
Algorithmica (1986) 1:111-129

The Pairing Heap: A New Form of
Self-Adjusting Heap

Michael L. Fredman 1'4, Robert Sedgewick 2"5, Daniel D. Sleator 3, and
Robert E. Tarjan 2' 3, 6

Abstract. Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority
queue) called the Fibonacci heap. Although theoretically efficient, Fibonacci heaps are complicated to
implement and not as fast in practice as other kinds of heaps. In this paper we describe a new form of
heap, called the pairing heap, intended to be competitive with the Fibonacci heap in theory and easy
to implement and fast in practice. We provide a partial complexity analysis of pairing heaps. Complete
analysis remains an open problem.

Key Words. Data structure, Heap, Priority queue

1. Introduction. A heap or priority queue is an abstract data structure consisting
of a finite set of items, each having a real-valued key. The following operations on
heaps are allowed:

make heap (h): Create a new, empty heap named h.
find min (h): Return an item of minimum key from heap h, without chang-

ing h.
insert (x, h): Insert item x, with predefined key, into heap h, not previously

containing x.
delete min (h): Delete an item of minimum key from heap h and return it. If h

is originally empty, return a special null item.

The find min operation can be implemented as a delete min followed by an insert,
but it is generally more efficient to implement it independently. Additional
operations on heaps are sometimes allowed, including the following:

meld (h ~, h 2): Return the heap formed by taking the union of the item-disjoint
heaps h 1 and h 2. Melding destroys h a and h 2.

decrease key (A, x, h): Decrease the key of item x in heap h by subtracting the

I EECS Department, University of California, San Diego, La Jolla, California 92093, USA
2 Computer Science Department, Princeton University, Princeton, New Jersey 08544, USA
~AT & T Bell Laboratories, Murray Hill, New Jersey 07974, USA
4Research partially supported by National Science Foundation Grant MCS 82-04031 and by Bell
Communications Research
Research partially supported by National Science Foundation Grant DCR 85-14922

(~To whom correspondence should be addressed.

112 Fredman et al.

non-negative real number A.
delete (x, h): Delete item x from heap h, known to contain it.

In order for decrease key and delete to be efficiently implementable, the location
of item x in the representation of heap h must be known; standard implementa-
tions of heaps do not support efficient searching for an item. In our discussion we
shall assume that a given item is in only one heap at a time.

Since n real numbers can be sorted by performing n insert operations followed
by n delete rain operations on an initially empty heap, the amortized time* of a
heap operation for any implementation that uses binary decisions is f~(log n),
where n is the heap size. There are many well-known heap implementations for
which this bound is tight in the worst case per operation. Such implementations
include the implicit heaps of Williams [16], utilized by Floyd in an elegant
in-place sorting algorithm [3]; the leftist heaps of Crane [2] as modified by Knuth
[9]; and the binomial heaps of Vuillemin [15], studied extensively by Brown [1].
Implicit heaps do not support melding; both leftist and binomial heaps do.

Recent ly Fredman and Tarjan [4] invented a new kind of heap called the
Fibonacci heap. The operations make heap, find rain, insert, meld, and decrease
key taken only O(1) amortized time on Fibonacci heaps, whereas delete min and
delete take O(log n) amortized time. The importance of Fibonacci heaps is that in
many network optimization algorithms that use heaps, decrease key is the
dominant operation, and reducing the time for this operation improves the overall
efficiency of such algorithms. Thus improved running times for a variety of
network optimization algorithms can be obtained. See [4, 5, 6].

