
Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

Implementing
Quicksort Programs
Robert Sedgewick
Brown University

This paper is a practical study of how to implement
the Quicksort sorting algorithm and its best variants on
real computers, including how to apply various code
optimization techniques. A detailed implementation
combining the most effective improvements to
Quicksort is given, along with a discussion of how to
implement it in assembly language. Analytic results
describing the performance of the programs are
summarized. A variety of special situations are
considered from a practical standpoint to illustrate
Quicksort's wide applicability as an internal sorting
method which requires negligible extra storage.

Key Words and Phrases: Quicksort, analysis of
algorithms, code optimization, sorting

CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5

Introduction

One of the most widely studied practical problems in
computer science is sorting: the use of a computer to put
files in order. A person wishing to use a computer to sort
is faced with the problem of determining which of the
many available algorithms is best suited for his purpose.
This task is becoming less difficult than it once was for
three reasons. First, sorting is an area in which the
mathematical analysis of algorithms has been particu-
larly successful: we can predict the performance of many
sorting methods and compare them intelligently. Second,
we have a great deal of experience using sorting algo-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by the Fannie and John Hertz
Foundation and in part by NSF Grants. No. GJ-28074 and MCS75-
23738.

Author's address: Division of Applied Mathematics and Computer
Science Program, Brown University, Providence, RI 02912.
© 1978 ACM 0001-0782/78/1000-0847 $00.75

847

rithms, and we can learn from that experience to separate
good algorithms from bad ones. Third, if the tile fits into
the memory of the computer, there is one algorithm,
called Quicksort, which has been shown to perform well
in a variety of situations. Not only is this algorithm
simpler than many other sorting algorithms, but empir-
ical [2, ll , 13, 21] and analytic [9] studies show that
Quicksort can be expected to be up to twice as fast as its
nearest competitors. The method is simple enough to be
learned by programmers who have no previous experi-
ence with sorting, and those who do know other sorting
methods should also find it profitable to learn about
Quicksort.

Because of its prominence, it is appropriate to study
how Quicksort might be improved. This subject has
received considerable attention (see, for example, [1, 4,
11, 13, 14, 18, 20]), but few real improvements have been
suggested beyond those described by C.A.R. Hoare, the
inventor of Quicksort, in his original papers [5, 6]. Hoare
also showed how to analyze Quicksort and predict its
running time. The analysis has since been extended to
the improvements that he suggested, and used to indicate
how they may best be implemented [9, 15, 17]. The
subject of the careful implementation of Quicksort has
not been studied as widely as global improvements to
the algorithm, but the savings to be realized are as
significant. The history of Quicksort is quite complex,
and [15] contains a full survey of the many variants
which, have been proposed.

The purpose of this paper is to describe in detail how
Quicksort can best be implemented to handle actual
applications on real computers. A general description of
the algorithm is followed by descriptions of the most
effective improvements that have been proposed (as
demonstrated in [15]). Next, an implementation of
Quicksort in a typical high level language is presented,
and assembly language implementation issues are con-
sidered. This discussion should easily translate to real
languages on real machines. Finally, a number of special
issues are considered which may be of importance in
particular sorting applications.

This paper is intended to be a self-contained overview
of the properties of Quicksort for use by those who need
to actually implement and use the algorithm. A compan-
ion paper [17] provides the analytical results which su-
port much of the discussion presented here.

The Algofithm

Quicksort is a recursive method for sorting an array
A[1], A[2] A[N] by first "partitioning" it so that the
following conditions hold:

(i) Some key v is in its final position in the array. (If it
is thejth smallest, it is in position A[j].)

(ii) All elements to the left of A[j] are less than or equal
to it. (These elements A [1], A [2] A [j - 1] are
called the "left subtile.")

Communications October 1978
of Volume 21
the ACM Number 10

(iii) All elements to the right of A[j] are greater than or
equal to it. (These elements A [j + 1] A IN] are
called the "right subtile."]

After partitioning, the original problem of sorting the
entire array is reduced to the problem of sorting the left
and right subfiles independently. The following program
is a recursive implementation of this method, with the
partitioning process spelled out explicitly.

Program 1

procedure quicksort (integer value/, r);
comment Sort Al l : r] where A[r + 1] _> A[/] Air];
if r > I then

i : = / ; j : = r + 1; v := A[/];
loop:

loop: i := i + 1; while A[i] < v repeat;
Ioop : j : = j - 1; while A[]] > v repeat;

until j < i:

A[i] :=: A[JI;
repeat;
Alt] :=: A[/3;
quicksort(l, j - 1);
quicksort(i, r);

endif;

(This program uses an exchange (or swap) operator :=:,
and the control constructs loop ... repeat and if ... endif,
which are like those described by D.E. Knuth in [10].
Statements between loop and repeat are iterated: when
the while condition fails (or the until condition is satis-
fied) the loop is exited immediately. The keyword repeat
may be thought of as meaning "execute the code starting
at loop again," and, for example, "until j < i" may be
read as " i f j < i then leave the loop".)

The partitioning process may be most easily under-
stood by first assuming that the keys A [1] A [N] are
distinct. The program starts by taking the leftmost ele-
ment as the partitioning element. Then the rest of the
array is divided by scanning from the left to fred an
element > v, scanning from the fight to find an element
< v, exchanging them, and continuing the process until
the pointers cross. The loop terminates wi th j + 1 = i, at
which point it is known that A[l + 1] A[j] are < v
and A[j + 1] A[r] are > v, so that the exchange A[l]
.=: A[j] completes the job of partitioning A[l] Air].
The condition that Air + 1] must be greater than or
equal to all of the keys All] A[r] is included to stop
the i pointer in the case that v is the largest of the keys.
The procedure call quicksort (1, N) will therefore sort
A[I] A[N] i fA[N + 1] is initialized to some value
at least as large as the other keys. (This is normally
specified by the notation A[N + 1] := oo.)

