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1. INTRODUCTION 

In  th i s  pape r  we descr ibe  a ve ry  i m p o r t a n t  c o m p o n e n t  of a n y  VLSI  (very large- 
scale in t eg ra t ion )  des ign  e n v i r o n m e n t :  a tool  to a u t o m a t e  the  l a y o u t  of circuits .  

Th i s  work is p a r t  of  a n  effort  to c rea te  a n  i n t e g r a t e d  e n v i r o n m e n t  for VLSI  des ign  
( including l ayou t  sys tems,  device a n d  swi tch- level  s imula tors ,  a n d  t e s t ing  facili- 
ties} cu r r en t ly  u n d e r  way a t  P r i n c e t o n  Univers i ty .  
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Our main thesis is that the VLSI design task can be profitably thought of as a 
programming task, as opposed to a geometric editing task. We believe that  much 
is to be gained by consciously attempting to apply our knowledge about program- 
ming to this new activity. We have thus tried to create tools for the VLSI designer 
that incorporate the most useful features of the software development tools that  
we are familiar with. 

Although we feel that we have had moderate success in this endeavor, we are 
well aware of how much room for improvement remains, and we would like to 
help convince the community of people interested in the design of programming 
languages and programming environments that  there are fresh and important 
challenges in this relatively new direction. 

A prototype of the procedural layout language described in this paper has been 
operational for some months. All figures given in this paper were generated by 
the language, and all the code fragments have been used as part of larger 
programs. 

2. ALl: A PROCEDURAL LANGUAGE TO DESCRIBE LAYOUTS 

The main feature of ALI as a layout language is that  it allows its user to design 
layouts at a conceptual level at which neither sizes nor positions {absolute or 
relative) of layout components may be specified. Mostly as a consequence of this 
feature, ALI simultaneously (1) makes the layout task more like programming 
than editing, (2) eliminates the need for design rule checking after the layout is 
generated, (3) permits the creation of easy-to-use cell libraries, and {4) provides 
the designer with the mechanisms to describe a layout hierarchically so that  most 
of the detail at one level of the hierarchy is truly hidden from all higher levels. 

The notion of not assigning sizes or positions to any object in a layout until the 
complete layout has been described {similar to the idea of delayed binding in 
programming languages) sets ALI apart not only from just about all of the 
graphics-based layout editors we know of [1, 3, 6, 16, 18] but also--with the 
exception of [15]nfrom most of the procedural languages for the layout task 
currently in use or recently proposed, whether or not they include a graphics 
interface [1, 4, 5, 7-10, 14]. 

The issues that  we tried to address with ALI are the following. 

(1) The creation of an open-ended tool. Graphics editors tend to be closed 
tools in that  it is hard to automate the layout process beyond what the original 
design of the system allowed. Procedural languages are generally much better in 
this respect. However, the fact that  most such languages require the specification 
of absolute sizes and positions makes the creation of a general-purpose library of 
cells a hard task, since information about the sizes and positions of the cell 
elements that  can interact with the outside world has to be apparent to the user 
of the library. The absence of absolute sizes and positions makes this problem 
much less severe in ALI. The extensibility of ALI derives from the fact that  it has 
been built on top of PASCAL, thereby making the full power of PASCAL 
available to the designer. The generation of tools to automate the layout process, 
such as simple routers or PLA {Programmable Logic Array) generators, involves 
writing PASCAL routines to solve some abstract version of the problem and, 
after having done so, invoking ALI cells to generate the layouts. 
ACM Transact ions  on Programming  Languages  and  Systems, Vol. 5, No. 3, Ju ly  1983. 
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(2) Creating tools that are simple to use and easy to learn. In particular, we 
want to avoid tools whose behavior is unpredictable. Many programs that rely 
heavily on sophisticated heuristics respond to small changes in their input with 
wholesale changes in their output. We have maintained a simple correspondence 
between the text of an ALI program and the resulting layout so that changes in 
the layout can be easily related to changes in the program. This decision has 
simplified the system at the cost of making it less knowledgeable about MOS 
(metal-oxide semiconductor) circuits. 