Fibonacci heaps have two drawbacks: They are complicated to program, and
they are not as efficient in practice as theoretically less efficient forms of heaps,
since in their simplest version they require storage and manipulation of four
pointers per node, compared to the two or three pointers per node needed for
other structures. Our goal in this paper is to devise a "self-adjusting" form of
heap having the same theoretical time bounds as the Fibonacci heap, yet easy to
implement and fast in practice. A step in this direction was taken by Sleator and
Tarjan [10, 11], who devised a data structure called the skew heap. The skew heap
can be regarded as a self-adjusting version of the leftist heap. On the "bottom-up"
form of skew heaps, make heap, find min, insert, and meld take O(1) amortized
time and delete min, delete, and decrease key take O(log n) amortized time. The
problem remaining is to find a simple data structure that reduces the amortized
time for decrease key to O(1).

The data structure proposed in this paper, called the pairing heap, can be
regarded as a self-adjusting version of the binomial heap. It shares with skew
heaps ease of implementation and practical efficiency. We conjecture but are
unable to prove that pairing heaps are theoretically as efficient as Fibonacci heaps

* By amortized time we mean roughly the time of an operation averaged over a worst-case sequence of
operations. An exact definition is provided in Section 2. For a thorough discussion of this concept see
[14].

A New Form of Self-Adjusting Heap 113

Fig. 1. An endogenous heap-ordered tree. The numbers in the nodes are keys.

(in the amortized case and ignoring constant factors). Our best analysis gives an
O(log n) time bound per heap operation.

The paper contains two sections in addition to this introduction. In Section 2
we motivate, describe, and partially analyze pairing heaps. In Section 3 we
propose some variants of pairing heaps that seem to have similar efficiency.

2. Pairing Heaps. We shall represent a heap by an endogenous heap-ordered tree.
(See Figure 1.) This is a rooted tree in which each node is a heap item, with the
items arranged so that the parent of any node has key no greater than that of the
node itself. (The term "endogenous" means that we do not distinguish between a
tree node and the corresponding heap item; see [13].)

As a primitive for combining two heap-ordered trees, we use linking, which
makes the root of smaller key the parent of the root of larger key, with a tie
broken arbitrarily. (See Figure 2.) If we use an appropriate tree representation, a
linking operation takes O(1) time in the worst case.

Of the heap operations, delete rain is the most important and the most
complicated to implement. Thus we shall discuss the other operations first. We

Fig. 2. Linking two heap-ordered trees. The triangles denote trees of arbitrary structure.

114 Fredman et al.

Fig. 3. The half-ordered binary tree corresponding to the
heap-ordered tree of Figure 1.

carry out these operations as follows:

make heap (h): Create a new, empty tree named h.
find min (h): Return the root of tree h.
insert (x, h): Make x into a one-node tree and link it with tree h.
meld (h 1, h2): Return the tree formed by linking trees h 1 and h 2.
decrease key (A, x, h): Subtract A from the key of item x. If x is not the root

of tree h, cut the edge joining x to its parent and link the two trees formed
by the cut.

We perform delete using delete min:
delete (x, h): If x is the root of tree h, perform a delete min on h. Otherwise,

cut the edge joining x to its parent, perform a delete min on the tree rooted
at x, and link the resulting tree with the other tree formed by the cut.

The data structure we use to make these implementations efficient is the child,
sibling representation of a tree, also known as the binary tree representation [8].
Each node has a left pointer pointing to its first child and a right pointer pointing
to its next older sibling. This representation allows us, and indeed forces us, to
order the children of every node, a fact that we shall exploit below. The effect of
the representation is to convert a heap-ordered tree into a half-ordered binary tree
with empty right subtree, where by half-ordered we mean that the key of any node
is at least as small as the key of any node in its left subtree. (See Figure 3.) In
order to make decrease key and delete efficient, we must store with each node a
third pointer, to its parent in the binary tree.

A New Form of Self-Adjusting Heap 115

Fig. 4. Two-pointer representation allowing parent access of the binary tree in Figure 3. The bits
indicating left and right only children are omitted.