If equal keys are present among A [1], ..., A [N], then
Program 1 still operates properly and efficiently, but not
exactly as described above. If some key equal to v is
already in position in the file, then the pointer scans
could both stop with i = j, so that, after one more time
through the loop, it terminates with j + 2 = i. But at this
point it is known not only that A[I + 1] A[j] are _
v and A[j + 2] A[r] are _ v but also that A[j + 1]

848

= v. After the exchange A[I] ~: A[j], we have two
elements in their final place in the array (A [j] and A [j
+ 1]), and the subfiles are recursively sorted.

Figures 1 and 2 show the operation of Program 1 on
the first 16 digits of ~r. In Figure 1, elements marked by
arrows are those pointed to by i and j, and each line is
the result of a pointer increment or an exchange. In
Figure 2, each line is the result of one "partitioning
stage," and boldface elements are those put into position
by partitioning.

The differences between the implementation of par-
titioning given in Program 1 and the many other parti-
tioning methods which have been proposed are subtle,
but they can have a significant effect on the performance
of Quicksort. The issues involved are treated fully in
[15]. By using this particular method, we have already
begun to "optimize" Quicksort, for it has three main
advantages over alternative methods.

First, as we shall see in much more detail later, the
inner loops are efficiently coded. Most of the running
time of the program is spent executing the statements

loop: i := i + 1; while A[Q < v repeat;
loop: j ~ j - 1; while A[J1 > v repeat;

each of which can be implemented in machine language
with a pointer increment, a compare, and a conditional
branch. More naive implementations of partitioning in-
clude other tests, for the pointers crossing or exceeding
the array bounds, within these loops. For example, rather
than using the "sentinel" A[N + 1] = ~ we could use

loop: i ~ i + 1; while i _< N and A[i] < v repeat;

for the i pointer increment, but this would be far less
efficient.

Second, when equal keys are present, there is the
question of how keys equal to the partitioning element
should be treated. It might seem better to scan over such
keys (by using the conditions A [i] _< v and A [j] _> v in
the scanning loops), but careful analysis shows that it is
always better to stop the scanning pointers on keys equal
to the partitioning element, as in Program 1. (This idea
was suggested in 1969 by R.C. Singleton [18].) In this
paper, we will adopt this strategy for all of our programs,
but in the analysis we will assume that all of the keys
being sorted are distinct. Justification for doing so may
be found in [16], where the subject of Quicksort with
equal keys is studied in considerable detail.

Third, the partitioning method used in Program 1
does not impose a bias upon the subfiles. That is, if we
start with a random arrangement of A[l] A[N], then,
after partitioning, the left subtile is a random arrange-
ment of its elements and the right subtile is a random
permutation of its elements. This fact is crucial to the
analysis of the program, and it also seems to be a
requirement for efficient operation. It is conceivable that
a method could be devised which imparts a favorable
bias to the subfiles, but the creation of nonrandom
subfiles is usually done inadvertently. No method which

Communica t ions October 1978
of Volume 21
the A C M N u m b e r 10

Fig. 1. Partitioning ~r (Program 1).

3 1 4 1 5 9 2 6 5
1

4

3 1 3
1

5

3 1 3 1 3
9

5
¢e--

6
2

¢e--

3 1 3 1 3 2 9 6 5
9

2 --'

2 1 3 1 3 3 9 6 5

5
3

5 5

5 8 9 7 9 3

8

7
<__

9
<..-

9
¢e--

8 9 7 9 4

5 5 8 9 7 9 4

5 5 8 9 7 9 4

3
¢e--

4

Fig. 2. Quicksorting ~r (Program l).

3 1 4 1 5 9 2 6 5
2 1 3 1 3 3 9 6 5
1 1 2 3 3
1 1

3 3

3 5 8 9 7 9 3
5 5 8 9 7 9 4

7 6 5 5 5
4 6 5 5 5
4 6 5 5 5

5 5 5 6
5 5 5
5

8 4 9 9 9
7 8

8
9

1 1 2 3 3 3 4 5 5 5 6 7 8 9 9 9

produces nonrandom subfiles has yet been successfully
analyzed, but empirical tests show that such methods
slow down Quicksort by up to 20 percent (see [10, 15]).

Improvements

Program 1 is, then, an easily understandable descrip-
tion of an efficient sorting algorithm. It can be a perfectly
acceptable sorting program in many practical situations.
However, if efficiency is a primary concern, there are a
number of ways in which the program can be improved.
This will be the subject of the remainder of this paper.
Each improvement requires some effort to implement,
which it rewards with a corresponding increase in effi-
ciency. To illustrate the effectiveness of the various
modifications, we shall make use of the analytic results

849

given in [17], where exact formulas are derived for the
total average running time of realistic implementations
of different versions of Quicksort on a typical computer.

Removing Recursion
The most serious problem with Program 1 is that it

can consume unacceptable amounts of space in the
implicit stack needed for the recursion. For example, if
the file A[1] A[N] is already in order, then the
program will invoke itself to recursive depth N, and it
will thus implicitly require extra storage proportional to
N. Hoare pointed out that this is easily corrected by
changing the recursive calls so that the shorter of the two
subfiles is sorted first. The recursive depth is then limited
to log2N [6]. Care must be exercised in implementing
this change, since many compilers will not recognize that
the second recursive call is not really recursive. When-
ever a procedure ends with a call on another procedure,
the stack space used for the first call may be reclaimed
before the second call is made (see [10]). Rather than
expose ourselves to the whims of compilers we will
remove the recursion and use an explicit stack. This will
also eliminate some overhead, and it is a straightforward
transformation on Program 1.

When implemented in assembly language with re-
cursion removed in this way, the expected running time
of Program 1 is shown in [17] to be about 11.6667N In N
+ 12.312N time units. The "time unit" used is the time
required for one memory reference (i.e. count one for
each instruction, plus one more if the instruction refer-
ences data in memory). The model is similar to Knuth's
MIX [7]--we shall see it in more detail below when we
examine assembly language implementation. The for-
mulas derived in [17] are exact, but rather complicated:
the simple formula above is accurate to within 0.1 percent
for N > 1000, 1 percent for N > 100, and 2 percent for
N > 20. Similar formulas with this accuracy are derived
in [17] for all the improvements described below, and
these are quite sufficient for comparing the methods and
predicting their performance.