(3) Facilitating the division of labor. Large layouts have to be produced by 
more than one designer. If the piece produced by each designer is specified in 
absolute positions, serious problems are likely to arise when the different pieces 
are put together, unless very tight interaction--with its attendant penalties in 
productivity--is maintained throughout the design. ALI allows the partitioning 
of tasks in such a way that the designer of a piece of the layout does not need to 
know anything about the sizes of other pieces of the complete layout. For 
instance, at the top of Figure 1 three simple cells are shown, with the intended 
connections between them shown by dotted lines; at the bottom of the figure, the 
pieces have been brought together to form a larger piece. The stretching that has 
taken place has occurred without the designer having to plan for it explicitly 
while considering each individual cell. 

(4) Facilitating hierarchical design. Even when a single designer is involved, 
the ability to view a layout as a hierarchy, with much information about lower 
levels completely hidden from higher levels, is extremely useful. In ALI, the 
information about a given level of the hierarchy needed at the level immediately 
above is reduced by the absence of absolute sizes and positions to just the 
topological relations among the layout elements of the lower level visible to the 
higher one. 

(5) Reducing the life cycle cost of layouts. Modifying a layout to be fabricated 
on a new process, or to make it conform to a new set of design rules, is currently 
a costly operation. Yet, successful designs seem to be more or less continuously 
updated as improved processes become available during their lifetime. Figure 2 
shows two instances of a simple layout produced with ALI. The instances are the 
result of running an ALI program twice, changing exactly four constants in the 
program between runs {those that specified the sizes of power and ground buses). 
This type of flexibility addresses the problem directly. An ALI program can be 
written naturally so that all layouts produced by it are completely free of design 
rule violations, no matter what the values of the constants used in the programs. 
Therefore, the need for costly design rule checking of different instances of a 
layout (see Figure 2) can be avoided. Using the same ALI program, one can also 
generate layouts using different design rules by running the program with a new 
module incorporating the new design rules. 

(6) To avoid the need for special-purpose computing equipment. ALI can be 
used effectively from a standard ASCII terminal in combination with a small 
plotter shared by several designers. All the algorithms used in the inner cycle of 
ALI require linear time, therefore permitting the use of just about any machine 
and guaranteeing fast turnaround on small layouts. Furthermore, ALI replaces 
design rule checking by a hierarchical process that can be performed separately 
on the individual pieces of the layout. For example, after checking that each of 
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Fig. 1. 

i::'~: 

Three  separa te  cells and  the  resul t  of  connect ing  t h e m  along t he  do t ted  lines. 

the pieces shown at the top of Figure 1 is free of design rule violations, ALI 
guarantees their combination shown at the bottom of the same figure to be free 
of rule violations regardless of the stretching that  takes place as a consequence of 
connecting them. ALI, in fact, requires far fewer computing resources than many 
design-rule-checking programs. 

We feel that ALI succeeds in partially solving most of these problems. We do 
not claim, however, to have made the layout task trivial. To use a software 
metaphor, we feel that  ALI elevates the work of the layout designer from absolute 
machine-language programming to programming in a relocatable assembler with 
subroutines. This not only makes the task more pleasant but makes new and 
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c h i p  simple; 
cons t  

hnumber = 10; 
length = 20; 
width ffi 6; 

b o x t y p e  
htype = a r r a y  [1 . .  hnumber] o f  metal; 

v a r  

i: integer;, 
box 

horizontal: htype; 
vertical:metal; 

b e g i n  
f o r  i := 1 to  hnumber - 1 do  b e g i n  

above(horizontal[i], horizontal[ i + 1]); 
glueright (horizontal[ i ], vertical); 
xmore (horizontal[ i ], length) 

end;  
glueright(horizontal[hnumber],  vertical); 
xmore (horizontal [ hnumber ], length); 
xmore (vertical, width ) 

e n d .  

L 
t [ 

[ 

Fig. 3. A s imple  ALI p rogram and  the  layout  it produces.  

more powerful tools possible, such as loaders, linkers, and compilers in the case 
of software. Similar tools for the VLSI world--which would indeed simplify the 
layout task enormously--remain, however, to be written. ALI should stand or fall 
with its ability to allow such tools to be built: whether we are right in believing 
that  we have a framework in which these tools can be more easily implemented 
will not be known until our efforts in that  direction succeed or fail. 

The remainder of this section is devoted to a survey of the main features of 
ALI and a brief discussion of its current implementation. 