Remark. Instead of using three pointers per node, we can manage with only
two, at a cost of a constant factor in running time. We make each node in the
binary tree point to its left child, and to its right sibling or to its parent if it has
no right sibling. (See Figure 4.) With each only child we must also store a bit
indicating whether it is a left child or a right child. []

Each of the operations make heap, find min, insert, meld, and decrease key has
an O(1) worst-case running time. A delete operation takes O(1) time plus one
delete min operation. Thus delete min and delete are the only non-constant-time
operations.

Let us consider how to perform delete min on a heap-ordered tree. We begin by
removing the tree root, which is an item of minimum key. This produces a
collection of heap-ordered trees, one rooted at each child of the deleted node. We
combine all these trees by linking operations to form one new tree. The order in
which we combine the trees is important, however.

Whatever combining rule we choose will have a | worst-case time bound,
since we can build any n-node tree, in particular the tree with a root and n - 1
children, by a suitable sequence of O(n) make tree, insert, and meld operations.
However, for a suitable combining rule we shall be able to prove an O(log n)
amortized bound.

I16 Fredman et al.

Fig. 5. The naive version of delete min takes O(n) amortized time. After the root with key 1 is deleted,
the second and successive children are linked to the first.

The naive combining rule is to choose one of the trees and successively link
each of the remaining ones with it. Unfortunately this method takes @(n)
amortized time per operation: Figure 5 shows that an insert followed by a
delete min can take ~2(n) time while recreating the initial tree structure.

A more promising way of combining the trees is to make one pass linking them
in pairs and then a second pass linking each of the remaining trees with a selected
one. Still, if we are not careful about how the trees are paired during the first pass,
this method can take @h/n-) amortized time. The example of Figure 6 shows that
scrambling the trees before the pairing pass can cause an insert followed by a
delete min to take f~(v~) time while recreating the initial tree structure. On the
other hand, a simple analysis gives an O(fn-) amortized bound no matter how the
trees are scrambled, thus showing that this method is at least somewhat better
than the naive one.

To derive the upper bound, we shall use the "potential" technique of Sleator
(see [14]). Introducing this technique also allows us to clarify the notion of
"amort ized time." To each configuration of the data structure we assign a real
number �9 called the potential of the configuration. For any sequence
of m operations, we define the amortized time a i of the i th operation by a i =
ti + ~ i - - t ~ i - 1 , where t i is the actual time of the i th operation and qbi_ 1 and ~b i
are the potentials before and after the operation, respectively. That is, the
amortized time of an operation is its actual running time plus the net increase in
potential it causes. Summing over all the operations, we have

(1) ti = (ai -- ~i + d~i-1) = ai -- dPm + d90
i=1 i=1 i

If the potential is chosen so that it is initially zero and is always non-negative,
then (1) implies

(2) ~ t i <_ ~ a i
i=1 i=1

That is, the total amortized time is an upper bound on the total actual time. This
means that the amortized time of an operation can be used as a conservative
estimate of its actual running time, as long as total running time is the measure of
interest.

A New Form of Self-Adjusting Heap 117

(INSERT I k-1

~ DELETE ROOT ,DELETE MIN

Fig. 6. Scrambled pairing during a delete rnin operation takes ~2(~n) amortized time. Here n =
k (k + 3)/2. For clarity, the keys of nodes are not shown.

To analyze scrambled pairing, we define the potential of a node with d children
in an n-node heap to be I - min{ d, [v/~-]}. We define the potential of a collection
of heaps to be the sum of the potentials of its nodes. Observe that the potential of
an empty heap is zero, and the potential of any collection of heaps is non-nega-
tive, since the sum over n nodes of their numbers of children is the total number
of nodes minus the number of trees. Thus (2) holds. A linking operation can only
decrease the potential, and cutting an edge can increase the potential by at most
one (as long as the heap size does not change). Since make tree, find min, insert,
meld, and decrease key all take O(1) actual time and perform O(1) links and cuts,
each has an O(1) amortized time bound.

