t  is 

sl ightly more  convenient  to work with the quan t i ty  Pkts, which we shall 

denote  by  At,.  By  our randomness  assumpt ions  we can make  the more  abs t r ac t  
in terpre ta t ion  tha t  ~ t ,  is the n u m b e r  of runs of s consecutive zeros which occur in 

all k - -  t digit b inary  numbers  with t zeros and k - -  1 --  t ones (there are such 

numbers) .  Fur thermore ,  an a rgumen t  complete ly  symmet r ic  to the above  holds 
for the right subtile, with exac t ly  the same result. Also, since the program can be 
character ized in this way even when the loops are unwrapped  more than  once, we 

more  general by  writ ing g(s) ra ther  than  [-~] for the shall make  this derivat ion 

savings when the inner loops are i tera ted (s + 1)' t imes. Although implementa t ion  
of mul t ip le  unwrapping  is difficult, it is clear by  extending the technique shown 
above  t ha t  the savings is no more  than  g(s) =(p  - - t i  Ls/pJ + s  rood p when the 
loop is unwrapped  p times, or 

I 
g (s) = -~- ( (p - -  t ) s + s mod  p). 

The  tota l  average  savings due to loop unwrapping  in Program 2 m a y  therefore be 
described by  the expression 

N - - k  

2 ( k - - 1 - - t )  ~tsg(s). (12) s 2 N - ,  
l'<'k~N l~-t<k l!$'~l ( k - - l )  

To calculate Pku, we can derive a recurrence relation by  set t ing up a correspon- 
dence between k - -  I digit b inary  strings with t zeros and certain k - -  2 digit  b inary  
strings. (The reader might  find it useful to refer to Figure 3, which shows the 
str ings and non-zero values of P,u for 2 ~_ k ~ 5. Notice t h a t  P~u = P~k-s+~) (t-~+l)t.) 
Specifically, all k -  i digit b inary  numbers  with t zeros can be formed by  (i) ap- 
pending a t at  the right of all k - -  2 digit numbers  with t zeros and (ii) append ing  

a 0 a t  the right of all k - -  2 digit numbers  with t - -  ! zeros. Now, exact ly  t - -  s - -  

( k - - s - -  2) of the  m of the  la t ter  k --  2 digit strings ended with exac t ly  s zeros, and t - -  s 

ended with exac t ly  s - -  t zeros. All other runs of consecutive zeros are unaffected.  
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0 1 
k = 2  1 0 " 
k = 3  t t  01 O0 

t 0  
k = 4  t t t  t t 0  001 

101 010 
01 t 1 O0 

k - - 5  t t l l  t t 1 0  1100 
1101 1010 
t 0 t t  0 1 t 0  
011t  t001 

010t  
00t I 

t 

2 3 4 

000 

5 
P ~ l l  = t 
Pro----2 

P~s2 ~ t 

'P~n = 3 
~ t l  = 2 P m =  2 

~ 3 3  ~ t 

0001 0000 P6n = 4 
OOiO Psm=6 P5~2 = 3 
0 t 0 0  ~aI=2 ~a~-----2 Pss,=2 
1000 Ps4~ = t 

Fig. 3. Counting runs in binary strings 

Therefore, we have the recurrence 

~"=~*-~"+~-'~"-~'-\t-s-t/ ~, t - s  

23* 

so  w e  have 

�9 < , ~ ; ~ ( k _ t  , ~ , < , \ k - - 2 - - t ]  t - -s  

�9 ~ , < , \ k - - t - - t ] \  t - s  / /" 

o r  

k - - s - -  ~u--~(k-x)u+P(k-1)(t-ll'+( t-- s 3)" 
This recurrence may  be solved by  transforming it into a recurrence on the generat-  
ing function Pks (z) ----~ P~uz t, which telescopes on k. The solution is 

t 

~ . - ( k - t )  (t3) \ t - s  / .. 
which holds for all t < s _~ t < k. 

Substituting, we have a still formidable-looking triple sum describing the to ta l  
average savings due to loop unwrapping in Program 2: 

--k 2 s (k--t)(kNl-- --t)(k-tls-2) g(s)  

N--I 
~ $ , . . < k ~ N  ( k - -  1 ) 

This sum can be evaluated by summing first on t, then on k, and leaving the sum on 
s until  last. The sums turn out to be simple convolutions, but  we have to rearrange 
the binominal coefficients, and pay  careful attention to the limits of summation.  

