Allowing a user to interact
with dynamically changing
graphical representations of
algorithms or data structures
may help in teaching, research,
or systems programming.
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igh-performance, graphics-

based personal workstations,
interconnected by a high-bandwidth,
resource-sharing local area network,
provide a rich communications en-
vironment. While such architectures
are fast becoming the computing
medium of choice in academic and
research environments, all too often
this modern equipment is used to sup-
port traditional modes of computing,
and its capabilities are not fully real-
ized. For some time, we have been ex-
ploring ways to overcome this ten-
dency, and, instead, to exploit the ar-
chitecture to increase the effective-
ness of our research and teaching. We
have over 100 such workstations in the
Department of Computer Science at
Brown University, 55 of which are
housed in the Department’s instruc-
tional workstation laboratory, a spe-
cially built auditorium/lecture hall. In
this article, we describe some of our
work in an application where we have
concentrated most of our efforts: algo-
rithm animation.

The Brown University Algorithm
Simulator and Animator, or Balsa, is
an integrated software environment
designed to ‘‘animate’” programs. On
the one hand, Balsa is a system that
supports a high-level user interface
that allows a user to interact with dy-
namically changing graphical repre-
sentations of his programs; on the oth-
er hand, it is a set of tools allowing one
kind of Balsa user to build an environ-
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ment for another kind of Balsa user.
Technical details on Balsa may be
found elsewhere,! and we briefly sum-
marize some of this information next.

The Balsa environment provides
three general types of facilities: display
(a window manager), interpretive (an
interpreter), and shell (a high-level
command processor). Though these
subsystems are relatively complete,
they are not intended for general-
purpose use; rather, they are tailored
to be used for algorithm animation,
while also emphasizing a quality user
interface and performance. Runtime
support routines display the anima-
tion, while a library of utility pro-
grams facilitate the construction of the
animation.

This special-purpose software envi-
ronment supports four kinds of activ-
ities. The algorithm designer provides
the programs that are to be animated,
identifies key ‘‘interesting events’’ in
the programs, and also contributes to
the design of graphical representations
of the data structures. The animator
implements views that comprise the
graphical presentation; these views dy-
namically change in response to inter-
esting events. The scriptwriter uses the
high-level command facilities to pro-
duce scripts containing specific materi-
al for presentation to users. The user
makes use of these scripts or directly
interacts with the dynamic graphical
representations of his algorithms.

Essentially, Balsa allows the con-
struction of customized ‘‘movies’’ for
illustrating or learning about proper-
ties of programs, which can then be
viewed passively or experimented with
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actively. An important feature of this
design is that there are distinct and in-
dependent phases: writing and debug-
ging the programs that actually draw
the pictures (the hard part); deciding
how and when these programs should
be invoked to get across a particular
point (the easy part); and actually
using all the software to discover pro-
perties of particular programs (the en-
joyable part).

We have three primary applications
in mind for Balsa: teaching, research,
and systems programming. For teach-
ing and research, the most natural ap-
plication is in dynamically simulating
how algorithms are executed, although
we can also use Balsa to produce syn-
thetic’ animations on unrelated sub-
jects. Before Balsa can be used for
systems programming, it must support
some automatic help in the creation of
graphical representations. Our ap-
proach has been to first build up a ba-
sis of fundamental material for use in
teaching about algorithms and to use
that material whenever possible in
research on the design and analysis of
algorithms. In the future, we plan to
draw upon these experiences and this
basis material to build a system that
can be useful as a general tool in com-
puter science research and systems
programming applications.

In this article, we concentrate on our
roles as algorithm designers, ani-
mators, and scriptwriters, while using
Balsa as the fundamental communica-
tions medium in teaching a course on
algorithms and data structures, and as
an integral tool for algorithm design
and analysis. In the next section we
describe our innovative classroom en-
vironment and the concurrent devel-
opment of a ‘‘dynamic book’’ to ac-
company the course textbook. The
Balsa environment frees us to experi-
ment with a variety of different tech-
niques for animation and graphical
presentation of material.

A dynamic book in an
electronic classroom

Balsa provides a new medium for
communication between instructor
and student and between researcher
and colleague. Based on our experi-
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ence with prototype versions of Balsa
and prototype applications,? we set
out in the fall of 1983 to use this medi-
um in an integral way in teaching a
third semester course on algorithms
and data structures in our instructional
workstation laboratory. Most of the
“‘courseware’’ was developed in the
fall of 1983; it was refined when the
course was taught again in the fall of
1984.