2.1 An Overview of ALl 

The basic principles of ALI are quite 'simple. A layout is regarded as a collection 
of rectangular objects (with their sides oriented in the directions of the axes of a 
Cartesian coordinate system) and a set of relations among these rectangles. The 
ALI user specifies a layout by declaring the rectangles (also called boxes) of 
which it is composed and stating the relations that hold between them. ALI then 
generates a minimum-area layout that  satisfies all the relations between the 
boxes specified in the program. For example, Figure 3 shows a trivial ALI program 
and the layout it produces. This program looks very much like a PASCAL 
program: it consists of a declarative part followed by an executable part. To 
declare a box the user specifies its name (horizontal or vertical in the example) 
and its type (metal--a predefmed type-- in  the example). The standard box types 
correspond to the layers of the physical layout. As the example also shows, the 
ALI user can define structured objects (an array in the example). Further details 
on the type structure of ALI can be found in Section 2.2.1. 

The relations between the rectangles that  make up a layout are specified in 
ALI through calls to a small set of primitive operations in the executable part. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983. 
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All such operations take as arguments boxes and possibly values of standard 
PASCAL types (integers in our example). In our example above, glueright, and 
xmore are primitive operations. The primitive above specifies that  its first 
argument must appear above the second one in the final layout, the primitive 
glueright extends its first argument to the right to intersect its second argument, 
and xmore makes the size along the x axis of its first argument at least as large 
as the value of its second argument. Note that  in this example ALI has determined 
the minimum separation between the horizontal elements, as well as the minimum 
sizes of boxes not specified by xmore (such as the height of the horizontal metal 
lines), by accessing a table of design rules. More information about the type 
structure and the primitive operations of ALI is given in the next section. 

When an ALI program is executed, it generates two kinds of information. It 
produces a set of linear inequalities involving the coordinates of the corners of 
the boxes in the layout as variables. These inequalities, which embody the 
relations between the rectangles of the layout, are then solved to generate the 
positions and sizes of the layout elements. A brief description of the problems 
involved in this step can be found in Section 2.3.2. The program also produces 
connectivity information about the rectangles in the layout. This information can 
then be used by a switch-level simulator that  predicts the behavior of the circuit 
as laid out without having to perform the usual "node extraction" analysis. 

In order for the layouts produced by an ALI program to be free of design rules, 
the program must be complete, in that  every pair of rectangles in it must be 
related in some way. Two rectangles may be related explicitly in the user program 
by virtue of being arguments to a primitive operation, or they may be related 
through the transitivity of the separations. The reason for this strong requirement 
is to prevent the area minimization process from shoving together rectangles that  
were intended to be separate (see Section 2.3.3 for a discussion of completeness). 

ALI helps the designer to achieve this goal by generating certain relations 
between layout elements in an automatic fashion and by checking on request 
whether this condition is satisfied. It is, however, the responsibility of the user to 
make an ALI program complete in this sense, as the computational cost of doing 
any sophisticated inference (beyond the transitivity of relations such as above) 
is prohibitive [17]. 

2.2 Main Features of ALl 

This section describes how ALI appears to its user. The three subsections below 
deal, in turn, with the type structure, the primitive operations of the language, 
and the cell mechanism. ALI has been built on top of PASCAL and has inherited 
most of its features. In the interest of shortening this section we have assumed a 
certain familiarity with the general features of PASCAL. 

2.2.1 Type Structure. As the example of Figure 3 shows, the objects manipu- 
lated by ALI are declared by stating their name and their type. The types of ALI 
have the same structure as the PASCAL types. Objects can be of a simple type 
(boxes) or of a structured type. 

There are a small number of standard types, all of them simple. The standard 
types correspond to the layers of the process to be used to fabricate the layout 
(metal, poly, dill, impl, cut, and glass in the NMOS (n-channel MOS) version 
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currently implemented) plus the type virtual, used to name bounding boxes and 
having no physical reality in the fabricated circuit. For example, in the program 
of Figure 2, the declaration 

vertical: metal 

specifies that the rectangle named vertical on the final layout should be on the 
metallayer. ALI will use this information to generate constraints on its minimum 
size and its separation from other layout elements. 