First, 
N - - k  N - - k  

= --t--  -- t  - - t ]  
N - - k  N - - k  
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The inner sums are both instances of Vandermonde's convolution. The first 

(N-~-~ / (~'-,-2t, evaluates to \ k -  s -  2 ] '  and the second to \ k -  s -  t ] which leaves 

2 y, g(,) Z ~ k - , - 3 /  2 Z g(,) Z k - , -  
~,-r,,,<N ,<,,,,. (.u - -  + ~ , , < ~ .  .<,,,, (N- I  / 

k - ~  \k  - a ]  

Eliminating zero terms and separating out the last term (for s = N - - l )  in the 
second sum, this is 

N -- s 
2 

N - - I  
s+2<k<N-1 ( k - - l )  

( N - - s - - 2 ~  
2 \ k - - s - - l ]  g ( N - - l )  

+ 7 F, e(sl Y, (:"-'1 + 2 - -  
l < s < N - - 2  s+ l NkNN- -1  N 

I k -  a/ 

Now, by  manipulating the binominal coefficients, we find that  

- 

\ k - - t ]  s+ . t  s + l  \ s + l ]  2 2 
and, similarly, 

( ~ " - ' -  31 �9 2;  ( N - - k ) \ k _ s 2  ] 
s+2:Kk<N--i 

- 

Therefore, the total savings is 

N ( N  + I) 

/N  -- 1~ 

N 

g (s) g (s) g (N -- 1 ) 
2 g(s....__~) Z s + 3  + 2 s + 2  "1-2 N ' 

or, changing the index of summation from s to s -  l in the first two sums and 
noting that  g (0) = 0, we have the result 

2 g(s - -  t) + / ,~' Vg(s) +_2 g ( N - -  l) 

I<sNN--2 I<sNN-2 +2 
3 

This formula can be simplified further with summation by parts. In general, for 
any function a (s) and any integer t ~ 2, we have the identity 

a(s) ~-~ t ( t - -  l) a(s) 

,n<si;n 
t --2 '( (~ - , - 1  2 (s+,-1 + . , + , - ,  ?-~-,~ ~ 

,.~v~,,+z \ t - - I  t - - I  \ t - - l ]  l 
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Therefore, in particular, 

17=g (s) Vg (N --  t ) 17g (s) = 2 Z 2 
Z /s+2\ s + ,  N 

I<s~N--2 I )  l~s~N--1 
2 

( , ) Notice that g ( - - t )  = --  - ~ ( - - p  + t + (-- t rood p)) = 0 ,  so gg(O) = 0 .  Also, ap- 

plying (t4) twice, 

V~g(s -- t) Vg(N--t) 3 g(N--2)  g(s-t)  =3 ~ 3 
Z s + - - - - - T  s + t  N + t  2 N t " 

,a,a~'-2( )3  ,~,aN (:) 
Substituting these last sums into our result and collecting terms, we find that  the 
average savings on the first partitioning stage due to the application of loop 
unwrapping to Quicksort is 

2 (N + t) ~, lT,g (s -- t) 17,g(s) 
2a~,:N s + t  + 2  ~ s+-----~--2Vg(N--l). (15) 

155~N 

In the case that the loop is unrolled only once, this formula assumes a particularly 

simple form. For this case, we know that  g (s) = = ~ (s + s mod 2), so 17g (s) = 
t 1 

~- (t + s rood 2 -- (s --  t ) rood 2) = ~ (t -= (.-- t )'), and 173 g (s) = (-- t )s+l. Therefore, 

from (t 5) the average sayings on the first partitioning stage due to unwrapping 
the loop .once is 

2 Y: (_,),+I ~ a , . : ~  s + I �9 s +----------7 - -  1 + ( - -  t ) N - r .  
I~$<:N--1 

This can be more concisely expressed in terms of the sum of the alternating har- 
monic series, ~ (--1)'Is, which we shall denote by / ~ .  In this notation, we 
have la,aN 

- -  2 N R ~ .  - - N  + (--  t) N (t6) 

for the average savings on the first partitioning stage due to unwrapping the loop 
once.  

We shall be encountering a number of other variations on the harmonic 
numbers in the analysis below. Before continuing with the analysis, it will be 
convenient to summarize the various notations. The four sequences that  arise in 
the study of loop unwrapping are 

H . =  ~, ' ' ' ( ' )  la ,a . -k  =Inn +Y + 2n 12nt + 0  ~ , 

n.= s 
' "  

Z k , -  6 + 0  , l<k'~. 