Basically, during each lecture all
students would be Balsa users, so that

Typically, the instructor would
base his lecture on a running
commentary of the simulation.

the instructor could present material
using dynamic graphical presentations
rather than relying on traditional static
media such as a chalkboard or view-
graphs. The modus operandi was for
each student’s workstation to replay a
“‘script’’ of material that we had pre-
viously created and saved. At key
points, the script would cause the
system to pause and wait for the
student to continue when signalled by
the instructor (see the section on a
high-bandwidth network below for
more details). Typically, the instructor
would base his lecture on a running
commentary of the simulation. We
used a traditional viewgraph presenta-
tion to supplement the dynamic script,
to highlight central ideas, and to pro-
vide a focus for the class as a whole (in-
stead of just having individuals inter-
acting with their own machines).

We did not intend that students
should be able to understand what was
happening on the screen without help
from the instructor. On the contrary,
we used the system as a particularly
rich new medium to teach concepts
that might be difficult or impossible to
explain any other way. We made the
scripts used during lectures available
for students to playback for review
after the lectures. The scripts also pro-
vided a starting point for the students
to interact with the material in their
own way.

Thetext,3 and therefore our dynam-
ic simulations, covered basic algo-
rithms in various fundamental areas of
computer science: mathematical meth-
ods (random numbers, curve fitting,
Gaussian elimination); sorting (in-
ternal and external methods); search-
ing (trees, balanced trees, hashing, ex-
ternal methods); strings (string and
pattern matching, parsing, file com-
pression, cryptology); geometry (con-
vex hulls, range searching, line inter-
section, closest points); graphs (basic
searching techniques, connectivity,
network flow, matching); and such
areas as algorithm machines and dy-
namic and linear programming.

The figures in this article are ex-
amples of the material that was pre-
sented in the classroom. Of course, it is
difficult to do justice to the material
with a few static pictures because the
essence of many of the presentations is
their dynamic character. Specific de-
scriptions of the displayed informa-
tion are included with the figure cap-
tions; these are necessarily quite terse,
but it is hoped that the reader will be
able to visualize the dynamic presenta-
tion of familiar algorithms. The fig-
ures are not presented in any particular
sequence; in fact, the figures and cap-
tions can be read independently of the
body of this article. As we discuss a
topic, we illustrate our points by refer-
ring to all the relevant figures.

The two major tasks that we faced
when preparing the material for each
lecture was: how to conceptualize a
graphical representation of the pro-
gram that would convey the essence of
the algorithm and its data structures;
and what would make a good script
that could be integrated into the lec-
ture. Each graphical simulation re-
quired perhaps 15 to 25 hours of pro-
gramming time (by faculty and staff
members) to implement the various
algorithms and views, and about one
to two hours to develop a script. Each
script could be played back in about 15
minutes, but certainly filled a lecture
when augmented with pauses and ex-
planations. This ratio is quite reason-
able and reflects the future importance
and use of the two components: the
algorithms and views form a basis for
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direct interaction or for the creation of
scripts for other teaching and research
applications; the scripts form a basis
for a designated lecture and the subse-
quent student review, or for a re-
searcher’s illustration of a particular
point to another researcher.

By the end of the semester, we
found ourselves with an operational
‘“‘dynamic book’’ to accompany the
text, complete with a graphical table of
contents comprised of icons from the
various animations. By selecting one
of the icons, the ‘‘reader’’ can invoke
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Figure 1. Binary search trees and balanced trees. (a) The image shows the

“‘history”’ as each node is added to a balanced 2-3-4 tree. The *2-3-4 view at the
left is the textbook representation of the 2-3-4 tree; the *Red-Black view at the
right is the representation that is typically used for implementation (the red links
are the thick edges). A full discussion of this can be found elsewhere.® (b) The
image shows a comparison of the standard (unbalanced) binary tree algorithm
and a balanced 2-3-4 tree algorithm on a moderately large file (about 200 keys).
There are two views of the balanced tree: the top is a 2-3-4 tree representation; the

bottom, a red-black tree.
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the corresponding lecture script, either
for passive playback or for interaction
after partial playback. There are other
interesting _possibilities. For example,
it is nearly technically possible to in-
tegrate the page images from the text
into the dynamic book, and allow the
reader to browse through textual,
graphical, and animated material
online.*4

A primary goal in the development
of the dynamic book material was to
create a basis upon which research ap-
plications could be built, so that the
kind of dynamic interactive graphics
used in the classroom could also be
used in research. Certainly, the re-
search applications with the most suc-
cess potential are those that are closest
to the fundamental algorithms cov-
ered. Already, Balsa has proven to be
instrumental in the design and analysis
of graph-searching algorithms,5 sort-
ing algorithms, 6 and priority queue
algorithms.