Small Subfiles
Another major difficulty with Program 1 is that it

simply is not very efficient for small subfiles. This is
especially unfortunate because the recursive nature of
the program guarantees that it will always be used for
many small subfiles. Therefore Hoare suggested that a
more efficient method be used when r - I is small [6]. A
method which is known to be very efficient for small
files is insertion sorting. This is the method of scanning
through the file and inserting each element into place
among those previously considered, by successively mov-
ing smaller elements up to make room. It may be imple-
mented as follows:

procedure insertionsort(l, r);
comment Sort A [l : r] where A [r + 1] > A [1] A [r];
loop f o r r - l>--i>--l:

Communications October 1978
of Volume 21
the ACM Number 10

ifA[i] > A[i + 1] then
v .--- A[i] ; j := i + 1;
loop: A [j - 1] ~ A [j] ; j : = j + 1; while A[j] < v repeat;
A [j - 1] .'= v;

endif;

(Just as there are many different implementations of
Quicksort, so there are a variety of ways to implement
Insertionsort. This subject is treated in detail in [9] and
[15].) Now, the obvious way to improve Program 1 is to
change the first if statement to

if r - l --< M then insertionsort(l, r) else ...

where M is some threshold value above which Quicksort
is faster than Insertionsort.

It is shown in [15] that there is an even better way to
proceed. Suppose that small subfiles are simply ignored
during partitioning, e.g. by changing the first if statement
in Program 1 to "if r - l > M then " Then, after the
entire tile has been partitioned, it has all the elements
which were used as partitioning elements in place, with
unsorted subtiles of length M or less between them. A
single Insertionsort of the entire file will quite efficiently
complete the job of sorting the file.

Analysis shows that it takes Insertionsort only slightly
longer to sort the whole tile than it would to sort all of
the subtiles, but all of the overhead of invoking Inser-
tionsort during partitioning is eliminated. For example,
subfiles with M or fewer elements never need be put on
the stack, since they are ignored during partitioning. It

3 turns out that this eliminates z of the stack pushes used,
on the average. This makes the method preferable to the
scheme of sorting the small subtiles during partitioning
(even in an "optimal" manner).

For most implementations, the best value of M is
about 9 or 10, though the exact value is not highly
critical: Any value between 6 and 15 would do about as
well. Figure 3 shows the total running time on the
machine in [17] for N = 10,000 for various values of M.
The best value is M = 9, and the total running time for
this value is about 11.6667N In N - 1.743N time units.
Figure 4 is a graph of the function 14.055N/(11.6667N
In N + 12.312N), which shows the percentage improve-
ment for this optimum choice M = 9 over the naive
choice M = 1 (Program 1).

Worst Case

A third main flaw of Program 1 is that there are some
files which are likely to occur in practice for which it
will perform badly. For example, suppose that the num-
bers A[1], A[2] A[N] are in order already when
Program 2 is invoked. Then A [1] will be the first parti-
tioning element, and the first partition will produce an
empty left subtile and a right subtile consisting of A[2],
. . . . A[N]. Then the same thing will happen to that
subtile, and so on. The program has to deal with files of
size N, N-l, N-2 and its total running time is obviously
proportional to N 2. The same problem arises with a tile
in reverse order. This O(N 2) worst case is inherent in

850

Fig. 3. Total running time of Quick sort for N = 10,000.

1,3~,000

1,2~,000

1.1~,00~

I,O00,(X)O

Cutoff for small subfiles (M).

Fig. 4. Improvement due to sorting small subfiles on a separate pass.

25

20

_E

5

<_

- -1000 2060 3000 4000 5000 6000 7000 8060 9000 10000
File Size ~N)

Quicksort: it is especially unfortunate if it occurs on files
so likely to occur in practice.

There are many ways to make such anomalies very
unlikely in practical situations. Rather than using the
first element in the file as the partitioning element, we
might try to use some other fLxed element, like the middle
element. This helps some, but simple anomalies still can
occur. Hoare suggested a method which does work:
choose a random element as the partitioning element
[6]. As remarked above, care must be taken when imple-
menting these simple changes to ensure that the parti-
tioning method still produces random subfiles. The safest
method, i fA[p] is to be used as the partitioning element
(where, for example, p is computed to be a pseudoran-
dom number between l and r), is to simply precede the
statement v .--- A[I] by the statement A[p] .=: A[I] in
Program 1.

Using a random partitioning element will virtually
ensure that anomalous cases for Program 2 will not occur
in practical sorting situations, but it has the disadvantage
that random number generation can be relatively expen-
sive. We are probably being overcautious to slow down
the program for all tiles, just to avoid a few anomalies.
The next method that we will examine actually improves
the average performance of the program while at the
same time making the worst case unlikely to occur in
practice.

Communica t ions October 1978
of Volume 21
the A C M N u m b e r 10

Median-of-Three Modification
The method is based on the observation that Quick-

sort performs best when the partitioning element turns
out to be near the center of the file. Therefore choosing
a good partitioning element is akin to estimating the
median of the file. The statistically sound method for
doing this is to choose a sample from the file, find the
median, and use that value as the estimate for the median
of the whole file. This idea was suggested by Hoare in
his original paper, but he didn't pursue it because he
found it "very difficult to estimate the saving." It turns
out that most of the savings to be had from this idea
come when samples of size three are used at each parti-
tioning stage. Larger sample sizes give better estimates
of the median, of course, but they do not impro~,e the
running time significantly. Primarily, sampling provides
insurance that the partitioning elements don't consist-
ently fall near the ends of the sub files, and three elements
are sufficient for this purpose. (See [15] and [17] for
analytic results confirming these conclusions.) The av-
erage performance would be improved if we used any
three elements for the sample, but to make the worst case
unlikely we shall use the first, middle, and last elements
as the sample, and the median of those three as the
partitioning element. The use of these three particular
elements was suggested by Singleton in 1969 [18]. Again,
care must be taken not to disturb the partitioning process.
The method can be implemented by inserting the state-
ments

A[(I + r) + 2] ~: A[I + 1];

if Al l + 1] > A [r] t h e n A [/ + 1] .----: A[r] endif;
i f A [l] > A[r] then A[I] ~: A[r] endif;
if Al l + 1] > A [1] then Al l + 1] ~ : A[/] endif;

before partitioning (after "if r > l then" in Program 1.
This change makes A [1] the median of the three elements
originally at A[I], A[(I + r) + 2], and A[r] before
partitioning. Furthermore, it makes A[I + 1] _< A[I] and
A [r] _> A [l], so the pointer initializations can be changed
to "i .--- l + 1;j .--- r". This method preserves randomness
in the subfiles.