, ~ = _ _  n t 0 [ l o g  n \ 2 l<k~ n k 2 
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The asymptotic estimates for H. and H~ ) are well-known (see [1, 11]); the esti- 
mate for ~,, is elementary; and the reader may find the estimate for H,* an 
interesting exercise. 

Returning to the analysis, we have yet to determine the total average savings 
due to unwrapping the loop once in Quicksort -- we have only dealt with the 
first partitioning stage. But finding the total savings is simply a matter of substi- 
tuting our formula for the average savings on the first partitioning stage, -- 2 NHN 
- - N  + (-- t)~', into the general formula (3) that  we derived for the average values 
of all the quantities upon which the running time of Quicksort depends. In (3), 
we have Ix = -- 2NR2v-- N + ( -- 1 )N,/m+x =FM+a = -- 2 (M + 1 ) HM+ x -- (M + I ) -- 
( - - t )  M, and [7 /k = --  21~rk_ x -  t,  SO we find that  the average total savings is 

- 2 ( ; v + 1 )  ~, 2g~_~+~ N + ~  �9 M+2~;k~N k + l  - - 2 ~  (2(M + l)Rm+l + ( m +  1)+ (-7 t)M) 

+ 2N/Tx + N- -  (-- t)x. 

To evaluate this sum, the main step is to note that  

~<k$N k 

After evaluating the sum and clearing up the other terms, we end up with an 
exact formula for the total average savings due to unwrapping the inner loops of 
Quicksort once: 

- - 2 )  l ~ H x + l +  (N + t) (4H*+1 + 1 + 4Rm+2RM+ 2 4/: /x+l--  (N+ 10/:/~+1-- 
(17) 

+ 2H~r_~2__ 4H~+2__ t 2R~ ~q. 4 H'-M~-I + 2 + 6 ( - t ) M ~  . . . .  ~ ~ 'r  ) - - 2 H N - - t + 5 ( - - 1 )  x. 

This formula is admittedly a bit unwieldy, but it is an exact result. We can 
subtract this formula from our formula (4) for the total running time to get a 
formula for the total running time of Quicksort with the inner loops unwrapped 
once. From that expression, it turns out that the best choice of M is still M =  9. 
Collecting the terms involving M into a function g (M) and applying the asymp- 
totic expressions given above for the variants on the harmonic series, we find that  
the asymptotic expression for our total savings is 

(41n 2-- 2 )NlnN + ( 4 y l n 2 - - 2 ,  + 2 (ln 2)2---~ - 101n2--t + g ( M ) ) N + O ( l o g N )  

or, since g(9) --8.243, about 
0 . 7 7 2 6 N l n N - -  1. 5 7t N 

and the total average running time of the basic Quicksort program with the loops 
unwrapped is approximately 

t0.894t N l n N  ~ 0.t  7 2 N .  (18) 

Therefore, this programming technique achieves a 5 % improvement in the total 
running time of the program for all but small values of N,  
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4.3. Multiple Unwrapping 

Having completed this analysis, the next question that we must answer is 
whether or not it is worthwhile to unwrap the loop further. As remarked above, it 
is much more difficult to unwrap the loop more than once, so in most situations we 
probably wouldn't  be interested in doing so unless the savings were significant. 
In the limiting situation (if we unwrap the loop enough times), the pointer incre- 
ments can theoretically be moved out of the "comparison" loops (which are iterat- 
ed at total of 2 N l n N + O  (N) times) andinto tile "exchange" loop (which is iterat- 
ed { N l n N + O  (N) times). The savings is ~ N l n N + O  (N), nearly twice the savings 
that  we get by unwrapping once. We cannot hope to achieve this limit because 
(for example) space might be a constraint, but we must investigate how close we 
can get to the limit by unwrapping the loop two, three, four . . . .  times. 

Most of the analysis is not at all different from what we have already done, 
and as indicated above some of the results that  we have derived were kept in a 
general form so that  we could more easily study the effects of multiple unwrapping. 
Specifically, we can use Equation (t5) to find the average savings on the first 

t 
partitioning stage, with g(s) -- p + 1 (ps + smod(p + 1)), if the loop is unwrapped 

p times. To use (t 5), we need to calculate the first and second differences of the 
function g (s). I t  is easily verified that,  for p > 1, 

Vg (s) = and P'~g (s) s rood p = t 
otherwise otherwise. 

