
VLSI Layout as Programming

RICHARD J. LIPTON, JACOBO VALDES, and GOPALAKRISHNAN VIJAYAN
Princeton University
STEPHEN C. NORTH
Bell Laboratories and Princeton University
and
ROBERT SEDGEWlCK
Brown University

The first component of a VLSI (very large-scale integration) design environment being built at
Princeton University is described. The general theme of this effort is to make the design of VLSI
circuits as similar to programming as possible. The attempt is to build tools that do for the VLSI
circuit designer what the best software tools do for the implementer of large software systems.

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles--VLSI
(very large-scale integration); B.7.2 [Integrated Circuits]: Design Aids--layout; D.3.2 [Program-
ming Languages]: Language Classifications--design languages

General Terms: Design, Languages

Additional Key Words and Phrases: Hierarchical design

1. INTRODUCTION

In th i s pape r we descr ibe a ve ry i m p o r t a n t c o m p o n e n t of a n y VLSI (very large-
scale in t eg ra t ion) des ign e n v i r o n m e n t : a tool to a u t o m a t e the l a y o u t of circuits .

Th i s work is p a r t of a n effort to c rea te a n i n t e g r a t e d e n v i r o n m e n t for VLSI des ign
(including l ayou t sys tems, device a n d swi tch- level s imula tors , a n d t e s t ing facili-
ties} cu r r en t ly u n d e r way a t P r i n c e t o n Univers i ty .

Portions of this paper appeared in the Proceedings of the 1982 ACM Symposium on Principles of
Programming Languages [12] and in the Proceedings of the 1982 Design Automation Conference [11].
The work of Richard Lipton has been partially supported by grants MCS8023-806 from the National
Science Foundation and N00014-82-K-0549 from the Defense Advanced Research Projects Agency
and the Office of Naval Research. Stephen C. North is being supported by Bell Laboratories. Robert
Sedgewick's work was partially supported by National Science Foundation grant MCS80-17579. The
work of Jacobo Valdes has been supported by Defense Advanced Research Projects Agency and
Office of Naval Research grant N00014-82-K-0549.
Authors' addresses: R. J. Lipton, S. C. North, J. Valdes, and G. Vijayan, Department of Electrical
Engineering and Computer Science, School of Engineering/Applied Science, Engineering Quadrangle,
Princeton University, Princeton, NJ 08544; S. C. North, Bell Laboratories, 600 Mountain Avenue,
Murray Hill, NJ 07974; R. Sedgewick, Computer Science Department, Brown University, Providence,
RI 02912.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0164-0925/83/0700-0405 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1988, Pages 405-421.

406 R.J. Lipton, J. Valdes, G. Vijayan, S. C. North, and R. Sedgewick

Our main thesis is that the VLSI design task can be profitably thought of as a
programming task, as opposed to a geometric editing task. We believe that much
is to be gained by consciously attempting to apply our knowledge about program-
ming to this new activity. We have thus tried to create tools for the VLSI designer
that incorporate the most useful features of the software development tools that
we are familiar with.

Although we feel that we have had moderate success in this endeavor, we are
well aware of how much room for improvement remains, and we would like to
help convince the community of people interested in the design of programming
languages and programming environments that there are fresh and important
challenges in this relatively new direction.

A prototype of the procedural layout language described in this paper has been
operational for some months. All figures given in this paper were generated by
the language, and all the code fragments have been used as part of larger
programs.

2. ALl: A PROCEDURAL LANGUAGE TO DESCRIBE LAYOUTS

The main feature of ALI as a layout language is that it allows its user to design
layouts at a conceptual level at which neither sizes nor positions {absolute or
relative) of layout components may be specified. Mostly as a consequence of this
feature, ALI simultaneously (1) makes the layout task more like programming
than editing, (2) eliminates the need for design rule checking after the layout is
generated, (3) permits the creation of easy-to-use cell libraries, and {4) provides
the designer with the mechanisms to describe a layout hierarchically so that most
of the detail at one level of the hierarchy is truly hidden from all higher levels.

The notion of not assigning sizes or positions to any object in a layout until the
complete layout has been described {similar to the idea of delayed binding in
programming languages) sets ALI apart not only from just about all of the
graphics-based layout editors we know of [1, 3, 6, 16, 18] but also--with the
exception of [15]nfrom most of the procedural languages for the layout task
currently in use or recently proposed, whether or not they include a graphics
interface [1, 4, 5, 7-10, 14].

The issues that we tried to address with ALI are the following.