Consider a delete min operation. Removing the tree root causes a potential
increase of at most 27%-, of which one ~ accounts for the increase in the
potential of the deleted root (from at least 1 - ~ to 0), and the other ~ -
accounts for one unit of increase per node having at least ~ children (such an
increase can be caused by the decrease in heap size by one.) Suppose that k trees
remain after deleting the root. The actual time of the delete min is O(k). Since we

118 Fredman et al.

are ignoring constant factors, Jet us estimate this time as one plus the number of
links in the pairing pass, or [k/2] + 1. Each of the links in the pairing pass
causes the potential to drop by one except for links that add a child to a node
already having V%- children. There can be at most V%- of these exceptional links,
since each corresponds to a disjoint tree containing at least V%- nodes. Thus the
links cause a potential drop of at least [k/2] - fn-. Summing the estimate of
actual time plus the potential changes, we see that the amortized time of delete
rain is [k/2J + 1 + 2~fn - + (V%- - [k /2]) = O(~-). The same estimate holds
for delete.

To obtain an algorithm that is theoretically competitive with the known heap
implementations, we use the pairing method of combining trees but choose the
trees to be paired carefully. We order the children of each node in the order they
were attached by linking operations, with the first (youngest) child being the one
most recently attached. That is, when a node y is made the child of a node by
linking, y becomes the first child of x. Note that this ordering of children is
independent of key order. To perform a delete rain operation, we remove the tree
root and link the first and second remaining trees, then the third and fourth, and
so on. (If the original root had an odd number of children, one tree remains
unlinked.) Then we link each remaining tree to the last one, working from the

I PAIRING AFTER ROOT DELETION

I RIGHT-TO-LEFT

Fig. 7. A delete rain operation on a pairing heap.

A New Form of Self-Adjusting Heap 119

next-to-last back to the first, in the opposite order to that of the pairing pass. (See
Figure 7.)

We call the resulting data structure the pairing heap. We believe that this data
structure is as efficient as Fibonacci heaps in the amortized case. That is, we make
the following conjecture:

Conjecture 1. The various operations on pairing heaps have the following
amortized running times: O(1) for make heap, find min, insert, meld, and
decrease key, and O(log n) for delete min and delete.

We are unable to prove this conjecture. However, we can obtain the following
weaker result:

THEOREM 1. On pairing heaps, the operations make heap and find rain run in
0(1) amortized time, and the other operations run in O(log n) amortized time.

We shall prove Theorem 1 using the potential technique. To guide us in our
choice of a potential function, let us examine the effects of a delete rain operation

A

PAIRING AFTER ~ X"
ROOT DELETION " Z_.~

E F G

COMBINING /
RIGHT-TO-LEFT

E F

Fig. 8. A delete rain operation on the binary tree
form of the pairing heap in Figure 7. Note that a
subtree in the ordinary form of a pairing heap
corresponds to a node and its left subtree in the
binary tree form.

120 Fredman et al.

\ \

L I N K .

B C A B

Fig. 9. The effect of a linking operation during a delete rain. The figure shows the outcome if the key of
node x is greater than the key of node y. If the key of x is less than that of y, nodes x and y are
interchanged, as are subtrees A and B. This is indicated by the double arrows.

x

o b

c d

A e

B f

J E F G
COMBINING

b'

E F

Fig. 10. The effect of a delete min on a half-ordered binary tree. The slanted double arrows (between a
and h, c and d, e and f) denote possible interchange of single nodes, The horizontal double arrows
denote possible interchange of the entire subtrees. Nodes a ' , g ' are some permutat ion of nodes
(/ , g .

A New Form of Self-Adjusting Heap

a b

A C

B d

C e

A B

E F

Fig. 11. Splaying at a node in a binary search tree.