Techniques

In this section, we describe the basic
techniques that we found most useful
for exposing the properties of pro-
grams through dynamic simulations.
Most of the issues we discuss involved
making use of basic capabilities in the
initial design of the Balsa system.
However, there were also several sur-
prises, and our experience has given us
many ideas for the design of future
versions of Balsa.

Graphical artifacts. A major por-
tion of our effort went into determin-
ing precisely how the various data
structures and algorithms should be
represented graphically. With Balsa, it
is easy to experiment with several dif-
ferent representations before settling
on a final design. Often, the dynamic
nature of the algorithm would be the
determining factor, so the capability to
experiment was essential. For exam-
ple, we learned quite early that dif-
ferent graphic representations were
needed for different sorting algo-
rithms, even though the underlying
data structure (an array of numbers)
was essentially the same. We chose the
representation that best exposed the
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fundamental dynamic characteristics
of the particular algorithm.

Initially, we planned to use only
graphical representations for pro-
grams and data structures. This strat-
egy was based on our preliminary ex-
perimentation that showed that it was
essential to execute algorithms on a
large set of input data to expose their
true characteristics. Also, with a large
amount of data, there was not enough
screen real-estate to display it textual-
ly. We soon found out that users un-
familiar with the algorithms became
quickly confused by an abstract
representation, so that it was always
necessary to first do a small case using
a conventional textbook representa-
tion, then move into the more inter-
esting and exciting dynamic views.
Figures 1, 2, and 3 are examples of lec-
tures that start out with a step-by-step
presentation of a small case, and then
progress into larger, more revealing
views.

One principle that we quickly
adopted was that it is best to stay
““close’’ to the data structure, when
possible, in designing views. Not only
is this the path of least resistance, but
also it tended to result in more reveal-
ing views. This principle is illustrated
in the tree views in Figures 1 and 4. We
began by displaying trees in the con-
ventional manner, with the root ap-
pearing in the middle of the window,
the left child of the root in the middle
of the left half of the window, etc. This
turned out to have the disadvantage
that nodes at the bottom of the tree
become crowded together after only
six or seven levels, even if there were
relatively few nodes in the tree. Ac-
cordingly, we turned to the method of
determining the horizontal position of
a node by counting the number of
nodes that would appear before it.
This is quite easy to implement, and
it provides an alternative way of look-
ing at the tree that is perhaps more
revealing of its actual structure. Most
importantly, it allows dynamic presen-
tation of various algorithms without
redrawing the whole tree after every
modification.

For example, in Figure 1, it is easy to
visualize how the standard binary
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search tree can be presented dynami-
cally, because once a node has been in-
serted into the tree, its position is fixed.
However, the red-black balanced
search tree must be redrawn entirely
each time a node is inserted because
many nodes can potentially change

positions. With more powerful hard-
ware and more sophisticated graphics
packages, we could show smooth
transformations of the tree, such as
those shown in the movie, PQ-Trees.”
In Figure 4, each node in the binary
tree is positioned using the Cartesian

| Furaan encoding |

Table

Figure 2. File encoding and compression. (a) The image shows a Huffman en-
coding for the given message. The Huffman encoding uses a variable number of
bits to encode each letter and results in substantial space savings for most text
files. The Radix Trie view shows the radix trie that is created from the set of let-
ters comprising the phrase to be encoded. Each letter is stored in an external node
of the tree, and the path from it to the root determines its Huffman code. The
code for each letter is given in the Code Table view at the right. (b) The image
shows a comparison of a 6-bit encoding for each letter of the alphabet with the
Huffman encoding on the same message; clearly saving space
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Figure 3. Graph algorithms. (a) The image
illustrates the computation of the transitive
closure on a small undirected graph. The
transitive closure is found by making
repeated depth-first traversals of the graph,
using each node as the starting point. The
Graph view (upper left) shows the depth-
first traversal for the given node. The nodes
in the graph are displayed as dark circles in