(1) The creation of an open-ended tool. Graphics editors tend to be closed
tools in that it is hard to automate the layout process beyond what the original
design of the system allowed. Procedural languages are generally much better in
this respect. However, the fact that most such languages require the specification
of absolute sizes and positions makes the creation of a general-purpose library of
cells a hard task, since information about the sizes and positions of the cell
elements that can interact with the outside world has to be apparent to the user
of the library. The absence of absolute sizes and positions makes this problem
much less severe in ALI. The extensibility of ALI derives from the fact that it has
been built on top of PASCAL, thereby making the full power of PASCAL
available to the designer. The generation of tools to automate the layout process,
such as simple routers or PLA {Programmable Logic Array) generators, involves
writing PASCAL routines to solve some abstract version of the problem and,
after having done so, invoking ALI cells to generate the layouts.
ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 3, Ju ly 1983.

VLSI Layout as Programming • 407

(2) Creating tools that are simple to use and easy to learn. In particular, we
want to avoid tools whose behavior is unpredictable. Many programs that rely
heavily on sophisticated heuristics respond to small changes in their input with
wholesale changes in their output. We have maintained a simple correspondence
between the text of an ALI program and the resulting layout so that changes in
the layout can be easily related to changes in the program. This decision has
simplified the system at the cost of making it less knowledgeable about MOS
(metal-oxide semiconductor) circuits.

(3) Facilitating the division of labor. Large layouts have to be produced by
more than one designer. If the piece produced by each designer is specified in
absolute positions, serious problems are likely to arise when the different pieces
are put together, unless very tight interaction--with its attendant penalties in
productivity--is maintained throughout the design. ALI allows the partitioning
of tasks in such a way that the designer of a piece of the layout does not need to
know anything about the sizes of other pieces of the complete layout. For
instance, at the top of Figure 1 three simple cells are shown, with the intended
connections between them shown by dotted lines; at the bottom of the figure, the
pieces have been brought together to form a larger piece. The stretching that has
taken place has occurred without the designer having to plan for it explicitly
while considering each individual cell.

(4) Facilitating hierarchical design. Even when a single designer is involved,
the ability to view a layout as a hierarchy, with much information about lower
levels completely hidden from higher levels, is extremely useful. In ALI, the
information about a given level of the hierarchy needed at the level immediately
above is reduced by the absence of absolute sizes and positions to just the
topological relations among the layout elements of the lower level visible to the
higher one.

(5) Reducing the life cycle cost of layouts. Modifying a layout to be fabricated
on a new process, or to make it conform to a new set of design rules, is currently
a costly operation. Yet, successful designs seem to be more or less continuously
updated as improved processes become available during their lifetime. Figure 2
shows two instances of a simple layout produced with ALI. The instances are the
result of running an ALI program twice, changing exactly four constants in the
program between runs {those that specified the sizes of power and ground buses).
This type of flexibility addresses the problem directly. An ALI program can be
written naturally so that all layouts produced by it are completely free of design
rule violations, no matter what the values of the constants used in the programs.
Therefore, the need for costly design rule checking of different instances of a
layout (see Figure 2) can be avoided. Using the same ALI program, one can also
generate layouts using different design rules by running the program with a new
module incorporating the new design rules.

(6) To avoid the need for special-purpose computing equipment. ALI can be
used effectively from a standard ASCII terminal in combination with a small
plotter shared by several designers. All the algorithms used in the inner cycle of
ALI require linear time, therefore permitting the use of just about any machine
and guaranteeing fast turnaround on small layouts. Furthermore, ALI replaces
design rule checking by a hierarchical process that can be performed separately
on the individual pieces of the layout. For example, after checking that each of

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

408 R.J. Lipton, J. Valdes, G. Vijayan, S. C. North, and R. Sedgewick

Fig. 1.

i::'~:

Three separa te cells and the resul t of connect ing t h e m along t he do t ted lines.

the pieces shown at the top of Figure 1 is free of design rule violations, ALI
guarantees their combination shown at the bottom of the same figure to be free
of rule violations regardless of the stretching that takes place as a consequence of
connecting them. ALI, in fact, requires far fewer computing resources than many
design-rule-checking programs.

We feel that ALI succeeds in partially solving most of these problems. We do
not claim, however, to have made the layout task trivial. To use a software
metaphor, we feel that ALI elevates the work of the layout designer from absolute
machine-language programming to programming in a relocatable assembler with
subroutines. This not only makes the task more pleasant but makes new and

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

E~

t w
8

O
T~O

c~

0

0

|

!

m
l j

t

, o

!