Structured types are of two flavors: array (a collection of objects of the same 
type) and bus (a collection of objects of heterogeneous types, much like a record 
in PASCAL), which correspond directly to the array and record structured types 
of PASCAL. ALI, like PASCAL, permits the creation of new user-defined types, 
which can be either simple or structured. For example, in Figure 3, the fragment 

htype = array [1 .. hnumber] of metal 

inside the box type  section of the program creates a new type, htype, each object 
of that  type being made up of a number of metal rectangles; and the fragment 

horizontal: htype 

inside the box section creates an object of type htype named horizontal. 
In a similar fashion, the type declaration 

shiftbus = bus 
phl, ph2: metal; 
vdd : metal; 
data: diff', 
gnd: metal 

end 

creates a user-defined type, allowing the user to create objects that  consist of 
four metal boxes and a diffusion box. The types of the components of structured 
types are arbitrary: the user can define arrays of buses, or buses containing arrays. 

The accessing of the elements of arrays and buses is done as in PASCAL. Thus, 
if x is of type htype, then x[i] refers to the ith element of x, and, if y is of type 
shiftbus, then y.data refers to the diffusion box ofy. 

Although the structured objects are generally used by ALI simply as a naming 
mechanism, they are also used in conjunction with the cell mechanism {discussed 
in Section 2.2.3} to automatically generate separations between boxes. We are 
more precise on this point when we describe the cell mechanism of ALI. 

Like PASCAL, ALI is a strongly typed language. The primitive operations 
know about certain type restrictions and generate type-mismatch errors if oper- 
ations are attempted with rectangles of inappropriate types. 

2.2.2 Primitive Operations. The relations between the rectangles that  make 
up a layout are specified in ALI through calls to a small set of primitive operations. 
All such operations take boxes (i.e., objects of simple types) as arguments. In the 
program of Figure 3, above, glueright, and xmore are primitive operations. 

It is not important to know the actual primitive operations of the current 
version of ALI to understand its operation. As a gross measure of its complexity 
we can say that the system currently implemented--based on NMOS as described 
in [12]--has about twenty primitive operations, which can be arranged in the 
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following groups: 

(1) Separation primitives, such as above in Figure 3, which specify that  their 
arguments must be separated in a certain direction in the final layout. The 
minimum amount of space between boxes separated in this manner depends 
on their types and is supplied by ALI from a table of design rules. 

(2) Connection primitives, such as glueright in Figure 3, to specify that  their 
arguments--which must be boxes in the same layer--are to be joined in a 
particular manner. 

(3) An inclusion primitive, inside, which specifies that  one box is to be placed 
inside another. The minimum distances between their edges are again sup- 
plied by ALI from a table of design rules. 

(4) Minimum-size primitives, such as xmore in Figure 3, which specify the 
minimum size of a box along a certain direction. Default minimum sizes are 
provided by ALI from a design rule table. 

(5) Transistor primitives, which create depletion mode and pass transistors. 
(6) Contact primitives, which create contacts between layers and connect boxes 

to them. 

Note that  no absolute positions or dimensions for any rectangle can be specified 
with these primitives. All the rectangles of a layout can be stretched and 
compressed (up to a minimum size), and all can float in any direction. If one 
single characteristic is to be used to separate ALI from other layout systems, this 
must be it. Most of the power of ALI and most of the problems one faces in its 
implementation are consequences of this fact. 

It is important to remember that, in order for a layout produced by ALI to be 
free of design rule violations, any two rectangles in it must be related in some 
way. ALI makes no inferences as to the relations between boxes beyond those 
implied by the transitivity of some primitive operations (i.e., if above(a, b) and 
above(b, c) are stated, above(a, c) need not be stated). Although the system 
generates a good number of relations automatically for the user, particularly in 
connection with the cell mechanism (see the next subsection), there is still a fair 
amount of drudgery left for the user in making sure that  this requirement is met. 
A brief discussion of the computational complexity of the automatic generation 
of relations between boxes can be found in Section 2.3.3. 

2.2.3 Cells. Perhaps the most powerful feature of ALI is its procedurelike 
mechanism for the definition and creation of cells. A cell is a collection of related 
rectangles enclosed in a rectangular area. Rectangles that  are inside a cell are of 
two types: local, which are invisible from the outside, and parameters, which can 
interact in a simple and well-defined manner with rectangles outside the cell. 