121

on the binary tree representation of a heap. Figure 8 shows a delete rain operation
on the binary tree form of the heap in Figure 7. Figure 9 illustrates the general
effect of a single linking operation. Figure 10 illustrates the general effect of an
entire delete min. We see that up to permutation of nodes and exchange of left
and right subtrees a delete min has essentially the same effect as discarding the
root and splaying at the last node in symmetric order, where splaying is the
heuristic used by Sleator and Tarjan in their self-adjusting search trees [10, 12].
(See Figure 11.) Thus it is not surprising that by using their potential function
(which is invariant under exchange of left and right subtrees) we can prove
Theorem 1.

We define the size s(x) of a node x in a binary tree to be the number of nodes
in its subtree including x, the rank r(x) of x to be log s(x)*, and the potential of
a set of trees to be the sum of the ranks of all nodes in the trees. Then the
potential of a set of no trees is zero and the potential of any set of trees is
non-negative, so the sum of the amortized times is an upper bound on the sum of
the actual times for any sequence of operations starting with no heaps.

Observe that every node in an n-node tree has rank between 0 and log n. We
immediately deduce that make heap and find rain have an O(1) amortized time
bound, since they cause no change in potential. The operations insert, meld, and
decrease key have an O(log n) amortized time bound, since each such operation
causes an increase of at most log n + 1 in potential: a link causes at most two

* We use binary logarithms throughout this paper.

122 F r e d m a n et al.

nodes to increase in rank, one by at most log n and the other by at most 1, where
n is the total number of nodes in the two trees. (Only the roots of the two trees
can increase in rank. The root of initially smaller size can increase in rank by at
most log n, and the root of initially larger size can increase in rank by at most 1,
since its size at most doubles.)

The hardest operation to analyze is delete min. Consider the effect of a delete
rnin on a tree of n nodes. We shall estimate the running time of this operation as
one plus the number of links performed. The number of links performed during
the first pass (pairing) is at least as great as the number performed during the
second pass (combining the remaining trees). Thus we shall charge two per link
during the first pass. Let us estimate the potential change caused by a first-pass
link. Referring to Figure 9, and assuming that subtree C is non-empty, we see
that the increase in potential is log(s(a) + s(b) + 1) - log(s(b) + (c) + 1). The
concavity of the log function implies that log x + log y for x, y > 0, x + y < 1 is
maximized at value - 2 when x -- y = 1/2. It follows that

l o g (s (a) + s (b) + 1) + log(s(c)) - 21og(s(a) + s(b) + s(c) + 2)

= log((s (a) + s(b) + 1) / (s (a) + s(b) + s(c) + 2))

+ l o g (s (c) / (s (a) + s(b) + s(c) + 2)) < - 2 .

This and the inequality log(s(c)) < log(s(b) + s(e) + 1) give log(s(a) + s(b) +
1) - log(s(b) + s(c) + 1) < 2 log(s(a) + s(b) + s(c) + 2) - 2 log(s(c)) - 2.
Since s(x) = s(a) + s(b) + s(c) + 2, 21og(s(x)) - 21og(s(c)) - 2 is an upper
bound on the potential increase caused by the link. The only link during the first
pass that can have subtree C empty is the last one. In this case the potential
increase is at most log(s(a) + s(b) + 1) - log(s(b) + 1) < 21og(s(a) + s(b) +
2) = 2 log(s(x)).

Now let us sum the potential increase over all first-pass links. Let xl, x 2 x2k
be the nodes whose keys are compared during the first-pass links. That is, in the
original binary tree x 1 is the left child of the root, xi+ 1 for 1 < i < 2k is the right
child of xi, and the last first-pass link involves comparing the keys of x2~_ 1 and
Xzi. Let s denote the size function on the original binary tree. Then the potential
increase caused by the first-pass links is at most

k - I

(21og s(x2s_l) - 21ogs(x2i) - 2) + 21ogs(x2k_l)
i - -1

k - 1

<- ~ (21ogs(x2i-1) - 21ogs(xzi+l)) + 21ogs(x2k 1) - 2(k - 1)

since s(x2,) > s(x2i+l)

_< 2 logs (x1) - 2(k - 1) since the sum telescopes

(3) < 21ogn - 2(k - 1)