I t

mt~

I1

1

VLSI Layout as Programming • 411

c h i p simple;
cons t

hnumber = 10;
length = 20;
width ffi 6;

b o x t y p e
htype = a r r a y [1 . . hnumber] o f metal;

v a r

i: integer;,
box

horizontal: htype;
vertical:metal;

b e g i n
f o r i := 1 to hnumber - 1 do b e g i n

above(horizontal[i], horizontal[i + 1]);
glueright (horizontal[i], vertical);
xmore (horizontal[i], length)

end;
glueright(horizontal[hnumber], vertical);
xmore (horizontal [hnumber], length);
xmore (vertical, width)

e n d .

L
t [

[

Fig. 3. A s imple ALI p rogram and the layout it produces.

more powerful tools possible, such as loaders, linkers, and compilers in the case
of software. Similar tools for the VLSI world--which would indeed simplify the
layout task enormously--remain, however, to be written. ALI should stand or fall
with its ability to allow such tools to be built: whether we are right in believing
that we have a framework in which these tools can be more easily implemented
will not be known until our efforts in that direction succeed or fail.

The remainder of this section is devoted to a survey of the main features of
ALI and a brief discussion of its current implementation.

2.1 An Overview of ALl

The basic principles of ALI are quite 'simple. A layout is regarded as a collection
of rectangular objects (with their sides oriented in the directions of the axes of a
Cartesian coordinate system) and a set of relations among these rectangles. The
ALI user specifies a layout by declaring the rectangles (also called boxes) of
which it is composed and stating the relations that hold between them. ALI then
generates a minimum-area layout that satisfies all the relations between the
boxes specified in the program. For example, Figure 3 shows a trivial ALI program
and the layout it produces. This program looks very much like a PASCAL
program: it consists of a declarative part followed by an executable part. To
declare a box the user specifies its name (horizontal or vertical in the example)
and its type (metal--a predefmed type-- in the example). The standard box types
correspond to the layers of the physical layout. As the example also shows, the
ALI user can define structured objects (an array in the example). Further details
on the type structure of ALI can be found in Section 2.2.1.

The relations between the rectangles that make up a layout are specified in
ALI through calls to a small set of primitive operations in the executable part.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

41 2 R.J. Lipton, J. Valdes, G. Vijayan, S. C. North, a~ld R. Sedgewick

All such operations take as arguments boxes and possibly values of standard
PASCAL types (integers in our example). In our example above, glueright, and
xmore are primitive operations. The primitive above specifies that its first
argument must appear above the second one in the final layout, the primitive
glueright extends its first argument to the right to intersect its second argument,
and xmore makes the size along the x axis of its first argument at least as large
as the value of its second argument. Note that in this example ALI has determined
the minimum separation between the horizontal elements, as well as the minimum
sizes of boxes not specified by xmore (such as the height of the horizontal metal
lines), by accessing a table of design rules. More information about the type
structure and the primitive operations of ALI is given in the next section.

When an ALI program is executed, it generates two kinds of information. It
produces a set of linear inequalities involving the coordinates of the corners of
the boxes in the layout as variables. These inequalities, which embody the
relations between the rectangles of the layout, are then solved to generate the
positions and sizes of the layout elements. A brief description of the problems
involved in this step can be found in Section 2.3.2. The program also produces
connectivity information about the rectangles in the layout. This information can
then be used by a switch-level simulator that predicts the behavior of the circuit
as laid out without having to perform the usual "node extraction" analysis.

In order for the layouts produced by an ALI program to be free of design rules,
the program must be complete, in that every pair of rectangles in it must be
related in some way. Two rectangles may be related explicitly in the user program
by virtue of being arguments to a primitive operation, or they may be related
through the transitivity of the separations. The reason for this strong requirement
is to prevent the area minimization process from shoving together rectangles that
were intended to be separate (see Section 2.3.3 for a discussion of completeness).

ALI helps the designer to achieve this goal by generating certain relations
between layout elements in an automatic fashion and by checking on request
whether this condition is satisfied. It is, however, the responsibility of the user to
make an ALI program complete in this sense, as the computational cost of doing
any sophisticated inference (beyond the transitivity of relations such as above)
is prohibitive [17].

2.2 Main Features of ALl

This section describes how ALI appears to its user. The three subsections below
deal, in turn, with the type structure, the primitive operations of the language,
and the cell mechanism. ALI has been built on top of PASCAL and has inherited
most of its features. In the interest of shortening this section we have assumed a
certain familiarity with the general features of PASCAL.