A cell is defined by specifying its local objects, its formal parameters, and the 
relations among all of them. Once a cell has been defined, it can be instantiated 
as many times as desired by specifying the actual parameters for the instance, 
much the same way as one invokes a procedure or function in a procedural 
language. The result of instantiating a cell is to create a brand-new copy of the 
prototype described in the cell definition with the formal parameters connected 
to the actual parameters. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983. 
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cel l  shift(left l:shiftbus; r i g h t  r;shiftbus) 

Fig. 4. A sample cell definition header  and an instance of the  cell defined. 

A cell definition is made up of a header, in which the formal parameters are 
described, a set of local box declarations, and a body in which the relationship 
between the parameters and the local boxes, as well as those among local boxes, 
is specified. 

The header describes the names and types of the parameters and the side of 
the bounding rectangle through which they come into contact with the inside of 
the cell. The header of a cell {using the type shiftbus defined in Section 2.2.1) and 
an instance of it are shown in Figure 4. 

Cells may have any number of parameters on each of their four sides. The 
order in which they are listed in the cell header describes their relative positions. 
Horizontal parameters (i.e., those touching the cell on the left or  right) are 
assumed to be listed in top-to-bottom order and vertical parameters in left-to- 
right order. 

The body of a cell is very much like an ALI program. For example, Figure 5 
shows a complete cell definition that consists of a variable number of shift cell 
instances connected sequentially together with two of its instances. Note that  
cells are instantiated by the c r ea t e  statement and that  the parameter list of the 
cell contains both box parameters and other parameters (an integer in this case) 
in separate lists. Note also that recursion has been used to define this cell; this 
highlights the fact that ALI has the full power of PASCAL at its disposal. 

When an instance of a cell is created, it can be given a name, provided that  the 
name given has been declared as a rectangle of the standard simple type virtual. 
The relationship of the rectangle bounding a newly created cell to any other 
rectangle of the layout can be specified in the standard manner by calls to the 
primitive operations. This is a vital feature since, in many cases (i.e., above, 
below), stating a relation between two cell instances cl and c2 immediately implies 
a relation between every pair of rectangles rl and r2 such that  rl is part of cl and 
r2 part of c2. 

There are two important ways in which the cell mechanism helps in the 
automatic generation of constraints between boxes. When an object of a struc- 
tured type is passed as a parameter to a cell, its component boxes are separated 
from top to bottom (if it is a lef t  or r i gh t  argument) or from left to right (if it is 
a top  or b o t t o m  argument). The order of the separation is determined by 
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cel l  shiftregister ( lef t  inbus : shiftbus; 
r i g h t  outbus : shiftbus ) 

(length: integer ); 
box  

temp : shiftbus; 
b e g i n  

i f  length = 1 t h e n  
c r e a t e  shift (inbus, outbus ) 

e l se  b e g i n  
c r e a t e  shift (inbus, temp ); 
c r e a t e  shiftregister (temp, outbus) (length - 1) 

e n d  
end .  

D 

Fig. 5. A cell definition and two instances of it generated by a simple ALI program. 

applying recursively the following rules: array elements are separated in the order 
of their indices, and bus elements are separated in the order in which they were 
specified in the bus declaration. Thus, in the example of Figure 5, the components 
of parameter inbus would be separated from top to bottom. The second mecha- 
nism involves the automatic separation of cells that  share a parameter; thus, in 
the example of Figure 5, the individual instances of shi f t  are separated automat- 
ically, since adjacent instances share a parameter. 

The cell mechanism gives the ALI user the ability to describe layouts in a truly 
hierarchical manner. A proper ALI design, very much like a well-structured 
program, consists of a hierarchy of cell instances, with only a small amount of 
information at a given level (the parameters of the cell instances at that  level) 
being visible from the immediately higher level. For example, the layout given in 
Figure 2 consists of four instances of the same cell stacked vertically. That  cell in 
turn is defined in terms of three other cells, one of them being the cell shown in 
Figure 1, which is in turn defined in terms of three other cells. 

Much of the power and generality of the cell mechanism of ALI comes from 
the absence of absolute positions and sizes in a layout specification. In particular, 
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two instances of the same cell may have radically different sizes depending on the 
actual parameters used to create them, as exemplified by Figures 1, 2, and 5. We 
believe that no cell mechanism can be said to be truly general unless the sizes of 
its arguments and local rectangles, as well as their relative distances, are deter- 
mined at the time the cell is instantiated. 

