
Information Processing Letters 26 (1987/88) 37-43
North-Holland

PRACTICAL VARIATIONS OF SHELLSORT

Janet INCERPI

Institut ?Jational de Recherche en lnformatique et en Automatique JINRIA), Centre de Sophia Antipolis,
Avenue Emile Hugues, 06565 Vaihonne Chdex, France

Robert SEDGEWICK

Department of Computer Science, Princeton University, Princeton, NJ 08540, U.S.A.

Communicated by David Gries
Received 11 March 1986
Revised 5 November 1985

Xeyworcis: Sheiisort, sorting

1. Intrduction

Shellsort is a well-known sorting algorithm that
uses an increment sequence h,, h, _ 1,. . . , h, and
works by performing insertion sort on subfiles
consisting of every high element for i from t down
to 1. Sorting the elements in the h, subfiles con-
stitutes a ‘pass’, after which the file is said to be
hi+oFled. To guarantee that the file is sorted, d
final pass using 1 as the increment completes the
sort. This amounts to running insertion sort on the
file. We examine variants of Shellsort that perform
limited work per pass, i.e., not necessarily sorting
the subfiles. One variant developed is shown to
perform very well empirically and has potential as
a practical sorting algorithm and as a possible
sorting network.

Knuth [5] suggests a variant of Shellsort that
does one comparison for each element rather than
inserting it in place within its subfile. That is,
during the h-sort we compare each element only to
the element that is h away, exchanging the ele-
ments if necessary. Dobosiewicz [2] ran some em-
pirical tests on what he calls a ‘variant of bubble-
sort’; this is Knuth’s variant except that Dobo-
siewicz finishes with bubblescrt rather than in-
sertion sort. (Dobosiewicz also compares each ele-

15 September 1987

ment with the element that is h away to the right
while Knuth compares 3 to the element h away to
the left. However, this is a cosmetic difference of
the variants and does not affect overall perfor-
mance.) Recall that bubblesort works by re-
peatedly looping through the file (from left to
right), comparing adjacent elements, and exchang-
ing as needed. Dobosiewicz’s variant does not use
bubblesort as the inner loop of Shellsort; rather,
he uses one pass of bubblesort.

The decision to finish the algorithm with bub-
blesort is unfortunate, To complete a final inser-
tion sort pass in linear time, we need only know
that the n.umber of inversions prior to this pass is
linear. This is not the case for bubblesort. For
example, if the smallest element is in the rightmost
position of the file, then each bubblesort pass
moves it just one position to the left. In this case,
N - 1 passes are needed; the time to complete the
sort is O(N2), although there are only N - 1 inver-
sions. In general, the number of passes needed is
found by taking the maximum, over all elements
in the file, of the number of lp.rger elements to the
left.

Dobosiewicz compares this variant to Shells@.,
using increments of the form 2j - 1, and quick-
sort. He uses ;N as the first increment and then

0020-0190/87/$3.50 @ 1987, Elsevier Science Publishers B.V. (North-Holland) 37

Volume 26, Number 1 INFORMATION PROCESSING LE’ITERS 15 September 1987

hi= ihi+ I for subsequent increments. The results
of his empirical tests show that this variant per,’
forms favorably for small files, less than a thou-
sand elements. We discuss these results in greater
detail below.

The variation we consider is similar to those of
Knuth and Dobosiewicz. Let ajl..N] represent the
file of N elements stored in an array. Rather than
h-sorting the file, we first make a pass, going left
to right, that compares each element a@] with
ax + h] and then make another pass, going right
to left, through the file that coi+ares a[~] with
a[~ - h]. Thus, while Dobosiewicz uses a bubble-
sort pass from left to right and Knuth uses a
bubblesort pass going from right to left, we use a
two-way bubblesort pass as the inner loop. (The
two-way bubblesort pass is a refinement suggested
in [5]. The algorithm that repeatedly makes such
passes is called ‘cocktail shaker sort’ by Knuth.)

2. Shaker sort

We begin by looking at what happens to a file
when we perform the two passes: (i) starting with
the first element in the file, each element is com-
pared to the element to its right (exchanging if
necessary); (ii) starting with the last element, each
element is compared to the element to its left
(exchanging if necessary). Table 1 gives the start-
ing file, as well as the file after each pass is
complete. In pass (i)% we see that the 11 is ex-
changed with elements until it is compared with
the 12. The 12 moves until it runs into the 13,
which is moved to the rightmost position in the
file. This is precisely a bubbkesort pass and the
h-gest ekment is put in place. Pass (ii) goes from
right to left through the file. Thus, the 7 exchanges
with the 10, the 2 with the 8,12,4, 11, and 9. The
I then moves past the remaining elements. This
pass puts the smallest element in place.