2.2.1 Type Structure. As the example of Figure 3 shows, the objects manipu-
lated by ALI are declared by stating their name and their type. The types of ALI
have the same structure as the PASCAL types. Objects can be of a simple type
(boxes) or of a structured type.

There are a small number of standard types, all of them simple. The standard
types correspond to the layers of the process to be used to fabricate the layout
(metal, poly, dill, impl, cut, and glass in the NMOS (n-channel MOS) version

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

VLSI Layout as Programming 413

currently implemented) plus the type virtual, used to name bounding boxes and
having no physical reality in the fabricated circuit. For example, in the program
of Figure 2, the declaration

vertical: metal

specifies that the rectangle named vertical on the final layout should be on the
metallayer. ALI will use this information to generate constraints on its minimum
size and its separation from other layout elements.

Structured types are of two flavors: array (a collection of objects of the same
type) and bus (a collection of objects of heterogeneous types, much like a record
in PASCAL), which correspond directly to the array and record structured types
of PASCAL. ALI, like PASCAL, permits the creation of new user-defined types,
which can be either simple or structured. For example, in Figure 3, the fragment

htype = array [1 .. hnumber] of metal

inside the box type section of the program creates a new type, htype, each object
of that type being made up of a number of metal rectangles; and the fragment

horizontal: htype

inside the box section creates an object of type htype named horizontal.
In a similar fashion, the type declaration

shiftbus = bus
phl, ph2: metal;
vdd : metal;
data: diff',
gnd: metal

end

creates a user-defined type, allowing the user to create objects that consist of
four metal boxes and a diffusion box. The types of the components of structured
types are arbitrary: the user can define arrays of buses, or buses containing arrays.

The accessing of the elements of arrays and buses is done as in PASCAL. Thus,
if x is of type htype, then x[i] refers to the ith element of x, and, if y is of type
shiftbus, then y.data refers to the diffusion box ofy.

Although the structured objects are generally used by ALI simply as a naming
mechanism, they are also used in conjunction with the cell mechanism {discussed
in Section 2.2.3} to automatically generate separations between boxes. We are
more precise on this point when we describe the cell mechanism of ALI.

Like PASCAL, ALI is a strongly typed language. The primitive operations
know about certain type restrictions and generate type-mismatch errors if oper-
ations are attempted with rectangles of inappropriate types.

2.2.2 Primitive Operations. The relations between the rectangles that make
up a layout are specified in ALI through calls to a small set of primitive operations.
All such operations take boxes (i.e., objects of simple types) as arguments. In the
program of Figure 3, above, glueright, and xmore are primitive operations.

It is not important to know the actual primitive operations of the current
version of ALI to understand its operation. As a gross measure of its complexity
we can say that the system currently implemented--based on NMOS as described
in [12]--has about twenty primitive operations, which can be arranged in the

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

414 R.J. Lipton, J. Valdes, G. Vijayan, S. C. North, and R. Sedgewick

following groups:

(1) Separation primitives, such as above in Figure 3, which specify that their
arguments must be separated in a certain direction in the final layout. The
minimum amount of space between boxes separated in this manner depends
on their types and is supplied by ALI from a table of design rules.

(2) Connection primitives, such as glueright in Figure 3, to specify that their
arguments--which must be boxes in the same layer--are to be joined in a
particular manner.

(3) An inclusion primitive, inside, which specifies that one box is to be placed
inside another. The minimum distances between their edges are again sup-
plied by ALI from a table of design rules.

(4) Minimum-size primitives, such as xmore in Figure 3, which specify the
minimum size of a box along a certain direction. Default minimum sizes are
provided by ALI from a design rule table.

(5) Transistor primitives, which create depletion mode and pass transistors.
(6) Contact primitives, which create contacts between layers and connect boxes

to them.

Note that no absolute positions or dimensions for any rectangle can be specified
with these primitives. All the rectangles of a layout can be stretched and
compressed (up to a minimum size), and all can float in any direction. If one
single characteristic is to be used to separate ALI from other layout systems, this
must be it. Most of the power of ALI and most of the problems one faces in its
implementation are consequences of this fact.

It is important to remember that, in order for a layout produced by ALI to be
free of design rule violations, any two rectangles in it must be related in some
way. ALI makes no inferences as to the relations between boxes beyond those
implied by the transitivity of some primitive operations (i.e., if above(a, b) and
above(b, c) are stated, above(a, c) need not be stated). Although the system
generates a good number of relations automatically for the user, particularly in
connection with the cell mechanism (see the next subsection), there is still a fair
amount of drudgery left for the user in making sure that this requirement is met.
A brief discussion of the computational complexity of the automatic generation
of relations between boxes can be found in Section 2.3.3.