their initial ‘‘unvisited’’ state; as dark '2000 b'* '_ re A e
squares after they have been ‘visited”’; and |} ( ————————— K ) (3—5\: oA
as light squares if they are ready to be visited (this is known as being on P ‘!“i“"‘ =X J-
the ‘‘fringe’’). The edges also change from thin to dashed to thick to in- d.‘t't 1;%
dicate the traversal. The Adjacency Matrix view (center) maintains this i g *? \} ‘
consistent representation; the small dots at the top row and left column o o t’ .

are markers indicating which edge is currently being traversed. The Tran- s { T

sitive Closure view (lower left) is formed by augmenting the adjacency .

matrix view with small squares to indicate that the element is in the tran- |b—— — . ikl
sitive closure matrix. The Fringe view shows those nodes that are ready to be visited. The depth-first traversal is im-
plemented using a priority queue to simulate the actions of a stack; the height of each stick above a node corresponds
to its priority. The second row of nodes shows the nodes in the order in which they are removed from the queue. The
Fringe History view is a history of the queue, at each time that a node is visited. (b) The image shows a comparison of
two shortest path algorithms on a graph representing the Paris Metro. The algorithm at the upper-left is the classical
Dijkstra’s algorithm, while the one at the lower-right is based on a heuristic.® The classical algorithm must in essense
perform a breadth-first traversal of the entire graph. The heuristic (looking at the distance from the start to the current
spot in the tree plus the Euclidean distance to the target vertex) does not need to examine all of the nodes. The image
is taken just after the heuristic algorithm has completed; Dijkstra’s algorithm still has a ways to go.
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coordinate of the point that it repre-
sents. We have also experimented with
using two-dimensional representations
to display and learn about characteris-
tics of very large trees.

Note that the tree representation
above requires some advance knowl-
edge of the input. This was not diffi-
cult to arrange for the lecturing appli-
cation, nor is it unreasonable to
arrange for many research applica-
tions. Several of our animations
would involve running an algorithm
twice; once to calculate size parame-
ters for the graphic representation,
and a second time to actually fill in
the display.

Many of our displays involve using
graphical cues for ‘‘state’’ information
about atomic pieces of data structures.
This is best exemplified in Figure 3,
which shows different representations
used for nodes in graphs (solid box,
open box, solid circle, etc.) as they pass
through different states while being
processed by the algorithm. Other ex-
amples are found in Figures 4 and S.
These graphical cues were useful for
several reasons. First, in stepping
through a program, data structure
changes are immediately reflected in
the display. Second, by using a consis-
tent representation, we are able to pro-
vide a common thread connecting ele-
mentary textual views and advanced
graphical ones (and a common thread
among multiple views; see below). For
example, in Figure 3, once one learns
about ‘‘tree”” and ‘‘fringe’’ nodes,
etc., the labels of the nodes are not
particularly relevant. Third, on large
cases, the state changes (if the icons are
chosen properly) dynamically expose
the character of an algorithm. For ex-
ample, the difference in the dynamic
presentation corresponding to Figure 3
between a breadth-first search sweep-
ing through the graph and a depth-first
search probing uncharted areas is
striking. (Of course, because the fig-
ures in this article are static, some
imagination is necessary.)

Multiple views and algorithms. A
fundamental property of the Balsa sys-
tem is its capability for running multi-
ple algorithms simultaneously and for
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Intersectios K

Figure 4. Line intersection. (a) The image illustrates an algorithm for finding
points of intersection in a given set of vertical and horizontal lines. The idea of
the algorithm is to imagine a horizontal scan line starting at the bottom and mov-
ing up. Whenever a horizontal line is encountered, look at each vertical line from
a small set of possible candidates and see if its x value lies within the endpoints of
the horizontal line. If an intersection is found, a small square is drawn; other-
wise, a diamond is drawn. The y-coordinate of the endpoints of each line is
stored in a binary tree, as shown in the Y Tree view at the left. Then, a standard
in-order traversal of this tree gives the stopping positions for the scan line, from
bottom to top. Note how each node in the tree changes after it has been visited.
When the scan line reaches the bottom of a vertical line, the algorithm adds that
line to the set of possible candidates. When the top of a vertical line is reached,
the algorithm removes that vertical line from the candidiate set. These operations
are implemented with a binary tree, using the x-coordinates as shown in the X
Tree view at the top in each image. Notice that both the y-tree and the x-tree views
display each node using the coordinate of the corresponding line in the plane. (b)
The image illustrates the algorithm on a much larger data set.
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Figure 5. The Stable Marriage prob-
lem. (a) In the image, the center views
show how each of N men (capital let- [ : {8} (B}
ters, square nodes) rate each of the vV | bL