Median-of-three partitioning reduces the number of
comparisons by about 14 percent, but it increases the
number of exchanges slightly and requires the added
overhead of finding the median at each stage. The total
expected running time for the machine in [17] (with the
optimum value M - 9) is about 10.6286N In N + 2.116N
time units, and Figure 5 shows the percentage savings.

Implementation

Combining all of the improvements described above,
we have Program 2, which has no recursion, which
ignores small subfiles during partitioning, and which
partitions according to the median-of-three modification.
For clarity, the details of stack manipulation and select°
ing the smaller of the two subfiles are omitted. Also,

851

Fig. 5. I m p r o v e m e n t due to med ian -o f - th ree part i t ioning.

25

20

J5
E

5
f

3000 4000 5000 6000 7000 8000
Fiie Size (N)

90o0 t0ood

since recursion is no longer involved, we will deal with
an in-line program to sort Al l] A[N].

Program 2

integer l, r, i, j ;
integer array stack[l : 2 Xf lN)] ;
boolean done;
arbmode array A[I : N + 1];
a rbmode v;
l.---- l; r .--- N; done ~ N <- M;
loop until done:

A[(I + r) + 2] ~ : A[I + 1];
if Ai r + 1] > A[r] then A[l + 1] .---: A[r] endif;
if A l l] > A[r] then A[I] ~: A[r] endif;
if A [/ + 1] > A[I] then A[I + 1] .---: A[I] endif;
i.---- l + l ; j m r; v .--- A[I];
loop:

loop: i ~ i + 1; while A[i] < v repeat ;
loop: j .---j - 1; while A[j] > v repeat ;

until j < i:
A[i] ~: A[J];

repeat ;
All] :=: Aft] ;
if max(./" - l, r - i + 1) --< M

then if stack empty
then done .--- t rue
else (1, r) .~ popstack
endif;

else i f m i n (j - l , r - i + l)<_M
then (1, r) := large subtile;
else pushstack (large subtile);

(1, r) := small subt i le
endif;

endif;
repeat ;
A [N + 1] .--- oo;
loop for N - 1 > _ i - - > 1:

i fA[i] > A [i + 1] then
v .= A[i];j :--- i + 1;
loop: A [j - 1] ~ A[j]; j ~ j + l; while A[j] < v repeat ;
A b - 1] .-- v;

endif;
repeat ;

In the logic for manipulating the stack after parti-
tioning, (/, j - 1) is the "large subtile" and (i, r) is the
"small subtile" if max (j - / , r - i + 1) = j - / , and vice
versa if r - i + 1 > j - l. This may be implemented

C o m m u n i c a t i o n s October 1978
o f V o l u m e 21
the A C M N u m b e r 10

simply and efficiently by making one copy of the code
for each of the two outcomes of comparing j - l with r
- i + 1 .

Note that the condition A[N + 1] = oo is now only
needed for the insertionsort. This could be eliminated, if
desired, at only slight loss by changing the conditional in
the inner loop of Insertionsort to "while A [j'] < v and j
_< N".

Left unspecified in Program 2 are the values of M,
the threshold for small subfiles, andf(N), the maximum
stack depth. These are implementation parameters which
should be specified as constants at compile time. As
mentioned above, the best value of M for most imple-
mentations is 9 or 10, although any value from 6 to 15
will do nearly as well. (Of course, we must have M ___ 2,
since the partitioning method needs at least three ele-
ments to find the median of.) The maximum stack depth
turns out to be always less than logz (N + 1)/(M + 2) so
(for M = 9) a stack withf(N) = 20 will handle files of up
to about ten million elements. (See the analysis in [11,
15, 171.)

Figure 6 diagrams the operation of Program 2 upon
the digits of ~r. Note that after partitioning all that is left
for the insertionsort is the subtile 5 5 5 4, and the
insertion sort simply scans over the other keys.

The total average running time of a program is
determined by first finding analytically the average fre-
quency of execution of each of the instructions, then
multiplying by the time per instruction and summing
over all instructions. It turns out that the total expected
running time of Program 2 can be determined from the
six quantities:

As the number of partitioning stages,
Bu the number of exchanges during partitioning,
CN the number of comparisons during partitioning,
SN the number of stack pushes (and pops),
DN the number of insertions, and
E2v the number of keys moved during insertion.

In Program 2, CN is the number of times i .--- i + 1 is
executed plus the number of times j .'= j + 1 is executed
within the scanning loops; BN is the number of times
A[i] ".= A[j] is executed in the partitioning loop; AN is
the number of times the main loop is iterated; DN is the
number of times v is changed in the insertionsort; and
EN is the number of times A[j - 1] .--- A[j] is executed

Fig. 6. Quicksorting ~r--improved method (Program 2, M

Quicksort: 3 1 4 1 5 9 2 6 5 3 5 8 9
2 3 3 1 1 3 9 5 5 4 5 8 9
1 1 2 3 3

5 5 5 4 6 8 9
7 8

Insertion- 1 1 2 3 3 3 5 5 5 4 6 7 8
so~: 4 6 7 8

4 5
1 1 2 3 3 3 4 5 5
1 1 2 3 3 3 4 5 5 5 6 7 8

852

= 4).