2.2.3 Cells. Perhaps the most powerful feature of ALI is its procedurelike
mechanism for the definition and creation of cells. A cell is a collection of related
rectangles enclosed in a rectangular area. Rectangles that are inside a cell are of
two types: local, which are invisible from the outside, and parameters, which can
interact in a simple and well-defined manner with rectangles outside the cell.

A cell is defined by specifying its local objects, its formal parameters, and the
relations among all of them. Once a cell has been defined, it can be instantiated
as many times as desired by specifying the actual parameters for the instance,
much the same way as one invokes a procedure or function in a procedural
language. The result of instantiating a cell is to create a brand-new copy of the
prototype described in the cell definition with the formal parameters connected
to the actual parameters.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

VLSI Layout as Programming • 415

cel l shift(left l:shiftbus; r i g h t r;shiftbus)

Fig. 4. A sample cell definition header and an instance of the cell defined.

A cell definition is made up of a header, in which the formal parameters are
described, a set of local box declarations, and a body in which the relationship
between the parameters and the local boxes, as well as those among local boxes,
is specified.

The header describes the names and types of the parameters and the side of
the bounding rectangle through which they come into contact with the inside of
the cell. The header of a cell {using the type shiftbus defined in Section 2.2.1) and
an instance of it are shown in Figure 4.

Cells may have any number of parameters on each of their four sides. The
order in which they are listed in the cell header describes their relative positions.
Horizontal parameters (i.e., those touching the cell on the left or right) are
assumed to be listed in top-to-bottom order and vertical parameters in left-to-
right order.

The body of a cell is very much like an ALI program. For example, Figure 5
shows a complete cell definition that consists of a variable number of shift cell
instances connected sequentially together with two of its instances. Note that
cells are instantiated by the c r ea t e statement and that the parameter list of the
cell contains both box parameters and other parameters (an integer in this case)
in separate lists. Note also that recursion has been used to define this cell; this
highlights the fact that ALI has the full power of PASCAL at its disposal.

When an instance of a cell is created, it can be given a name, provided that the
name given has been declared as a rectangle of the standard simple type virtual.
The relationship of the rectangle bounding a newly created cell to any other
rectangle of the layout can be specified in the standard manner by calls to the
primitive operations. This is a vital feature since, in many cases (i.e., above,
below), stating a relation between two cell instances cl and c2 immediately implies
a relation between every pair of rectangles rl and r2 such that rl is part of cl and
r2 part of c2.

There are two important ways in which the cell mechanism helps in the
automatic generation of constraints between boxes. When an object of a struc-
tured type is passed as a parameter to a cell, its component boxes are separated
from top to bottom (if it is a lef t or r i gh t argument) or from left to right (if it is
a top or b o t t o m argument). The order of the separation is determined by

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

41 6 • R.J. Lipton, J. Valdes, G. Vijayan, S. C. North, and R. Sedgewick

cel l shiftregister (lef t inbus : shiftbus;
r i g h t outbus : shiftbus)

(length: integer);
box

temp : shiftbus;
b e g i n

i f length = 1 t h e n
c r e a t e shift (inbus, outbus)

e l se b e g i n
c r e a t e shift (inbus, temp);
c r e a t e shiftregister (temp, outbus) (length - 1)

e n d
end .

D

Fig. 5. A cell definition and two instances of it generated by a simple ALI program.

applying recursively the following rules: array elements are separated in the order
of their indices, and bus elements are separated in the order in which they were
specified in the bus declaration. Thus, in the example of Figure 5, the components
of parameter inbus would be separated from top to bottom. The second mecha-
nism involves the automatic separation of cells that share a parameter; thus, in
the example of Figure 5, the individual instances of shi f t are separated automat-
ically, since adjacent instances share a parameter.

The cell mechanism gives the ALI user the ability to describe layouts in a truly
hierarchical manner. A proper ALI design, very much like a well-structured
program, consists of a hierarchy of cell instances, with only a small amount of
information at a given level (the parameters of the cell instances at that level)
being visible from the immediately higher level. For example, the layout given in
Figure 2 consists of four instances of the same cell stacked vertically. That cell in
turn is defined in terms of three other cells, one of them being the cell shown in
Figure 1, which is in turn defined in terms of three other cells.