women (lower case letters, circular
nodes) as possible mates (the left view)
and how each woman rates the set of
men (the right view). A set of N mar-
riages is performed (shown as dark-
ened circles and squares); a configura-
tion is called unstable if there is a man
m who prefers a woman w to his cur-
rent mate, and if w prefers m to her
current mate. The graphical viewon | b
both sides aid in determining whether af ([ 5 € Bj—a; (ab;
marriage configuration is stable. Con- (C}
sider man m and his k th choice,
woman w. In the sticks view at the far — s — p— . - _
left, row m, column k has two vertical sticks: the inner stick re reprmnts "how woman w rated man m (the taller the stick,
the better the rating); the outer stick represents how that woman rated her current husband. A ‘‘hot-dog” (the inner
stick is larger than the outer stick) indicates that w would prefer m to her current spouse; if 7 also prefers w to his
spouse the hot-dog, will be in the non-shaded area of row m. The far right view is analogous, but from the women’s
perspective. (b) The image illustrates the dynamics of the algorithm: we go through the men in order, trying to marry
each to his best remaining choice. In order to keep everybody stable, we might need to divorce an existing couple (and
marry the man to his next choice) or use a man’s next choice (if the woman prefers her current mate). At each stage of
the algorithm, another couple is married. The middle view in these images is a time-line of all marriages, divorces
(dashed nodes), and refused-proposals (clear nodes). The bottom view shows a compressed view of the time-line, but
with a “‘history.”’ Note how the same representation of man, woman, marriage, divorce, etc., is used in all views.
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supporting multiple views of the same
data structure. This was an important
part of many dynamic presentations.

First, as illustrated in Figures 1, 3,
and 6, it was useful to simply run two
algorithms on the same data for the
purpose of comparison. Not only
would this type of ‘‘algorithm race”
usually make a lasting impression on
students, but also the contrasting dy-
namic properties of the algorithms
would often make it easier to under-
stand each one’s particular properties.

Multiple views of the same data
structure provide a thread connecting
different graphic representations, thus
providing a convenient mechanism for
moving to more advanced representa-
tions. For example, Figure 1 shows
two different representations for bal-
anced trees: one appropriate for con-
sidering the high-level algorithm (the
2-3-4 view), and one appropriate for
considering low-level implementations
(the red-black tree view). When both
views are displayed simultaneously as
the algorithm is running, the semantics
of the representation become obvious.

In many cases, it was surprisingly
easy to use multiple views of a trivial
nature to put together an ensemble of
dynamic images that together show the
operation of an algorithm. Examples
of this may be found in Figures 3, 4,
and 6. A simple graphical display
showing the value of a crucial control
variable (or an array of such variables)
sometimes can make the difference in
the effectiveness of a presentation. For
example, in Figure 4, the position of
the nodes in both trees matches the co-
ordinates of the line that they are rep-
resenting when displayed in the view of
the plane. These three independent
simple views together provide the. ge-
stalt of the way that the algorithm is
progressing. (This example also raises
difficult questions about the amount
of coordination appropriate between
particular instantiations of views,
which we have not yet fully addressed.)

Scripts. In early prototypes of the
Balsa system, we found it convenient
to include a crude capability for saving
and invoking sequences of basic oper-
ations, called scripts. Its main applica-
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a:=(ault(b,a)+1) mod n; a:=(ault(a,b)+1) mod n;
randoabad:=a mod r; randonint:=((a div n1)%r) div al
end; end;
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Figure 6. Random number generators. (a) The image shows a generator based on
a linear feedback shift register. The Dots view uses the numbers generated to plot
points in Cartesian space.

(b) The image compares two linear congruential methods: the algorithm on the
left uses the least significant bits, whereas the algorithm on the right uses the most
significant bits. The implementation code is displayed. Note that the points pro-
duced by both random number generators appear equally ‘‘random’’ and well-
distributed in the square.