Now, substituting this into (t 5), we find that the total savings on the first par= 
titioning stage, when the inner loop is unwrapped (p - - t )  times, is 

~ -I s + t  ~' + 0 ( t ) .  
2 ~ r < N - - t  s + t  

\(s--X) moo p- - I  (s--l) rnod p=O 

Here we are dealing only with the "leading term". We could proceed as above and 
get complete exact answers, but  it will not be necessary to do so. Now, we can 
also include the "tails" of the sums in the 0(t) term, and we can rewrite the sums 
to get the expression 

t I 

These remaining sums are yet another variant of the harmonic numbers which 
were discovered by Gauss and have been studied by Knuth in conjunction with 
the analysis of Euclid's algorithm [9, t0]. Knuth defines an extension of the 
harmonic numbers to cover non-integral indices: 

n > l  n -~- X 

If x is an integer, this agress with the standard definition. But now take x = 3/P. 
Then we have 

t l ~ = P  p n + 3  Hall' = n 3 
n +-~ ,  
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(1 , )  
Similarly, H~/p=p ~, p-n p n + 2  ' so, in this notat ion,  our expression for 

n~gl 

the savings on the first part i t ioning stage becomes 

2N p (P+H21p--Ha/,) +00)" 

Therefore, from (3) the total average savings due to unwrapping the inner loops 
of Quicksort  (p- -1)  times is 

p (P + H,/p--H3/t,) NlnN +O(N). (19) 

This surprisingly simple formula allows us to accurately  estimate the benefits 
of multiple unwrapping.  Knu th  shows tha t  when x is a rational number  less than 
one, H~ can be explicitly evaluated (see E9]): 

Hp /q=  ~- - - - ~  ~co t  ~--In2q+2 qcos in s i n - -  ~, 
i~ .<  ~ q q 

and he tabulates  some small values. Table I shows the formulas for H2/p and Ha/p for 
2 < p  <--6, along with formulas and values for the coefficient of NInN in the total  
savings due to loop unwrapping. In the line for p = 5, ~b denotes the "golden rat io" ,  

�89 (V5 + 1) = t.61803 . . . .  and x denotes the quan t i ty  --  �89 (2 + q~)In 5 + (q~-- �89 
ln(2+~b),  which cancels between the two terms. Now, the coefficient of NlnN 
in the original program is t ~ .66667 . . . .  and as we have seen, the improvement  in 
this coefficient due to umvrapping the.loop once is about  6.6 %. Unwrapping the 
loop a second time will yield an additional 2.29/0 improvement  in the leading 
t e rm;  a third will yield an additional t . 0% ; a four th  an additional 0.5 % ; and  a 
fifth an addit ional  0.4 %. The savings approaches the limit of 4/3 very  slowly, 
and most  of the improvement  is gained by unwrapping  the loop just once. 

Table 1. Savings for multiple unwrapping 

4 (p + H~lp _ Halp ) .,~ P H.,lp Hs/p p 
S 

2 t - -  - -2  In 2 4 in 2 - -  2 0.77259 
3 

3 rr 3 2rt 
3 -~ + ~ -- -~- In 3 1 9_ -- 9_ in 3 + 3 ]/7 1.01197 

4 ~r ~z 
4 2 - - 2 1 n  2 - f  +-~- -- 3 In 2 2- - -~-  + I n 2  1.12235 

5 2 2 ~112-+--~ + x  

n 3 I n  3 6 3 - z V  ~ 2 

oo 0 

5 1 rr 4 rr 
-X- + + X  2 1.18339 

2 ~ g ~  5 ~ 1 / ~  
rr 4 

2 -- 2 In 2 2 -- ~ + -~- In 2 -- in 3 1.22098 
m 

4 
0 -~- 1.33333 
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5. Median-of-Three with Loops Unwrapped 

These results lead us to expect that the most effective sorting program that 
we can devise will be the result of applying both sampling and loop unwrapping 
once, that is, unwrapping the inner loops of median-of-three Quicksort once. But  
we have yet to analyze precisely the effect of this. Sampling complicates  the 
analysis of the savings due to loop unwrapping just as it complicated the analysis 
of all the other quantities upon which the running time of the program depends. 
However, the analysis is very similar to many of the derivations that  we have 
already done, so we shall often refer to the analysis above for details. 