7 9 3
7 9 6

7 9 9
9 9 9
9 9 9
9 9 9

9 9 9

in the insertionsort. Each instruction in an assembly
language implementation can be labeled with its fre-
quency in terms of these quantities and N. (There m~ty
be a few other quantities involved: if they do not relate
simply to the main quantities or cancel out when the
total running time is computed, then they generally can
be analyzed in the same way as the other quantities
[17].) The analysis in [17] yields exact values for these
quantities, from which the total running time can be
computed and the best value of M chosen. For M = 9 it
turns out that

CN --~ 1.714N In N - 3.74N,
B2v -~ .343N In N - .84N
E2v = 1.14N, DN "~ . 6 0 N ,

AN M.16N, SN "" .05N.

From these equations, the total running time of any
particular implementation of Program 2 (with M = 9)
can easily be estimated. For the model in [9, 15, 17], the
total expected running time is 53½AN + 11B2v + 4CN +
3DN + 8E2v + 9SN + 7N, which leads to the equation
10.6286N In N + 2.116N given above.

Assembly Language
Program 2 is an extremely efficient sorting method,

but it will not run efficiently on any particular computer
unless it is translated into an efficient program in that
computer's machine language. If large tiles are to be
sorted or if the program is to be used often, this task
should not be entrusted to any compiler. We shall now
turn from methods of improving the algorithm to meth-
ods of coding the program for a machine.

Of most interest is the "inner loop" of the program,
those statements whose execution frequencies are pro-
portional to N In N. We shall therefore concern ourselves
with the translation of the statements

loop:
loop: i ~ i + 1; while A[i] < v repeat;
Ioop:j .'=-j - 1; while A[j] > v repeat;

un t i l j < i:
A[i] ~: A []'];

repeat;

Assembly-language implementations of the rest of the
programs may be found in [9] or [15]. Rather than use
any particular assembly-language or deal with any par-
ticular machine, we shall use a mythical set of instruc-
tions similar to those in Knuth's MIX [7]. Only simple
machine-language capabilities are used, and the pro-
grams and results that we shall derive may easily be
translated to apply to most real machines.

To begin, a direct translation of the inner loop of
Programs 1 and 2 is given below. The comments on each
line explain what the instructions are intended to do.
The mnemonics I, V, J, X, and Y are symbolic register
names, and the notation A(I) means the contents of the
memory location whose address is A plus the contents of
index register/, or A[i]. Readers unfamiliar with assem-
bly language programming should consult [7].

Communica t ions October 1978
of Volume 21
the ACM N u m b e r 10

LOOP INC I, 1
CMP V, A(I)
JG * - 2
DEC J, 1
CMP V, A(J)
JL * - 2
CMP J, I
JL O U T
LD X, A(I)
LD Y, A(J)
ST X, A(J)
ST Y, A(I)
JMP LOOP

O U T

Increment register I by l.
Compare v with A[i].
Go back two instructions if v > A[i].
Decrement register J by 1.
Compare v with A [j].
Go back two instructions if v < A[j].
Compare J with I.
Leave loop i f j < i.
Load A[i] into register X.
Load A[j] into register Y.
Store register X into A[j].
Store register Y into A[0.
Uncondit ional j u m p to LOOP.

This direct translation of the inner loop of Programs 1
and 2 is much more efficient than the code that most
compilers would produce, and there is still room for
improvement.

First, no inner loop should ever end with an uncon-
ditional jump. Any such loop must contain a conditional
jump somewhere, and it can always be "rotated" to end
with the conditional jump, as follows:

JMP INTO
LOOP LD X, A(I)

LD Y, A(J)
ST X, A(J)
ST Y, A(I)

INTO INC I, 1
CMP V, A(I)
JG • - 2
DEC J, 1
CMP V, A(J)
JL * - 2
CMP J, I
JGE LOOP

O U T

This sequence contains exactly the same number of
instructions as the above, and they are identical when
executed; but the unconditional jump has been moved
out of the inner loop. (If the initialization of I were
changed, a further savings could be achieved by moving
INTO down one instruction.) This simple change re-
duces the running time of the program by about 3
percent.

The coefficients I l and 4 for BN and CN in the
expression given above for the total running time can be
verified by counting two time units for instructions which
reference memory and one time unit for those which do
not. It is this low amount of overhead that makes Quick-
sort stand out among sorting algorithms. In fact, the true
"inner loop" is even tighter, because we have two loops
within the inner loop here: the pointer scanning instruc-
tions

INC I, 1 DEC J, 1
CMP V, A(I) CMP V, A(J)
JG * - 2 JL * - 2

are executed, on the average, three times more often than
the others for Program 1. (The factor is 2½ for Program
2.) It is hard to imagine a simpler sequence on which to
base an algorithm: pointer increment, compare, and
conditional jump. The fact that these loops are so small

853

makes the proper implementation and translation of
Quicksort critical. If we had a translation of loop: i := i
+ 1; while A[i] < v repeat which used only three super-
fluous instructions, or if we had checked for the pointers
crossing or going outside the array bounds within these
loops, then the running time of the whole program could
be doubled!

Loop Unwrapping
On the other hand, with our attention focused on

these two pairs of three instructions, we can further
improve the efficiency of the programs. The only real
overhead within these inner loops is the pointer arith-
metic, INC I, 1 and DEC J, 1. We shall use a technique
called "loop unwrapping" (or "loop unroll ing"--see
[3]) which uses the addressing hardware to reduce this
overhead. The idea is to make two copies of the loop,
one for A[i] and one for A[i + 1], then increment the
pointer once by 2 each time through. Of course, the code
coming into and going out of the loop has to be appro-
priately modified.

Loop unwrapping is a well-known technique, but it
is not well understood, and it will be instructive to
examine its application to Quicksort in detail. The
straightforward way to proceed would be to replace the
instructions

INC I, 1
CMP V, A(I)
JG * - 2

by one of the equivalent code sequences

JMP INTO LOOP CMP V, A + 1(I)
LOOP INC I, 1 JLE OUT1

CMP V, A(I) INC I, 2
JLE O U T CMP V, A(I)

INTO CMP V, A + 1(I) JG LOOP
JG LOOP JMP O U T
INC I, 1 OUT1 INC I, 1

O U T ~ O U T

We can measure the relative efficiency of these alteran-
tives by considering how many memory reference they
involve, assuming that the loop iterates s times. The
original code uses 4s memory references (three for in-
structions, one for data). For the unwrapped program on
the left above, the number of memory references taken
for s = 1, 2, 3, 4, 5 is 5, 8, 12, 15, 19 and a gen-
eral formula for the number of references saved is [(s -
2)/2J. For the program on the right, the values are 4, 8,
11, 15, 18 and the savings are L½(s - l)J. In both cases
about V2s increments are saved, but the program on the
right is slightly better.