Below the dots is another instantiation of the dots, but with grid markers parti-
tioning the square. The distribution of points within each partition is shown both
two-dimensionally (as diamonds) and as a more conventional histogram in row-
major order (the bottom view). The rightmost view is the x2 (chi-square) test to
measure how ‘‘random’’ the numbers are, with the center dark region indicating
the “‘passing” zone. The algorithm on the left produces numbers that are
distributed too perfectly, an indication of non-randomness.
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tion was in demonstrating the system
to interested parties; we wanted to be
able to set up a preassigned sequence
of commands showing off the capabil-
ities of the system, then let it run unat-
tended. Including this capability was
indeed fortunate, because it turned out
that scripting was a fundamental in-
gredient in all of the material that we
developed. The script is what brings
the views out from the system to the
user. For the naive user, it provides
worked-out examples designed by the
programmer; for the advanced user, it
provides a catalog of available visual-
izations and dynamic modes.
Scripting is currently done at a prim-

itive level: a keystroke history is saved

into a file which can then be played
back. A number of additional facilities
exist: saving a keystroke ‘‘Future-
Freeze’’ will cause the script to pause
in the playback phase and wait for the
user to press a ‘‘Continue” key; the
keystroke ‘‘FuturePause’” will break
out of a script in order to let the user
use the current worldspace of the sys-
tem and then return to the script later.

As a digression, it is interesting to
note that the Balsa user-interface
(modeled after the Xerox PARC
Smalltalk system?) was designed to be
self-disclosing through pop-up menus.
All interaction is done through the
mouse (except for the rare instance
when text must be entered at the key-
board). However, when creating the
script, repeatedly searching for a but-
ton on a menu proved to be quite cum-
bersome. Thus, we added a program-
mable keyboard feature that allowed
us to quickly enter the common com-
mandssuchas‘‘Go,”” “FutureFreeze,”’
or ““SingleStep”’ as single keystrokes,
such as control-G, control-F, and
control-S, respectively. Since a script
may consist of hundreds of such com-
mands, this facility proved to be a
timesaver for sophisticated users.

Our procedure for building scripts
was as follows. First, we would be-
come familiar with the algorithms,
views, and types of input that were
available. Next, we would storyboard
a series of scenes. Each scene would
comprise a configuration of algorithm
and view windows, ideas of what size
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and type of input would be best, and
ideas of what places in the execution of
the algorithm(s) would be appropriate
places to insert ‘‘FutureFreeze’’ or
‘“‘FuturePause’” commands. Then, we
would build a small script for each
scene (in its own file) by restoring a
previously saved set of windows, and
run the algorithm(s) using all of Balsa’s
interactive facilities. Finally, we would
merge these small scripts for each
scene into one large script, and make
that script available to users.

Scripting was a‘fundamental
ingredient in all of the material
developed.

Now that we realize the importance
of scripting, we have plans for extend-
ing the available capabilities in future
versions of the system. For example,
research needs to be done on editing
these scripts. Although a readable
transcript of keystrokes is saved, edit-
ing the transcript file has severe side ef-
fects that may not be obvious from
just looking at the keystrokes. Certain
syntactic changes may lead to unde-
fined semantics. One approach to this
might be to use a generalized undo-
skip-redo facility,® but this might be
cumbersome for long scripts. Another
more promising possibility would be to
provide some graphic representation
of the script itself, with corresponding
editing aids.

Static history. One surprising fact
that we did not discover until we had
some actual experience was that a
visual history of the execution of an
algorithm was essential for studying
the algorithm on ‘‘small cases.”” More-
over, as mentioned above, for the
small cases, we were better off with
textual examples rather than graphical
representations (Figures 1 and 3, as
noted above).

It is relatively straightforward to at-
tach a “‘history view’’ to any existing
Balsa view. Unfortunately, this must
currently be done by the animator
when the view is actually coded. It

would be better to provide the user
with interactive tools to specify how a
history should be kept.

The code view. Programs them-
selves are displayed by a versatile part
of the view library called the code
view. In general, a user may open a
window containing a code view of an
algorithm to watch its line-by-line exe-
cution. Upon entry to a procedure, a
new subwindow containing code for
the new procedure overlays the code of
the calling procedure (offset to the
right and down). When a procedure
exits, its code window is removed, and
the caller’s state reappears, exactly as it
had been before the call. This scenario
has proved successful for several lec-
tures (especially those dealing with
recursive algorithms) as well as for ad-
vanced researchers debugging new al-
gorithms.