First, we must determine the average savings on the first partitioning stage. 
Using the notation of (t2) above, and arguing exactly as we did in Section 4.2, 
we find that the savings is given by the expression 

N--3 

The difference between this expression and (t2) is that the probability that  the 

--''/(N), and then kth smallest element is used for partitioning is (k-- t) (N--  k ) j \  !3  . only 

N - -  3 elements (k -- 2 of which are smaller than the.partitioning element) participate 
N N - - 3  

in the partitioningprocess. Now,.(.k-- !) (N.-- k ) / ( 3  ) ( k '._ 2) simplifiesi.mmediately 

to 6IN k - - t  ' and we know that P c k _ l ~ . = ( k - - t - - t )  t - - s  

we have to evaluate 

t2 
-z  5: 

(k__t__t)l k__2__t ) k--s--3 

in order to find the average savings on the first 
wrapping the inner loops of the median-of-three 

To evaluate this triple sum, we use precisely 

partitioning stage due to un- 
Quicksort. 
the same procedure as above. 

IN- -k - - t \  N k t I N - k - 2 \  (N--k-- t~  
First, wewri te  ( k - - t - - t ) ~ k _ 2 _ t ) = (  -- -- ) ~ k _ 3 _ t ) + \ k _ 2 _ t ]  and 

apply Vandermonde's convolution to the sums on t. Then we manipulate the bi- 
nomial coefficients to move those involving k to the numerator, so that  the sums 
on k can be easily evaluated. (As before, this must be done carefully--zero terms 
must be eliminated in the sums to aviod binomial coefficients with negative upper 
indices.) Performing these manipulations, we have a result analogous to (t5), 
before we applied summation by parts: 

3 ( N + t )  + 

\ 3 ]  - \ 3 ]  

12g(N--3) 
N ( N - - I )  
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And, as we did to get (t 5), we can further simplify this formula by applying sum- 
mation by parts, formula (14). Applying the formula three times to the first sum 
and twice to the next two, we get the final expression 

V3g (s - 2) peg (s - 2) 
t 2 ( N + t )  2 s + l  24 2 s + l  

3N.s~N 3~s~N--1 

( 1 2 1 7 2 g ( N _ 2 ) )  (21) V~g(s-- 1) _ ( N + t )  + 3  
+ 1 2  2 s + l  N 

2<s~,V-1 

for the average savings on the first partitioning stage. 

We are most interested in the case where the inner loops are unwrapped once. 
For this case, we have seen that 172g (s) = (-- t) ~+1, and so IT~g (s) = 2 (--  t)'+1. 
Using these values in (2t), and expressing the result in terms of /7x ,  we get the 
answer 

24 NH.v + 17N--  t 2/7N_ 1 - 1 2  (-- 1)to-- 9 (22) 

for the average savings on the first stage when the inner loops of the median-of- 
three Quicksort are unwrapped once. Notice that for large N this is about 
(24/7 x + t 7) N"-  0.3644 N, as compared with the ( --  1 -- 2 Ha,) N -~ 0.3863 N savings 
that  we achieved with Quicksort. 

Finally, just as we did for the basic algorithm, we can substitute our formula 
for the average savings on the first stage, (22), into the general formula (9) that 
we found for the totals of our quantities. To make this substitution we first find 

from (22) that  V/k = 24/7k_~ + t7 - -  ~ 2( - t) k-z After the substitution, ' the first 
�9 k - - t  " 

sum in (9) is easily evaluated as above. The second sum introduces a number of 

new terms, but can be evaluated exactly with the use of the icienfities Y'o,k,. (kt) = 

t = - 3 -  + �9 o~.k~;,~ o~k,::,~ t - -  t - 2 -  t 

For brevity, we .shall not write down the very small terms and be content to 
derive the answer correct to within 0 (1). The entire second sum is then simply 

12 
49 (N + t) (24/7N + ~ 7) + 0 (1). After evaluating the other sum and collecting 

terms, we have the result 

I~27 (24/Tx+l+I7)(N+t)Hx+a+-7 ( N + t ) ( - - 2 4 H } + z - -  /TN+x 

629 - , /.7 
+ ~ -- 24H,~I+~HM+~-- 17HM+2+ 24Hm+2+ 72 M+2 (23) 

(__ |)M - - 2 6 ) ) + 0 ( t ) .  1 ( - 3 6 / / M + a - 3 6 ( -  I ) M - 6  ~ 7 - ~  + 

Subtracting this "exact"  formula from (10), we get the total average running 
time of Program 3 with the loops unwrapped once. From that expression, it 
again turns out that the best choice of M is still M = 9. Collecting terms involving 
M into a function h (M), we get the asymptotic expression 

x2 (t 7--241n2)N lnN "-w 

+ . ~  ( 1 7 y _ 2 4 y l n 2 _ t 2 ( l n 2 ) 2 + 2 ~ 2 + _ ~ 2 1 n 2 +  %~9 +h(M))N+O(logN) 
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for the total savings due to loop unwrapping in the median-of-three Quicksort, or, 
since h (9) "~ -- 65.08, about 

0.6248NlnN-- t.414N 
and the total average running time of the median-of-three Quicksort with the 
loops unwrapped once is approximately 

t0.00381nN--3.530N. (24) 

The time gained by loop unwrapping is about 4 % of the total running time of the 
program for N =  10,000. 