There are some penalties involved in the use of the cell mechanism. In 
particular, ALI generates separations between cells in a manner that  is oblivious 
to what is inside them. That  is, the minimum separation between cells, as far as 
ALI is concerned, is the maximum of all the minimum separations for two layers 
in the design rules, thus creating a certain wastage. We believe that  the advantages 
gained by the ability to separate cell instances as units are well worth this penalty, 
which will generally be a small percentage of the total area. 

Another source of wastage is the fact that cells are restricted to be bounded by 
a rectangle, so the packing of cells that  have irregular shapes results in a certain 
amount of unused space. The rectangular shape of the cells is a fundamental 
characteristic of ALI: The introduction of irregularly shaped cells is simply not 
possible without completely redesigning the language. However, the waste intro- 
duced because of this restriction can be avoided in most particular cases through 
some code modifications. 

2.3 Implementation Issues 

The previous section described the user's view of ALL In this section we discuss 
briefly some of the problems to be solved when trying to go from an ALI program 
to a layout that satisfies the relations stated in it. We first give an overall 
description of the system as currently implemented; then we discuss the method 
used to assign locations and sizes to the layout elements; and, finally, we describe 
the concept of completeness and how it is checked. 

2.3.1 Overall  Implementat ion.  The current version of our system has been 
implemented as follows. The ALI program is first translated into standard 
PASCAL. The resulting PASCAL program is then compiled and linked with a 
precompiled set of procedures that  implement the primitive operations, and the 
resulting object module is then run. The output of this program (generated 
entirely by the primitive operations) is a set of linear inequalities and connectivity 
relations among the layout elements. The inequalities are then solved to generate 
a layout or examined by a program that  checks their logical completeness, and 
the connectivity information can be used to simulate the circuit laid out. 

The design rules are incorporated as a table, which is used by the primitive 
operations to produce the linear inequalities. Thus, changing the design rules for 
our system requires only changing this table. 

2.3.2 Placement .  As explained above, one of the results of running an ALI 
program is a set of linear inequalities that  embody the relations between the 
layout elements. These inequalities are of the following simple form: 

xi - xj ~_ d (d >_ O) 

where the variables are the coordinates of the corners of the boxes that  form the 
layout and the constants are either user supplied (e.g., as in the second argument 
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of the xmore primitive} or extracted from the table of design rules by the system 
itself. 

This set of inequalities should be solved so as to generate placements for the 
boxes that  compose the layout in such a way as to minimize its total area. In 
order to perform this task efficiently, we require that  no inequality in the set 
involve both x and y coordinates. This restriction allows us to minimize the total 
area by minimizing the maximum x and y coordinates of any point independently, 
at the cost of reducing the range of the relations between boxes that  we can 
express. We cannot, for instance, handle rectangles whose sides are not parallel 
to the Cartesian axes or express aspect ratios directly. 

We have now a sufficiently simple problem so that  it can be solved in time 
proportional to the number of  inequalities in our set. {All layouts that  can be 
expressed in ALI can be generated by a program that  produces a constant number 
of inequalities per rectangle.} This is done by a version of the topological sort 
algorithm applied to the x and y coordinates independently. This algorithm 
assigns to each point the lowest possible coordinate while minimizing the largest 
coordinate of all points. 

The form of the inequalities that  we allow is rather restrictive; it is sufficient, 
however, to describe the design rules given in [13] for NMOS, and the efficiency 
gained in return for this simplicity seems to us to be a good trade-off. A more 
subtle consequence of the simplicity of the inequalities and the method we use to 
solve them is that  undesirable stretching can occur, since we have no way to 
specify a maximum size for any object. This is not a common occurrence, and the 
user can in all cases guard against such stretching by careful selection of the 
primitive operations used. It is nonetheless an additional burden placed on the 
designer. 

The choice of an efficient placement algorithm over expressibility power and a 
reduced degree of user convenience has been quite conscious in this particular 
case. We feel that  every reasonable measure should be taken to keep the 
complexity of the placement problem linear, given that  the size of layouts is 
currently large (10 7 rectangles) and is growing fast. Widening the class of linear 
inequalities acceptable is almost certain to make linear-time solutions impossi- 
ble [2]. 