Table 1

We call pass (i) an up-shake and pass (ii) a
down-shake. The up-shake puts the largest element
in plag while a down-shake moves the smallest
element into position. Of course, if we perform
another up-shake on the above file, the 12 would
move into its final position. We call an up-shake
and down-shake pair a l-shake. Thus, cocktail
shaker soti repeats l-shakes until the file is sorted.
We use this naming scheme since in our Shellsort
va iant we talk about an h-shake, performing l-
shakes cn the subfiles of elements that are h apart.

What elements are moved during a l-shake?
Define a left-to-right maximum of a permutation,
denoted by a1a2.. . aM, as any a, that is greater
than all aj, where j < i. That is, in scanning the
permutation from left to right, those elements that
are the largest value seen when scanned are left-
to-right maxima. We can similarly define the
right-to-left minimum of a permutation. It is easy
to show that the only elements whose positions
change after a l-shake are those that are either
left-to-right maxima or right-to-left minima in the
file (for details, see [3]).

We now describe our Shellsort variant, which
we call shaker sort. The algorithm is based on a
sequence of integer increments, h,, . . . , h,. For the
subfiles consisting of elements that are hi apart,
we perform one l-shake; there are hi such sub-
files. After one such pass we say that the file is
hi-shaken. Notice that each pass results in every
element getting compared to two elements, so id
an N element file there are 2(N - hi) comparisons
(and at most 2(N - hi) exchanges). Thus, the work
done in each pass (comparisons and exchanges) is
linear in the size of the file. To complete the sort
we could either run insertion sort or finish with
repeated 1 -shakes.

We now look at a small example. The file
shown in Table 2 is first 7-shaken; all the elements
that are 7 apart get I-shaken. Next, we 3-shake the
file; there are three subfiles each of which is

5 11 3 6 1 9 12 4 13 8 2 10 7

(9 5 3 6 1 9 11 4 12 8 2 10 7 13

(ii) 1 5 3 6 2 9 11 4 12 8 7 IO 13
-

38

Volume 26, Number 1

Table 2

INFORMATBON PROCESSING LETTERS 15 September 1987

6 11 3 12 1 9 5 8 13 4 10 2 7
7-shaken 6 11 3 10 1 7 5 8 13 4 12 2 9
3-sha!xn 4 1 2 6 8 3 5 11 7 9 12 13 10

l-shaken. Note that the T-shake sorts the subfiles
because there are only two elements per subfile
and a l-shake puts two elements in place. In the
case of the 3-shake, two of the subfiles are sorted
while the third has ody two elements out of place,
the 6 and 5.

How sorted are the subfiles in general? This
depends on the increments used. Ideally, we want
to find increments for which the subfiles arz al-
most sorted and to prove that the last pass re-
quires linear time. If the increment sequence has
O(log N) increments, then up until the insertion

sort (or repeated l-shakes) we perform

i

a number
of O(N log N) comparisons and exchan es. There-
fore, we restrict our attention to such sequences.

Figs. 1, 2, and 3 give a graphic representation
of the essential differences between shaker sort,
Dobosiewicz’s varknt, and Shellsort, Each shows
a series of plots of i vs. a[i], for i = 1, 2,. . . ,256,

taken before the sort and after each stage for the
increments 121, 40, 13, 4, 1. The figures do not
show the relative costs of the algorithms, nor are
they intended to expose the best increment se-
quences for Dobosiewicz’s variant and shaker sort.

Fig. 1. Shaker sort.

Fig. 2. Dobosiewia’s variant.

Fig. 3. Shellsort.

Volume 26, Number 1 INFORMATION PROCESSING LETTERS 15 September 1987

They do, however, strikinglyy illustrate two facts.
First, Dobosiewicz’s method exhibits some asym-
metry in that some elements below the diagonal
may not move as close to their final place (on the
diagonal) as those above the diagonal. Completing
the sort can be quite expensive, especially using
bubblesort. Second, shaker sort comes quite close
to producing the same degree of sortedness as
Shellsort does, even though each pass is much less
expensive.

TO use shaker sort as an internal sorting method,
we finish the algorithm with insertion sort. This
guarantees that the file is sorted. ‘Ii’0 get an opti-
mal sorting method we must show that the in-
sertion sort pass takes Q(N log N) ti.me. That is,
we must show that the file contains O(N log N)
inversions prior to the insertion sort.