Much of the power and generality of the cell mechanism of ALI comes from
the absence of absolute positions and sizes in a layout specification. In particular,

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

VLSI Layout as Programming 417

two instances of the same cell may have radically different sizes depending on the
actual parameters used to create them, as exemplified by Figures 1, 2, and 5. We
believe that no cell mechanism can be said to be truly general unless the sizes of
its arguments and local rectangles, as well as their relative distances, are deter-
mined at the time the cell is instantiated.

There are some penalties involved in the use of the cell mechanism. In
particular, ALI generates separations between cells in a manner that is oblivious
to what is inside them. That is, the minimum separation between cells, as far as
ALI is concerned, is the maximum of all the minimum separations for two layers
in the design rules, thus creating a certain wastage. We believe that the advantages
gained by the ability to separate cell instances as units are well worth this penalty,
which will generally be a small percentage of the total area.

Another source of wastage is the fact that cells are restricted to be bounded by
a rectangle, so the packing of cells that have irregular shapes results in a certain
amount of unused space. The rectangular shape of the cells is a fundamental
characteristic of ALI: The introduction of irregularly shaped cells is simply not
possible without completely redesigning the language. However, the waste intro-
duced because of this restriction can be avoided in most particular cases through
some code modifications.

2.3 Implementation Issues

The previous section described the user's view of ALL In this section we discuss
briefly some of the problems to be solved when trying to go from an ALI program
to a layout that satisfies the relations stated in it. We first give an overall
description of the system as currently implemented; then we discuss the method
used to assign locations and sizes to the layout elements; and, finally, we describe
the concept of completeness and how it is checked.

2.3.1 Overall Implementat ion. The current version of our system has been
implemented as follows. The ALI program is first translated into standard
PASCAL. The resulting PASCAL program is then compiled and linked with a
precompiled set of procedures that implement the primitive operations, and the
resulting object module is then run. The output of this program (generated
entirely by the primitive operations) is a set of linear inequalities and connectivity
relations among the layout elements. The inequalities are then solved to generate
a layout or examined by a program that checks their logical completeness, and
the connectivity information can be used to simulate the circuit laid out.

The design rules are incorporated as a table, which is used by the primitive
operations to produce the linear inequalities. Thus, changing the design rules for
our system requires only changing this table.

2.3.2 Placement . As explained above, one of the results of running an ALI
program is a set of linear inequalities that embody the relations between the
layout elements. These inequalities are of the following simple form:

xi - xj ~_ d (d >_ O)

where the variables are the coordinates of the corners of the boxes that form the
layout and the constants are either user supplied (e.g., as in the second argument

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

418 • R.J. Lipton, J. Valdes, G. Vijayan, S. C. North, and R. Sedgewick

of the xmore primitive} or extracted from the table of design rules by the system
itself.

This set of inequalities should be solved so as to generate placements for the
boxes that compose the layout in such a way as to minimize its total area. In
order to perform this task efficiently, we require that no inequality in the set
involve both x and y coordinates. This restriction allows us to minimize the total
area by minimizing the maximum x and y coordinates of any point independently,
at the cost of reducing the range of the relations between boxes that we can
express. We cannot, for instance, handle rectangles whose sides are not parallel
to the Cartesian axes or express aspect ratios directly.

We have now a sufficiently simple problem so that it can be solved in time
proportional to the number of inequalities in our set. {All layouts that can be
expressed in ALI can be generated by a program that produces a constant number
of inequalities per rectangle.} This is done by a version of the topological sort
algorithm applied to the x and y coordinates independently. This algorithm
assigns to each point the lowest possible coordinate while minimizing the largest
coordinate of all points.

The form of the inequalities that we allow is rather restrictive; it is sufficient,
however, to describe the design rules given in [13] for NMOS, and the efficiency
gained in return for this simplicity seems to us to be a good trade-off. A more
subtle consequence of the simplicity of the inequalities and the method we use to
solve them is that undesirable stretching can occur, since we have no way to
specify a maximum size for any object. This is not a common occurrence, and the
user can in all cases guard against such stretching by careful selection of the
primitive operations used. It is nonetheless an additional burden placed on the
designer.

The choice of an efficient placement algorithm over expressibility power and a
reduced degree of user convenience has been quite conscious in this particular
case. We feel that every reasonable measure should be taken to keep the
complexity of the placement problem linear, given that the size of layouts is
currently large (10 7 rectangles) and is growing fast. Widening the class of linear
inequalities acceptable is almost certain to make linear-time solutions impossi-
ble [2].