A New Form of Self-Adjusting Heap 123

The other potential changes that take place during the delete min are a decrease
of log n when the original tree root is removed and an increase of at most
log(n - 1) during the second pass. To verify the latter bound, we note that a
one-to-one correspondence f can be established between the tree nodes before the
second pass and the nodes after the second pass such that s'(x)>_ s " (f (x))
unless f (x) is the tree root after the second pass. Here s ' denotes the size
function before the second pass and s" denotes the size function after the second
pass. (In Figure 10, the mapping f is given by f (x) = x'.) Thus the potential
increase caused by the second pass can be associated with the tree root after the
pass, and its magnitude is at most log(n - 1).

It follows that the amortized time of the delete min operation is an actual time
of 2 k + 1 plus a potential increase of at most 2 1 o g n - 2 (k - 1) - l o g n +
log(n - 1) for a total of at most 2 log n + 3. An O(log n) bound on the amortized
time of decrease key and delete follows immediately, finishing the proof of
Theorem 1.

3. Variants of Pairing Heaps. The data structure proposed in Section 2 is not the
only way to make use of the pairing idea. In this section we propose four variants
of the structure. The first three involve changing only the implementation of

I PAIRING AFTER
ROOT DELETION

COMBINING LEFT-TO-RIGHT

Fig. 12, A delete rain operation using the front-to-back method.

124 Fredman et al.

I PAIRING AFTER
ROOT DELETION

I COMBINING RIGHT-TO- LEFT

Fig. 13. A delete rain operation using the back-to-front method.

delete min; the fourth uses a forest of trees instead of a single tree to represent a
heap.

Instead of making the two passes of delete min in opposite directions (front-to-
back followed by back-to-front), it seems natural to make them in the same
direction, either both front-to-back (see Figure 12) or both back-to-front (see
Figure 13). We call the former method the front-to-back variant and the latter the
back-to-front variant. With either method the two passes can be combined into a
single pass. In order to make the back-to-front variant a one-pass method, we
must change the pointer structure representing the tree, since we must be able to
access the children of a node in reverse order, older to youngest. One possibility is
to use a ring representation in which the lists of children are singly linked in
reverse order, with the first child pointing to the last and each parent pointing to
its first child (see Figure 14). Additional pointers must be added to support
decrease key and delete.

Another possible combining rule for delete min is to make repeated passes over
the trees, linking them in pairs, until only one tree remains. (See Figure 15.) We
call this the multipass variant.

A New Form of Self-Adjusting Heap

Fig. 14. The ring representation of the heap-ordered tree in Figure 1.

125

Our fourth method, the lazy variant, uses the multipass idea in combination
with lazy linking. We represent a heap by a forest of rooted trees rather than a
single tree. The trees in the forest are ordered in chronological order by the time
they were added to the forest, least recent to most recent. To perform find min,
we run through the trees once, linking them in pairs, and return any root of
min imum key. To perform insert, we make the item to be inserted into a one-node
tree and add it to the forest as the new last tree. To perform delete min, we carry
out find min, delete the root of minimum key, and concatenate the list of subtrees
rooted at its children to the back of the list of remaining trees. (See Figure 16.) To
per form meld, we concatenate the two lists of trees. To perform decrease
key(A, x, h), we subtract A from the key of x, cut the edge joining x to its parent
if it has one, and if such a cut takes place we add the tree rooted at x to the back
of the list of trees. To perform delete(x, h), we cut the edge joining x to its
parent if it has one, delete node x, and concatenate the list of subtrees rooted at
its children to the back of the list of remaining trees.