However, both sequences contain unnecessary un-
conditional jumps, and both can be removed, although
with quite different techniques. In the second program,
the code at OUT could be duplicated and a copy substi-
tuted for JMP OUT. This technique is cumbersome if
this code contains branches, and for Quicksort it even
contains another loop to be unwrapped. Despite such
complications, this will increase the savings to Ls/2J

Communica t ions October 1978
of Volume 21
the A C M Number 10

when the loop is iterated s times. Fortunately, this same
efficiency can be achieved by repairing the jump into the
loop in the program on the left. The code is exactly
equivalent to

CMP V, A + l(I)
JLE OUT1

LOOP INC I, 1
CMP V, A(I)
JLE OUT
CMP V, A + l(I)
JG LOOP

OUT1 INC I, 1
OUT i

and this code saves /s/2J memory references over the
original when the loop is iterated s times. T h e j loop can
obviously be unwrapped in the same way, and these
transformations give us a more efficient program in
which the I and J pointers are altered much less often.

Note that since the inner loops of Quicksort are
iterated only a few times on the average, it is very
important that loop unwrapping be carefully imple-
mented. The first implementation above is slower than
the original loop if it is iterated just once, and actually
increases the total running time of the program.

The analysis of the effect of loop unwrapping turns
out to be much more difficult than the other variants
that we have seen. The results in [17] show that unwrap-
ping the loops of Program 2 once reduces its running
time to about 10.0038N In N + 3.530N, time units, and
that it is not worthwhile to unwrap further. Figure 7
shows the percentage improvement when this technique
is applied to Program 2.

Perspective

By describing algorithms to sort randomly ordered
and distinct single-word keys in a high level language,
and using performance statistics from low level imple-
mentations on a mythical machine, we have avoided a
number of complicated practical issues. For example, a
real application might involve writing a program in a
high level language to sort a large file of multiword keys
on a virtual memory system. While other sorting methods
may be appropriate for some particular applications,
Quicksort is a very flexible algorithm, and the programs
described above can be adapted to run efficiently in
many special situations that arise in practice. We shall
examine, in turn, ramifications of the analysis, special
characteristics of applications, software considerations,
and hardware considerations.

Analysis
In a practical situation, we might not expect to have

randomly ordered files of distinct keys, so the relevance
of the analytic results might be questioned. Fortunately,
we know that the standard deviation is low (for Program
1 the standard deviation has been shown to be about
0.648N [11, 17]), so we can expect the average running

854

Fig. 7. Improvement due to loop unwrapping.

[
E

°'i[
h

I ~ 2000 3000 4000 5()00 6000 7 ~ 80b0 9000 10000
File Size (N)

time to be reasonably close to the formulas given (for
example, we can be 99 percent sure that the formula for
Program 1 is accurate to within 2N). It is shown in [16]
that the assumption that the keys are distinct is justified
and that Program 2 performs well when equal keys are
present. Furthermore the technique of partitioning on
the median of the first, middle, and last elements of the
file ensures that Program 2 will work well on files that
are almost in order, which do occur in practice. If other
biases are suspected, the use of a random element for
partitioning will lead to acceptable performance.

All of the Quicksort programs do have an O(N z)
worst case. One can always "work backwards" to fred a
file which will require time proportional to N 2 to sort.
This fact often dissuades people from using Quicksort,
but it should not. The low standard deviation says that
the worst case is extremely unlikely to occur in a prob-
abilistic sense. This provides little consolation if it does
occur in a practical file, and this is possible for Program
1 since files already in order and other simple files will
lead to the worst case. This does not seem to be the case
for Program 2. Hoare's technique of using a random
partitioning element makes it extremely unlikely that the
running time will be far from the predicted averages.
(The analysis is entirely valid in this case, no matter
what the input is.) However, this is more expensive than
the method of Program 2, which appears to offer suffi-
cient protection against the worst case.

Applications
We have implicitly assumed throughout that all of

the records to be sorted fit into memory--Quicksort is
an "internal" sorting method. The issues involved in
sorting very, very large files in external storage are very
different. Most "external" sorting methods for doing so
are based on sorting small subfiles on one pass through
the data, then merging these on subsequent passes. The
time taken by such methods is dependent on physical
device characteristics and hardware configurations. Such
methods have been studied extensively, but they are not
comparable to internal methods like Quicksort because
they are solving a different problem.

Communications October 1978
of Volume 21
the ACM Number 10

It is common in practical situations to have multi-
word keys and even larger records in the fields to be
sorted. If records are more than a few words long, it is
best to keep a table of pointers and refer to the records
indirectly, so only one-word pointers need be exchanged,
not long records. The records can be rearranged after the
pointers have been "sorted." This is called a "pointer"
or "address table" sort (see [11]). The main effect of
multiword keys to be considered is that there is more
overhead associated with each comparison and ex-
change. The results given above and in [17] make it
possible to compare various alternatives and determine
the total expected running time for particular applica-
tions. For large records, the improvement due to loop
unwrapping becomes unimportant. If the keys are very
long, it may pay to save extra information on the stack
indicating how many words in the keys are known to be
equal (see [6]). Our conclusions comparing methods are
still valid, because the extra overhead associated with
large keys and records is present in all the sorting meth-
ods.