2.3.3 Completeness. ALI programs do not involve absolute sizes or positions of
boxes and are, to a great extent, independent of the design rules. These charac-
teristics make it clearly desirable to ensure, in a way other than checking the
finished layout, that the layout described by a program will be free of design rule
violations. The following paragraphs describe a way of ensuring freedom from
design rule violations in a manner that is independent of the actual design rules
used to generate the final placement. The description may be somewhat cryptic;
the interested reader is referred to [17] for further details.

A layout generated by an ALI program is complete if, for any two boxes a and
b whose types make it possible for them to interact in the final layout, either

(1) a and b are explicitly stated to be in contact by some primitive operation or
(2} a and b are, explicitly or through the transitivity of primitive relations, stated

to be separated in either the x or the y direction by a minimum amount that
depends on their types.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

VLSI Layout as Programming • 419

From this definition, it should be clear that testing completeness of a cell
instance involves computing the transitive closure of a graph. Therefore, the
complexity of the operation will be O (n 3} where n is the number of boxes in the
cell. It is thus not feasible to test a large layout for completeness in a direct way.

Fortunately, completeness can be checked hierarchically. Let us look only at
the objects at the highest level of the hierarchy of boxes that defines a layout,
that is, those boxes {including cell boundaries} defined globally in the ALI
program that generated the layout. If these objects are related in a complete
manner and the cell instances used at this level are also complete, then the whole
layout is complete.

Thus one can check the completeness of a layout by successively checking cell
instances for completeness, thereby reducing the complexity of the process to
O(m 3) where m is the largest number of boxes local to a cell instance in the
layout. This process can be reduced further, since not every cell instance needs
to be checked. For example, if a cell is defined by a straight-line program, checking
one instance for completeness suffices, as one instance of the cell will be complete
if and only if all of its instances are [17]. The case of cells with branches and
iteration is not quite so simple. Yet we are confident--and our experience tends
to confmn this belief--that checking the completeness of a few carefully selected
instances of any cell definition will be enough to guarantee that the cell definition
is complete.

The end result is that completeness has the flavor of a static, almost syntactic,
property for all nonmalicious examples, and it is much easier to check in a well-
structured layout than it is to check design rule violation by the standard means
on the final layout.

Finally, a word about the possibility of taking an incomplete layout specification
and automatically completing it. The general problem of generating an optimal
completion is NP-complete, but the simpler version of generating any completion
for graphs embedded in a grid (as our layouts are) can be solved in O(n 2) steps
[17]. The question of how much area will be wasted by such a completion
algorithm will have to wait for some experimentation, but there is no question of
its usefulness.

2.4. Experience with ALl

The current implementation of ALI has shown the soundness of most of our
original ideas. The system is efficient and the language easy to learn, and the
layouts the system produces are relatively dense (for example, an ALI program
written without concern for area optimization produced a layout which was about
30 percent larger than a similar layout packed by hand on a graphics editor).
Unfortunately, this evidence has been gathered mostly from people who had a
hand in designing or implementing ALL Perhaps a more reliable evaluation of
ALI must walt until a substantial number of users not involved in its design can
give an informed opinion. We hope to obtain this evidence before long, since ALI
is currently being used in a VLSI design course.

Since, for the sake of expediency in getting a prototype running, very little
effort was invested in error recovery, and since no mechanism for integrating
separately produced layout pieces was provided, the current system is useful
mostly for teaching purposes and experimentation. It must be emphasized that

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

420 R.J. Lipton, J. Valdes, G. Vijayan, S. C. North, and R. Sedgewick

this is a result of implementation choices and not of any intrinsic limitation on
the approach we have taken.

The problems of the current system that we plan to address with the next
version are the following:

(1) Memory Requirements. The solution of the system of linear inequalities
requires large amounts of memory. We will use a different algorithm that is
slightly less efficient in terms of time but requires an order of magnitude
fewer memory locations for a typical large layout.

(2) PASCAL Problems. The current ALI has exactly the same type structure as
PASCAL. The lack of generic types and dynamic arrays has made the task of
writing general-purpose tools (PLA generators, routers, etc.) inside ALI more
difficult than it ought to be. The next ALI will have the notions of generic
types and dynamic arrays.

(3) Connecting Primitives. Certain objects, such as contacts, are used frequently
enough to warrant making them part of the language.

(4) Separate "Compilation" Facilities. Clearly, large layouts will have to be
generated in pieces, which is something that our current system cannot do.