2.3.3 Completeness. ALI programs do not involve absolute sizes or positions of 
boxes and are, to a great extent, independent of the design rules. These charac- 
teristics make it clearly desirable to ensure, in a way other than checking the 
finished layout, that  the layout described by a program will be free of design rule 
violations. The following paragraphs describe a way of ensuring freedom from 
design rule violations in a manner that  is independent of the actual design rules 
used to generate the final placement. The description may be somewhat cryptic; 
the interested reader is referred to [17] for further details. 

A layout generated by an ALI program is complete if, for any two boxes a and 
b whose types make it possible for them to interact in the final layout, either 

(1) a and b are explicitly stated to be in contact by some primitive operation or 
(2} a and b are, explicitly or through the transitivity of primitive relations, stated 

to be separated in either the x or the y direction by a minimum amount that  
depends on their types. 
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From this definition, it should be clear that testing completeness of a cell 
instance involves computing the transitive closure of a graph. Therefore, the 
complexity of the operation will be O (n 3} where n is the number of boxes in the 
cell. It is thus not feasible to test a large layout for completeness in a direct way. 

Fortunately, completeness can be checked hierarchically. Let us look only at 
the objects at the highest level of the hierarchy of boxes that  defines a layout, 
that is, those boxes {including cell boundaries} defined globally in the ALI 
program that  generated the layout. If these objects are related in a complete 
manner and the cell instances used at this level are also complete, then the whole 
layout is complete. 

Thus one can check the completeness of a layout by successively checking cell 
instances for completeness, thereby reducing the complexity of the process to 
O(m 3) where m is the largest number of boxes local to a cell instance in the 
layout. This process can be reduced further, since not every cell instance needs 
to be checked. For example, if a cell is defined by a straight-line program, checking 
one instance for completeness suffices, as one instance of the cell will be complete 
if and only if all of its instances are [17]. The case of cells with branches and 
iteration is not quite so simple. Yet we are confident--and our experience tends 
to confmn this belief--that checking the completeness of a few carefully selected 
instances of any cell definition will be enough to guarantee that  the cell definition 
is complete. 

The end result is that  completeness has the flavor of a static, almost syntactic, 
property for all nonmalicious examples, and it is much easier to check in a well- 
structured layout than it is to check design rule violation by the standard means 
on the final layout. 

Finally, a word about the possibility of taking an incomplete layout specification 
and automatically completing it. The general problem of generating an optimal 
completion is NP-complete, but the simpler version of generating any completion 
for graphs embedded in a grid (as our layouts are) can be solved in O(n 2) steps 
[17]. The question of how much area will be wasted by such a completion 
algorithm will have to wait for some experimentation, but there is no question of 
its usefulness. 

2.4. Experience with ALl 

The current implementation of ALI has shown the soundness of most of our 
original ideas. The system is efficient and the language easy to learn, and the 
layouts the system produces are relatively dense (for example, an ALI program 
written without concern for area optimization produced a layout which was about 
30 percent larger than a similar layout packed by hand on a graphics editor). 
Unfortunately, this evidence has been gathered mostly from people who had a 
hand in designing or implementing ALL Perhaps a more reliable evaluation of 
ALI must walt until a substantial number of users not involved in its design can 
give an informed opinion. We hope to obtain this evidence before long, since ALI 
is currently being used in a VLSI design course. 

Since, for the sake of expediency in getting a prototype running, very little 
effort was invested in error recovery, and since no mechanism for integrating 
separately produced layout pieces was provided, the current system is useful 
mostly for teaching purposes and experimentation. It must be emphasized that  
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this is a result of implementation choices and not of any intrinsic limitation on 
the approach we have taken. 

The problems of the current system that we plan to address with the next 
version are the following: 

(1) Memory Requirements. The solution of the system of linear inequalities 
requires large amounts of memory. We will use a different algorithm that is 
slightly less efficient in terms of time but requires an order of magnitude 
fewer memory locations for a typical large layout. 

(2) PASCAL Problems. The current ALI has exactly the same type structure as 
PASCAL. The lack of generic types and dynamic arrays has made the task of 
writing general-purpose tools (PLA generators, routers, etc.) inside ALI more 
difficult than it ought to be. The next ALI will have the notions of generic 
types and dynamic arrays. 

(3) Connecting Primitives. Certain objects, such as contacts, are used frequently 
enough to warrant making them part of the language. 

(4) Separate "Compilation" Facilities. Clearly, large layouts will have to be 
generated in pieces, which is something that our current system cannot do. 
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