None of these variants is easy to analyze. We can prove Theorem 1 for the
back-to-front variant using essentially the same analysis as in Section 2. For the
multipass and lazy variants, we can prove an O(logn log log n /log log log n)
bound on the amortized time per heap operation, using a more complicated
argument. For the front-to-back variant, we are unable to establish any useful
bound, since our analogy with splaying breaks down in this case. We-leave as an
open problem to prove or disprove Conjecture 1 for the pairing heap or any of its
variants. Theorem 2 below derives our bound for the amortized time of the
multipass variant. The analysis of the lazy variant is similar but more com-
plicated.

126 Fredman et al.

~1 PAIRING AFTER ROOT DELETION

PAIRING

Fig. 15. A delete min operation using the multipass method.

THEOREM 2. The amortized time per heap operation for the multipass variant is
O(log n log log / log log log n).

To prove Theorem 2 we use a slight variant of the potential function used to
prove Theorem 1. Let P(T) be the potential of a binary tree defined as in the
proof of Theorem 1. We shall use instead the potential function Q(T)=
P(T)/ logloglogn, where n is the number of nodes in T. The most difficult
operation to analyze is delete rain, and we proceed with this analysis. (The
analysis of the other operations follows the proof of Theorem 1, and is omitted.)

Let T be a binary tree representing a heap and let T ' be the tree that results
by carrying out a delete rnin operation. Let k be the number of nodes on the right

A New Form of Self-Adjusting Heap 127

S

9

 ORFNDM?
I DELETION OF MINIMUM ROOT

Fig. 16. A delete mitt operation using the lazy method.

path* of T af te r the root has been deleted. The t ime necessary for the delete min is
O (k + 1), s ince there are k - 1 l ink opera t ions in total . W e shall es t imate the
ac tua l t ime taken by the delete min to be e(k + 1), where e is a sufficiently smal l
pos i t ive cons t an t whose value we choose below. (That is, we assume tha t in one
un i t of t ime we can do a sufficiently large cons tan t amoun t of work on the
d a t a s t r u c t u r e) . T h e a m o r t i z e d t i m e o f the delete min is t hus
e(k + 1) + P (T ') / l o g log log(n - 1) - P (T) / l o g log log n. Since P (T ') =
O(n log n) , we have P (T ') / l o g l o g l o g (n - 1) - P (T ') / l o g l o g l o g n = O(1).
Thus the amor t i z ed t ime of the delete rain is ek + (P (T ') - P (T)) / l o g log log n
+ o(1).

O u r m a i n task is to es t imate P (T ') - P (T) . Let nl , n 2 n k be the nodes of
the r ight p a t h a long which pa i r ing takes place, with n k be ing far thest f rom the
root . Let s i be the size of the subtree roo ted at ni. The change in the po ten t ia l P
resul t ing f rom l inking n~ and n~+ 1 is at most log(s i - s~+2) - log s~+l, where we
let si+2 = 0 if i + 2 > k. Referr ing to this po ten t ia l change as t~, we have

t i < logs~_ 1 - l o g s i + 1 if we let s o = l o g n . W e conc lude that the sum of any
subse t of the t i in any one pass is b o u n d e d b y log n, since the sum

* By the right path of a binary tree we mean the path from the root through right children to a node
with no right child.

128 Fredman et al.

~1 <_ i< k. i odd(lOg S i -1 -- log s~+l) telescopes and all its terms are positive. Since
there are [log k] pairing passes altogether, P (T ') - P (T) <_ [log k](log n).

This somewhat weak bound is enough to give a good estimate of the amortized
delete min time if k is sufficiently small. Suppose

k _< c (log n) (log log n) / (log log log n),

where c is a sufficiently large positive constant, to be chosen below. Then the
actual time of the delete rain is O (k) = O(logn)(loglog n) /(log log log n), and
the potential increase is at most [log k] (l o g n) / l o g l o g l o g n + O (1) =
O (l o g n) (l o g l o g n) / l o g l o g l o g n , so the amortized time of the delete min is
O((logn) / (log log n) / log log log n).