ACKNOWLEDGMENTS

We would like to thank Jose Mata, Vijaya Ramachandran, and Jerry Spinrad for
their help in the implementation of ALI and Jean Vuillemin, Scot Drysdale, and
the referees of the paper for their comments. We also thank Bruce Arden for his
advice and support. Finally, special thanks go to David Dobkin and Andrea
LaPaugh for their help throughout the ALI project.

REFERENCES

1. ACKLAND, B., AND WESTE, N. A pragmatic approach to topological symbolic IC design. In VLSI
'81, J.P. Gray (Ed.). Academic Press, New York, 1981, pp. 117-129.

2. ASPVALL, B., AND SmLOACH, Y. A polynomial time algorithm for solving systems of linear
inequalities with two variables per inequality. In 20th Annual Symposium on Foundations of
Computer Science, San Juan, P.R., Oct. 29-31, 1979, pp. 205-217.

3. BATALI, J., MAYLE, N., SHROBE, H., SUSSMAN, G., AND WEISE, D. The DPL/Daedalus design
environment. In VLSI "81, J.P. Gray (Ed.). Academic Press, New York, 1981, pp. 183-192.

4. DAVIS, T., AND CLARK, d. SILT: A VLSI design language (preliminary draft). Unpublished
manuscript, Digital Systems Laboratory, Stanford Univ., Stanford, Calif.

5. EICHEMBERGER, P. Lava: An IC layout language. Unpublished manuscript, Electronics Research
Laboratory, Stanford Univ., Stanford, Calif.

6. FAIRBAIRN, D.G., AND ROWSON, J.A. ICARUS: An interactive integrated circuit layout program.
In Proceedings of 15th Annual Design Automation Conference (Las Vegas, Nev., June 19-21,
1978), pp. 188-192.

7. FRANCO, D., AND REED, L. The cell design system. In Proceedings of the ACM IEEE 18th
Design Automation Conference (Nashville, Tenn., June 29-July 1, 1981), pp. 240-247.

8. HOLT, D., AND SAPIRO, S. BOLT--A block oriented design specification language. In Proceedings
of the ACM IEEE 18th Design Automation Conference (Nashville, Tenn., June 29-July 1, 1981),
pp. 276-279.

9. JOHANNSEN, D. Bristle blocks: A silicon compiler. In Proceedings of 16th Design Automation
Conference (San Diego, Calif., June 25-27, 1979), pp. 310-313.

10. JOHNSON, S.C. The LSI design language i. Bell Laboratories, Murray Hill, N.J. Unpublished
manuscript.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

VLSI Layout as Programming • 421

11. LIPTON, R.J., NORTH, S.C., SEDGEWICK, R., VALDES, J., AND VIJAYAN, G. ALI: A procedural
language to describe VLSI layouts. In Proceedings of 19th Design Automation Conference (Las
Vegas, NED., June 14-16, 1982), pp. 467-474.

12. LIPTON, R.J., SEDGEWICK, R., AND VALDES, d. Programming aspects of VLSI (preliminary
version). In Conference Record of 9th Annual Symposium on Principles of Programming Lan-
gnages (Albuquerque, N. Mex., Jan. 25-27, 1982), pp. 57-65.

13. MEAD, C., AND CONWAY, L. Introduction to VLSI Systems. Addison-Wesley, Reading, Mass.,
1980.

14. MOSL]~LLER, R.C. REST: A leaf cell design system. In VLSI "81, J.P. Gray (Ed.). Academic
Press, New York, 1981, pp. 163-172.

15. SASTRY, S., AND KLEIN, S. PLATES: A metric free VLSI layout language. In Proceedings of the
1982 Conference on Advanced Research in VLSI, 1982, pp. 165-169.

16. TRIMBERGER, S. Combining graphics and a layout language in a simple interactive system. In
Proceedings of the ACM IEEE 18th Design Automation Conference (Nashville, Tenn., June 29-
July 1, 1981), pp. 234-239.

17. VIJAYAN, G. Completeness of VLSI layouts. VLSI Memo 1, Dept. of Electrical Engineering and
Computer Science, Princeton Univ., Princeton, N.J., Sept. 1982.

18. WILLIAMS, J.D. STICKS--A graphical compiler for high level LSI design. In AFIPS Conference
Proceedings, vol. 47:1978 National Computer Conference (Anaheim, Calif., June 5-8, 1978).
AFIPS Press, Arlington, Va., 1978, pp. 289-295.

Received May 1982; revised November 1982; accepted December 1982

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.