We wouldn't expect multiple unwrapping to be any more effective for the 
median-of-three method than for normal Quicksort. This suspicion can be con- 
firmed by an analysis similar to that preceding (t9). From (2t), we find that the 
savings due to unwrapping the inner loops of the median-of-three method (p-- 1) 
times is (for p >3) 

t44 
7P (-~ + H3I'--2H'lt'+ H~I') NlnN +O(N)" 

For P=3,  4, 5 the coefficient evaluates to 0.8133, 0.897t, 0.94t5 as compared 
with the coefficient 0.6248 just derived for single unwrapping. The savings ap- 
proaches the limit of -~{Nln N+O (N) as p gets large. 

6. Conclusion 

The total improvement from a .good implementation .of Quicksort to an 
"optimized" implementation, the median-of-three method with inner loops un- 
wrapped once, can be found by comparing (5), 

1 t.6667(N+ t) lnN-- t.743 N-- 19 
with (24), 

10.0038NlnN+ 3.53oN, 

the equations for the total running time. The improvement is about t0 % for files 
in the practical size range. If a sorting program is to be used extensively, or for 
very large files, as Quicksort often is, the slight extra effort required to implement 
the median-of-three modification and unwrap the inner loop will be well worth- 
while. 

We have dealt with efficient versions of the programs which are based upon 
several ideas introduced in [17]. Complete justification for the particular methods 
used in the context of the countless variations which have been proposed may be 
found in [t 7]. The median-of-three modification and loop unwrapping illustrate 
how the practical utility of improvements to the algorithm and its implementa- 
tion can be demonstrated through exact analysis. Normally, one analyzes a pro- 
gram before attempting to improve it, for the analysis tells where the improvements 
can do the most good. The programs presented here are the product of many 
iterations of implementation and analysis. 

Naturally, the implementation of a sorting algorithm for a particular applica- 
tion can involve many issues not considered here. For example, we have ignored the 
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problem of translating the algorithm from the high-level language descriptions 
given to the efficient machine-language implementations assumed in the analysis. 
This and other practical issues are treated in detail in It 7] and [t9]. However, the 
analyses given in this paper make it possible to derive exact formulas for the aver- 
age running time of particular implementations of Quicksort on real computers. 
Many implementations differ only in the coefficients to be used for the number of 
partitioning stages, comparisons, exchanges, stack pushes, insertions, and moves 
during insertion, and the results given here apply directly. Other implementations 
may involve new quantities, but these can be analyzed using the general solutions 
(3) or (9) to the Quicksort recurrences. In addition, the general solutions may 
prove useful studying the effect of future modifications to Quicksort. 

Many readers may find the analysis extremely complicated, and question 
whether it is worthwhile to so relentlessly pursue the exact answers to our prob- 
lems. Part  of the reason for this is that readers are unfamiliar with the finite 
difference calculus, techniques such as summation by parts, etc., which are the 
basis for many of the manipulations. This kind of mathematics arises naturally 
in the analysis of algorithms and it must be mastered if we are to understand how 
programs perform. The analysis of the basic Quicksort algorithm is actually 
quite simple. For  this program it is easier to derive the exact answer than it is to 
estimate it. (See, for example, [2] for a typical , 'approximate" derivation of the 
number of comparisons used by Quicksort, and compare with the derivation of 
(2).) The more advanced programs require more advanced analysis, and the 
mathematics involved becomes interesting in itself. 

A prime attraction of the study of Quicksort is that  it teaches us so much. 
Proper implementation of tl)e algorithm involves a variety of techniques in 
program optimization such as special handling of small cases and loop unwrapping. 
Proper analysis of the algorithm invoh,es a variety of techniques in algorithmic 
analysis such as summation by parts and generating functions. This combination 
of algorithm and analysis makes the study of Quicksort very fruitful. I t  is impor- 
tant  not only as a useful algorithm in practical sorting applications, but  also as a 
showcase for the analysis of algorithms. 
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