To use shaker sort to build a sorting netwc .k,
we must finish the algorithm with repeated l-
shakes. Since each l-shake requires 2N compara-
tois, for an optimal network we must show that at
most O(log N) l-shakes are needed. Ajtai, Komlos
and Szemeredi [l] presented an O(N log N) sort-
ing network; however, their construction is not
practical. Shaker sort, finished with :epeated l-
shakes, easily translates into a sorting network
since the comparisons made are completely de-
termined by the increments used and the number
of l-shakes made at the end.

Shaker sort is of interest because it performs
well in practice. It is also an attractive approach
towards a structurally simple solution to the opti-
mal sorting network problem. However, we have
been unable to either bound the number of in-
versions remaining in the file or bound the num-
ber of l-shakes needed to complete the sort.

3. Empirical study resuks

We ran extensive tests trying to get a better
understanding of the algorithm. We wanted to see
how different increments performed-if there were
sequenct: that almost sorted the subfiles at each
stage. We nob * examine the results of the empirical
tests. The tests were run on a VAX 11/780 and
the programs were written in the C programming
language.

Initially, we ran shaker sort trying various in-
crement sequences. We stopped the algorithm after
the h-shakes and counted the number of in-
versions remaining, (Recall that an inversion in a
permutation is a pair of indices i, j such that
ai < aj and j < i.) For those increments that per-
formed well we counted the number of l-shakes
needed to complete the sort. This reveals a num-
ber of increment sequences that perform much
better than others. However, it does not give us
any indication why they perform so well. Thus, -we
ran more tests for one of the better sequences to
measure how sorted the file was after each pass.
That is, we looked at the number of inversions in
the whole file as well as the number of inversions
along the subfiles of Gach pass. Finally, we ran
tests timing shaker sort against Shellsort, Dobo-
siewicz’s variant, and quicksort. The results are
summarized below. (For more details on the tests
reported here, see [3].)

3.1. Counting inversions

We begin our search for good shaker sort incre-
ments by trying familiar sequences for Shellsort.
We tested a wide range of increments, many of
which are used in practice as well as some that are
known to have good asymptotic bounds. Here, we
report on those that perform well, along with a
few standard O(log N) sequences. The sequences
include a number of :he form [QL~] for (01< 2, a
sequence suggested by Knuth with increments
+(3j - l), and a sequence suggested by Hibbard
with increments 2j - 1. Finally, we tested a few
sequences that merge two O(log N) sequences. for
example, the merging of 2j and 3j as well as a
sequence that combines 2j and 2j + 2j-’ + 1.

We tested files of size 1OOk and lOOOk for
k = 1, 2,. . . , 10. For each file size we ran shaker
sort on five random permutations and counted the
remaining inversions after all the passes were com-
plete. We ran still larger files on those that did
well. Table 3 contains a representative sample for
files of size 10000, 20000, 40000, $0000, and
1 Ff)OOO. The numbers in the table represent the
average number of inversions rounded to the
nearest integer (prior to any l-shakes or the in-
sertion sort pass). The (2’ u 3j) sequence and

Volume 26, Number 1 INFORMATION PROCESSING LETTERS 15 September 1987

Table 3

Knuth’s
Hibbard’s 2’u2j+2j-‘+1
2’u3j
uj

sequences
1.41
1.5
1.6
1.7
1.8
1.9

10000 20000 40000 80000 160000

1445 416 5618 162 21537 191 88 171268 341897 550
127119 499477 1758469 7969 322 33 584639 2611

5432 12622 90470 1072 773 2508
5053 10179 20 369 41834

2486 5002 10047 20014 40128
2633 5226 10 503 20938 41962
2586 5127 10217 20 474 40924
2491 5015 10015 20013 40159
6703 13537 26 768 54164 107 560
6013 12646 2s 206 51209 103699

many of the aj sequences perform very ~~11. The
number of inversions remaining seems to be about
$N.