When we say that Quicksort is a good "general
purpose" method, one imphcation is that not much
information is available on the keys to be sorted or their
distribution. If such information is available, then more
efficient methods can be devised. For example, if the
keys are the numbers 1, 2, . . . , N, and an extra table of
size N is available for output, they can be sorted by
scanning through the file sequentially, putting the key
with value i into the/ th position in the table. (This kind
of sorting, called "address calculation," can be extended
to handle more general situations.) As another example,
suppose that the N elements to be sorted have only 2 t +
1 distinct values, all of which are known. Then we can
partition the array on the median value, and apply the
same procedure to the sub files, in total time proportional
to (t + 1)(N + 1). It is shown in [16] that Program 1 will
take on the order of (2 In 2)tN comparisons on such files,
so Quicksort does not perform badly. Other special-
purpose methods can be adapted to other special situa-
tions, but Program 2 can be recommended as a general
purpose sorting method because it handles many of these
situations adequately.

Software
Modern compilers have not progressed to the point

where they can produce the best possible (or even very
good) assembly-language translations of high level pro-
grams, so we have dealt with "ideal" assembly-language
implementations. Standard compilers produce code for
Quicksort that is 300-400 percent slower than the assem-
bly-language implementation (see [15]). It is not unrea-
sonable to expect that compilers may someday produce
programs close to the ideal, since some of the improve-
ments that we made could be done mechanically and are
used in so-called "optimizing" compilers. Quicksort's
partitioning loop, because of its structure, is actually a
good test case for optimizing compilers--one well-known

855

compiler actually makes the inner loop longer when its
optimizing feature is invoked [15].

If a sorting program must run efficiently, it should be
implemented in assembly language, and we have shown
a good way to do so. It is interesting to note that on
many computers an implementation of Quicksort in
Fortran (for example) will require about as many source
statements as an assembly-language implementation (see
[15], but it will of course produce a much less efficient
program.

If one is willing to pay for the extra overhead of
implementing his sorting program in a high level lan-
guage, then Quicksort should still be used because it will
incur relatively less overhead than other methods. Pro-
gram 2 can be used as it stands, although any effort
spent trying to "optimize" it (such as choosing the very
best value of M) would be better spent simply imple-
menting it in assembly language. If a sorting program is
to be used only a few times on files which are not large,
then Program 1 (possibly with "A[/] .---: A[(I + r) + 2]"
inserted before partitioning to make the worst case un-
likely) will do quite nicely. The only danger is that the
stack for recursion might consume excessive space, but
this is very unlikely (it will require less than 30 entries,
on the average, for files of 10,000 elements [15]) and it
provides a ~onvenient "alarm" that the worst case is
happening. Program 1 is a simple program whose aver-
age running time is low--it will sort thousands of ele-
ments in only a few seconds on most modern computer
systems.

Hardware
Particular characteristics of particular real computers

might allow for further improvements to Quicksort. For
example, some computers have "compare and skip" and
"increment and test" instructions which allow the inner
loops to be implemented in two instructions, thus elimi-
nating the need for loop unwrapping. Similar "local"
improvements may be possible in other parts of the
programs.

The hardware feature on modern computers that has
the most drastic effect on the performance of algorithms
is paging. Quicksort actually does not perform badly in
a virtual memory situation (see [2]) because it has two
slowly changing "localities" around the scanning
pointers. In some situations, it will be wise to minimize
page faults by performing the extra processing necessary
to split the array into many partitions (instead of only
two) on the first partitioning stage. Of course, the pro-
grams should be changed so that small subfiles are
"insertionsorted" as they are encountered, because oth-
erwise the last scan over the whole file will involve
unnecessary page faults. Many internal sorting methods
do not work well at all under paging, but Quicksort can
be adapted to run quite efficiently.

Another hardware feature of interest is parallelism.
Quicksort does not take good advantage of the parallel-
ism in large scientific computers, and there are methods

Communications October 1978
of Volume 21
the ACM Number 10

which should do better if parallel computations are
involved. However, Quicksort has been shown to per-
form quite well on one such computer [19]. Of course, if
true parallelism is available then subfiles can be sorted
independently by different processors.

Many modern computers have hardware features
such as instruction stacks, pipelined execution, caches,
and interleaved storage which can improve performance
greatly. Knuth [9] concludes that radix sorting might be
preferred on "number-crunching" computers with pipe-
lining. Loop unwrapping could be disastrous on com-
puters with small instructions stacks, and the other fea-
tures mentioned above will very often hide the time used
for pointer arithmetic behind the time used for other
instructions. The analysis of the effect of such hardware
features can be very difficult, but again Quicksort makes
a good test case for such studies because its inner loop is
so small and its analysis is so well understood (see the
analysis of loop unwrapping in [17]). However, there will
probably always remain a role for empirical testing of
alternatives in superoptimized implementations on ad-
vanced machines.

It is often the case that advanced hardware features
allow the implementation of very fast routines for sorting
small files. Using such a routine instead of Insertionsorts
can lead to substantial improvements for Quicksort on
some computers. To develop a good implementation of
Quicksort on a new computer, one should first pay
careful attention to the partitioning loops, then deal with
the problem of sorting small subfiles efficiently.

Conclusion

Our goal in this paper has been to illustrate methods
by which a typical computer can be made to sort a file
as quickly and conveniently as possible. The algorithm,
improvements, and implementation techniques de-
scribed here should make it possible for readers to im-

plement useful, efficient programs to solve specific sort-
ing problems.

Economic issues surrounding modern computer sys-
tems are very complex, and it is necessary always to be
sure that it will be worthwhile to implement projected
improvements to programs. Many simple applications
can be handled perfectly adequately with simple pro-
grams such as program 1. However, sorting is a task
which is performed frequently enough that most com-
puter installations have "utility" programs for the pur-
pose. Such programs should use the best techniques
available, so something on the order of an assembly-
language implementation of Program 2 is called for.

Sorting small subfiles on a separate pass, partitioning
on the median of three elements, and unwrapping the
inner loops reduces the expected running time on a
typical computer from about 11.6667N In N + 12.312N
to about 10.0038N In N + 3.530N time units. Figure 8
shows the total percentage improvement for these im-
provements together.