To obtain the same bound for the case of large k, i.e. k >
c(log n)(log log n) / log log log n, we must estimate P (T ') - P (T) more carefully.
In particular, we shall show that in this case the contribution of the negative t~ in
just the first pass is enough to cause a negative potential change that makes the
amortized time of the delete min O(1). Since

(4) log(si/si+2) < log n,
l<_i<k-i

i odd

at least k / 4 of the terms in (4) are bounded above by (4log n) / k . Since
k > c logn it follows for each of these k / 4 values of i (using the approximation
2 x = 1 + O (x) for bounded x) that

S i - - S i+ 2 S i - - S i+ 2 [log n
(5) - - < - - -)

S i + l S i + 2

From (5) we conclude that there are at least k / 4 values of i for which
t i < _ - l o g (k / (c ' l o g n)) for some positive constant c'. Combining this
with our previous estimate for the other ti, we obtain P (T ') - P(T)<_
[log k] (log n) - k / 4 log(k/ (e ' log n)).

Now if c is chosen sufficiently large, we obtain from the above estimate and
k > c(log n)(loglog n) / log log log n that P (T ') - P (T) < - c " k logloglog n +
O(1), where c" is a positive constant depending on c and c'. Thus the amortized
time of the delete rain is ek - c"k + O(1). Choosing e = c" gives an O(1) bound.

We conclude that whether k is small or large the amortized time of delete rain
is O((log n)(log log n) / log log log n), as desired.

Jones [7] has compared the experimental running times of pairing heaps and
several other kinds of heaps. His experiments indicate that pairing heaps are
competitive in practice with all known alternatives. Further experiments need to
be done to determine the best implementation of the structure in practice.

A New Form of Self-Adjusting Heap 129

References

[t] M.R. Brown, "Implementation and analysis of binomial queue algorithms," SIAM J. Comput. 7
(1978), 298-319.

[2] C. A. Crane, "Linear lists and priority queues as balanced binary trees," Technical Report
STAN-CS-72-259, Computer Science Department, Stanford University, Stanford, CA, 1972.

[3] R.W. Floyd, "Algorithm 245: Treesort 3," Comm. ACM 7 (1964), 701.
[4] M. L. Fredman and R. E. Tarjan, "Fibonacci heaps and their uses in improved network

optimization algorithms," J. Assoc. Comput. Mach., submitted; also Proc. 25th Annual IEEE
~vmp. on Found. of Comput. Sci. (1984), 338-346.

[5] H.N. Gabow, Z. Gatil, and T. Spencer, "Efficient impiementation of graph algorithms using
contraction," Proc. 25th Annual IEEE Syrup. on Found. of Comput. Sci. (1984),

[6] H.N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, "Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs," Combinatorica, to appear.

[7] D.W. Jones, "An empirical comparison of priority queues and event set algorithms," Comm.
A CM, submitted.

[8] D. E. Knuth, The Art of Computer Programming, 1/ol. 1: Fundamental Algorithms, Second
Edition, Addison-Wesley, Reading, MA, 1973.

[9] D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wes-
ley, Reading, MA, 1973.

[10] D.D. Sleator and R. E. Tarjan, "Self-adjusting binary trees, Proc. 15th Annual A CM Syrup. on
Theory of Comput. (1983), 235-245.

[11] D.D. Sleator and R. E. Tarjan, "Self-adjusting heaps," SIAM J. Comput., to appear.
[12] D.D. Sleator and R. E. Tarjan, "Self-adjusting binary search trees," J. Assoc. Comput. Mach.

32 (1985), 652-686.
[13] R. E. Tarjan, Data Structures and Network Algorithms, CBMS 44, Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1983.
[14] R. E. Tarjan, "Amortized computational complexity," SIAM J. Alg. Disc. Meth. 6 (1985),

306-318.
[15] J. Vuillemin, "A data structure for manipulating priority queues," Comm. ACM 21 (1978),

309-314.
[16] J .W.J . Williams, "Algorithm 232: Heapsort," Comm. ACM 7 (1964), 347-348.