Because the code view is triggered by
interesting events rather than inter-
preting the code, we have been able to
use it in diverse and surprising ways.
For algorithms whose displays are ef-
fective primarily because of the speed
of execution, it is rare that the code
view with lines flashing by is of any
use. Thus, we can have a streamlined
version of the algorithm, with perhaps
a handful of judiciously chosen lines
highlighted. Moreover, we can choose
not to highlight any lines of code, but
to show only procedure calls. Alter-
natively, we can show multiple textual
versions of the algorithm, each with a
different level of detail. This separa-
tion of the view from the actual code
provides flexibility which has proven
to be helpful in many teaching and re-
search applications.

We have experimented with a vari-
ety of styles for highlighting lines of
code. The most effective style has been
to invert the area of screen containing
the text; the less effective styles were to
change the font (from say, bold to ital-
ics) and to draw a box around the
screen area. We have also experi-
mented with displaying the proce-
dures side-by-side (vertically or hori-
zontally) so they didn’t overlap; dis-
playing all procedures simultaneously;
and replacing the caller procedure by
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the caller. Overlapping boxes seem to
be the most effective because they pro-
vide a context separate from the se-
quence of callers, yet they do not use
an excessive amount of screen real
estate. Another method that we plan
to try is the ““fisheye”’ view!0 of large
files. This is analogous to a very wide
angle camera lens that gives full details
of the area in focus, while retaining the
global high-level structure of the re-
mainder.

Current work is underway to investi-
gate graphical representations of a pro-
gram,!! and also graphic design tech-
niques to produce very pretty (though
textual) listings of a program.!2 For
large systems, it might be nice to
display each procedure in a box of a
module hierarchy chart (using a topo-
logical sort and other constraints to de-
termine the screen layout). Our frame-
work allows these and other views, as
well as their animation.

These textual views have proven to
be helpful to a wide range of users. For
programs of any complexity, the capa-
bility of the personal workstation to
display and change many lines of text
quickly at arbitrary positions on the
screen is crucial.

High-bandwidth network

Balsa is designed to exploit the high-
bandwidth, local-area network inter-
connecting all of the machines in the
instructional workstation laboratory.
To date, we have used the system only
in two relatively straightforward ways:
either all machines run independent-
ly, playing back Balsa scripts, with
students proceeding from pauses on
cue from the instructor; or the system
is in ‘‘broadcast’’ mode with all nodes
slaved to the instructor node. In
broadcast mode, students often found
the instructor’s sudden changes of
context disconcerting (in playback
mode, students were able to linger, for
at least a few seconds, on difficult im-
ages). On the other hand, the instruc-
tor had much more control of the class
in broadcast mode.

From a system standpoint, broad-
casting is analogous to scripting. In
broadcasting, the master’s (usually the
instructor’s) keystrokes are saved in a
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multiprocessed file that the slaves
(usually the students) are simulta-
neously reading in playback mode; in
scripting, user keystrokes are saved in
a file to be read at a later time in play-
back mode. We considered broadcast-
ing an image of the master bitmap, or
tapping the broadcasting at a very low
level (for example, at the graphics dis-
play primitive), but rejected these
because of the potential load on the
network. Our method of broadcasting
also gives us the potential to have an

For programming assignments
outside of class, the network is
vital.

instructor monitor several students si-
multaneously, by having the students
become the master and displaying their
output in a separate window on the in-
structor’s screen.

The broadcast mode has a number
of intrinsic synchronization problems.
First, if the instructor on the master
node interrupts the executing pro-
gram, how do the viewers know this?
Our solution is for the master to set a
flag at each potential interruption
point (which would roughly corre-
spond to each line of code), and broad-
cast that flag to all viewers. Another
problem is the relative speeds of the
machines. Obviously, no viewer can
execute at a faster rate than the master.
However, what if the slave machine is
too slow (perhaps it has less memory,
an older and slower disk, etc.)? Should
the slave send a ‘‘wait-for-me’’ mes-
sage and response to each message sent
by the master? If so, that means that
the class will go only as fast as the
slowest machine, which might be intol-
erably slow.