Many of the issues raised above relating to other
sorting programs are treated fully in [9], and the issues
specific to Quicksort are also dealt with in [15]. We have
not described here the countless other variants of Quick-
sort which have been proposed to improve the algorithm
or to deal with the various problems outlines above [1,
4, 13, 14, 20]. Many of these turn out not to be improve-
ments at all: see [15] for complete descriptions. For
example, nearly every published implementation of
Quicksort uses a different partitioning method. The var-
ious methods seem to differ only slightly, but actually
their performance characteristics can differ greatly. Cau-
tion should be exercised before a partitioning method
which differs from those above is used.

Program 2 is the method of choice in many practical
sorting situations and will be very quick if properly
implemented. Quicksort is an interesting algorithm
which combines utility, elegance, and efficiency.

Received May 1976; revised February 1978.

Fig. 8. Cumulative improvement due to sorting small subfiles on a
separate pass, median-of-three partitioning, and loop unwrapping.

25

2o

E

~. 15

856

1060 2~ 30b0 4~oo 5 ~ 6~oo 7 ~ so~ 9o6o iooo6
File Size (N)

References
!. Boothroyd, J. Sort of a section of the elements of an array by
determining the rank of each element: Algorithm 25; and Ordering
the subscripts of an array section according to the magnitudes of the
elements: Algorithm 26. Comptr. £ 10 (Nov. 1967), 308-310. (See
notes by R.S. Scowen in Comptr. J. 12 (Nov. 1969), 408-409, and by
A.D. Woodall in Comptr. J. 13 (Aug. 1970.)
2. Brawn, B.S., Gustavson, F.G., and Mankin, E. Sorting in a
paging environment. Comm. A CM 13, 8 (Aug. 1970), 483-494.
3. Cocke, J., and Schwartz, J.T. Programming languages and their
compilers. Preliminary Notes. Courant Inst. of Math. Sciences, New
York U., New York, 1970.
4. Frazer, W.D., and McKellar, A.C. Samplesort: A sampling
approach to minimal storage tree sorting. £ A CM 17, 3 (July 1970),
496-507.
5. Hoare, C.A.R. Partition: Algorithm 63; Quicksort: Algorithm 64;
and Find: Algorithm 65. Comm. A CM 4, 7 (July 1961), 321-322. (See
also certification by J.S. Hillmore in Comm. A CM 5, 8 (Aug. 1962),
439, and B. Randell and L.J. Russell in Comm. A CM 6, 8 (Aug.
1963), 446.)
6. Hoare, C.A.R. Quicksort. Computer J. 5, 4 (April 1962), 10-15.
7. Knuth, D.E. The Art of Computer Programming, VoL 1:

Communications October 1978
of Volume 21
the ACM Number 10

Fundamental Algorithms. Addison-Wesley, Mass., 1968.
8. Knuth, D.E. The Art of Computer Programming, Vol. 2:
Seminumerical Algorithms. Addison-Wesley, Mass., 1969.
9. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Mass., 1972.
10. Knuth, D.E. Structured programming with go to statements.
Computing Surveys 6, 4 (Dec. 1974), 261-301.
11. Loeser, R. Some performance tests of "quicksort" and
descendants. Comm. ACM 17, 3 (March 1974), 143-152.
12. Morris, R. Some theorems on sorting. S l A M J. Appl. Math. 17, 1
(Jan. 1969), I-6.
13. Rich, R.P. Internal Sorting Methods Illustrated with P L / I
Progams. Prentice-Hall, Englewood Cliffs, N.J., 1972.
14. Scowen, R.S. Quickersort: Algorithm 271. Comm. A CM 8, 11
(Nov. 1965), 669-670. (See also certification by C.R. Blair in Comm.
ACM 9, 5 (May 1966), 354.)
15. Sedgewick, R. Quicksort. Ph.D. Th. Stanford Comptr. Sci. Rep.
STAN-CS-75-492, Stanford U., Stanford, Calif., May 1975.
16. Sedgewick, R. Quicksort with equal keys. Siam J. Comput. 6, 2
(June 1977), 240-287.
17. Sedgewick, R. The analysis of Quicksort programs. Acta
Informatica 7 (1977), 327-355.
18. Singleton, R.C. An efficient algorithm for sorting with minimal
storage: Algorithm 347. Comm. ACM 12, 3 (March 1969), 185-187.
(See also remarks by R. Griffin and K.A. Redish in Comm. ACM 13,
l (Jan. 1970), 54 and by R. Peto, Comm. A CM 13, l0 (Oct. 1970),
624.)
19. Stone, H.S. Sorting on STAR. IEEE Trans. Software Eng. SE-4,
2 (Mar. 1978), 138-146.
20. van Emaen, M.N. Increasing the efficiency of quicksort:
Algorithm 402. Comm. A CM 13, 11 (Nov. 1970), 693-694. (See also
the article by the same name in Comm. ACM 13, 9 (Sept. 1970),
563-567.)
21. Wirth, N. Algorithms + Data Structures = Programs. Prentice-
Hall, Englewood Cliffs, N.J., 1976.

Programming
Techniques

S.L. Graham, R.L. Rivest
Editors

Packed Scatter Tables
Gordon Lyon
National Bureau of Standards

Scatter tables for open addressing benefit from
reeursive entry displacements, cutoffs for unsuccessful
searches, and auxiliary cost functions. Compared with
conventional methods, the new techniques provide
substantially improved tables that resemble exact-
solution optimal packings. The displacements are
depth-limited approximations to an enumerative
(exhaustive) optimization, although packing costs
remain linear--O(n)--with table size n. The techniques
are primarily suited for important fixed (but possibly
quite large) tables for which reference frequencies may
be known: op-code tables, spelling dictionaries, access
arrays. Introduction of frequency weights further
improves retrievals, but the enhancement may degrade
cutoffs.

Key Words and Phrases: assignment problem,
backtrack programming, hashing, open addressing,
recursion, scatter table rearrangements

CR Categories: 3.74, 4.0

857

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's address: U.S. Department of Commerce, National Bu-
reau of Standards, Computer Science Section, A367-Tech, Washington,
D.C. 20234.
© 1978 ACM 0001-0782/78/1000-0857 $00.75

Communications October 1978
of Volume 21
the ACM Number 10