When the instructional workstation
laboratory is not being used as a
classroom, machines in it are used for
programming assignments for several
courses. Here, the network is vital.
The computer supports network-wide,
demand-paged, virtual memory, with
a hierarchical file system naming-
space transparent over the network. 13

The practical significance of this is that
a student accesses his files in the exact
same way regardless of which machine
he is on, and students have access to
the lecture scripts outside of classin the
same way as during class. Generally,
explicit file transferral is avoided.

We have only begun to consider
ways in which the network can be used
to provide new paradigms for educa-
tion in the classroom. It is important to
note that most of our effort—which
went into writing the views for the
algorithms—will be unaffected by any
added functionality. Only the scripts
—which represent a comparatively
small amount of effort—will need to
be updated.

Cgrtainly, there is a close match
etween the algorithms/data-
structures material discussed here and
the orientation and capabilities of our
hardware and software systems. It
might legitimately be questioned
whether.one might expect to be as suc-
cessful in animating some other body
of material. Actually, the instructional
workstation laboratory has already
been used for teaching several other
courses: !4 an introductory Pascal
course has been taught three times
using Balsa demos; a differential equa-
tions course has been taught using
Balsa demos for displaying mathemat-
ical surfaces; and a neural science
course has been taught using a special
software system to see cross-sections
of the brain. Several more uses are
planned.

When we first began developing
Balsa, we had several prototype simu-
lations of sorting algorithms in opera-
tion, motivated by the movie, Sorting
out Sorting.'* It was, legitimately,
questioned at that time whether we
could do anything beyond sorting. In
sorting, we saw the potential to do
algorithms; in doing algorithms, we
see the potential to tackle other
domains.

We have plans for extending the sys-
tem’s capabilities by assessing the most
successful presentation techniques dis-
cussed above and adding capabilities
to them. Examples include support
for creating static history views at the
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user level and extended support for
scripting.

One of our long-term goals is to be
able to automatically animate pro-
grams. For the near-term, we are de-
veloping tools to simplify the anima-
tion process. For example, it seems
possible to eliminate the animator
from the loop, and allow the anima-
tions to be done by an algorithm de-
signer (by just specifying interesting
events and names of library views), or
even by a user (by pointing to a data
structure declaration in a program and

then picking a view from a list of
available views for that type of data

structure).

Many of our images suffer from a
lack of resolution or become unaccept-
ably slow on large cases, so we are in-
terested in investigating the use of
more advanced hardware and soft-
ware systems for Balsa-like activities.
In particular, preliminary studies indi-
cate that color will play an important
role in the future, especially in dynam-
ic displays.

OPENINGS FOR
ASSISTANT PROFESSOR

The Department of Computer Sci-
ence of the Swiss Federal Insitute of
Technology in Zurich has two open-
ings for assistant professors. We are
looking for young computer scien-
tists actively engaged in experimen-
tal research and interested in
teaching.

Research areas of particular interest
to the department include:

¢ programming techniques

o computer networks

e operating systems

¢ VLSI design

e CAD/CAM

e computers in education

Candidates are invited to submit an
application (including vita, list of
publications, references, research in-
terests) before March 1, 1985 to the
President of ETH Zurich, Prof. H.
Ursprung, ETH-Zentrum, 8092 Zurich,
Switzerland.

For further information write to the
Chairman of the Department of Com-
puter Science, Prof. J. Nievergelt,
ETH-Zentrum, 8092 Zurich, Switzer-
land.

On the other hand, we can apply
many of the techniques that we have
learned to much less powerful systems,
so we are also interested in investi-
gating the use of less powerful person-
al computer systems for Balsa-like
activities. While this will mean giving
up many of the advanced features to
which we have become accustomed,
we feel that our experience will enable
us to utilize personal computers, such
as the IBM PC or the Apple Macin-
tosh, for algorithm animation. Fur-
thermore, we have the capabilities of
Balsa available as a test-bed for alter-
native animation techniques that
might be appropriate in less rich en-
vironments.

Finally, we believe that the wide
range of dynamic images that we have
created and the ways we provide users
to interact with them suggest a number
of intriguing possibilities on using per-
sonal computer systems as a supple-
ment, or even as an alternative, to
traditional printed media. We expect
to explore this area much more deeply
in building upon the material de-
scribed here, and in developing more
advanced versions of our system. [
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