3.2. Counting I -shakes

For those increments that had the fewest in-
versions remaining, we ran tests that performed
repeated l-shakes to finish the sort. This time we
ran five trials of size lOOOk where k = 1, 2,. . . ,50,
as well as some larger sizes. These tests were run
on the CX~ sequences and the merged sequences.

versions and l-shakes varied widely. The { 2’ u 3j)
sequence performed very well, ahhough it occa-
sionalIy had a file that required five or six l-shakes
to complete the sort. However, the CX~ sequences
were very consistent. In the case of the 1.7 se-
quence we ran ten trials for N = 1OOk (k =
1, 2,. . . , lo), as well as for N = lOOOk (k =
1, 2 , . . . ,130) and only one l-shake was required to
sort the file. The increments of this sequence are

1 2 3 5 9 15 25 42 70 119 202 343
583 991 1684 2863 4867 8273

In Table 4 we show the average number of The tests above try a small number of trials for
l-shakes needed to sort five files of sizes 5000, a wide variety of file sizes. Another approach is to
10000, 20000, 40000, 80000, and 160000. Note try many trials for a fixed file size. We ran an
that most require a small number of l-shakes to experiment of this type with the 1.7 sequence. The
finish. This is because many of the inversions are allgorithrn successively sorted over 6000 0~0 files of
due to elements being close to their final position size 100 using one l-shake. Recently, we learned
prior to the l-shakes. The merged sequence 2’ u 2j from Weiss [6] that he tried similar experiments
+ 2j-’ + 1 performed well for files of size less for files of size 500000. After sorting 309 files

than 40000; for larger files, the number of in- with one l-shake he discovered a file that required

Table 4

Fu2J+2j-l+1
2’ u3j
d sequences

1.41
1.5
1.6
1.7
1.8
1.9

5000 10000 20000 40000 80000 160000

1.0 1.2 2.0 5.0 26.0 61.8

1.4 1.2 1.8 1.8 2.0 2.4

1.4 1.6 1.8 1.6 2.4 2.2

2.2 2.4 2.8 3.0 3.4 3.4

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

3.2 3.2 3.2 3.4 3.6 4.0

3.2 3.4 3.8 3.4 4.2 4.4

41

Volume 26, Number 1 INFORMATION PROCESSING LETTERS 15 September 1987

two l-shakes to finish the sort. Clearly, 1.7 is not a k = 1, 2,..., 10 as well as 5000k for k = 1, 2, . . . ,15.

magic number. Many of the CX~ sequences finished We timed the sorts (in seconds, including the
after a small number of l-shakes. Also, there may generation of the permutations) as well as counted
be other increment sequences that perform as well. comparisons and exchanges. The latter is used to
AS with Shellsort, the large space of possible in- see where the algorithms spend their time. For
crement sequences makes finding the ‘best’ one example, shaker sort has twice as many compari-
(or even one with some provable properties) a sons as Shellsort because of the pass up and down

daunting challenge. in the inner loop.

Above, we mentioned that the small number of
l-shakes reflects the fact that many elements were
close to their final positions. How close to sorted
are the subfiles of shaker sort when using a good
increment sequence. 3 We examined the subfiles
after each pass using the 1.7 sequence. once again
the results were consistent for the different file
sizes. No element was ever more than 5 places
from its sorted position along its subfile. For
example, after 9-shaking a file of 130 000 * ele-
ments, no element was more than 2 from its
correct position in subfiles of 14444 elements.
Also, the most unsorted such subfile had only 137
inversions. To gain a better understanding of the
algorithm we need to study the interaction of
passes more closely.

Table 5 looks at the time of the algorithms in
seconds for files of size 1000,5000, 10000, 35 000,
and 75 000.

Shaker sort and Shellsort performed about the
same for files with less than 5000 elements. The
ratio of the running times, Shellsort with the ‘di-
visor’ increments to shaker sort, for larger files is
approximately 0.85. Shaker sort is doing many
more comparisons, due to having the up and down
passes as well as having more passes. To guarantee
a quick insertion sort, more passes are necessary.

3.3. Shaker sort vs. other methods

We examine how shaker sort performs against
Shellsort, Dobosiewicz’s variant, and quicksort.
We tried to optimize the algorithms equally for a
fair test (using register variables and running a
nonrecursive quicksort). For shaker sort we use
the 1.7 sequence and end with insertion sort..

Shaker sort is also doing a number of unneces-
sary exchanges. All elements that are not left-to-
nght maxima or right-to-left minima are moved
during the up-shake and moved back during the
down-shake. There may be a way to improve
shaker by avoiding unnecessary moves. That is,
just move the maxima and minimd. However, it is
not clear that the savings are great enough to
warrant a more complicated algorithm with a
longer inner loop. Note that as th? file becomes
more nearly sorted, many more elem12nts are max-
ima or minima.

For Shellsort; we use the increments 1, 2, 5, IO,
22, 55, 110, 1’7& 374, 935,. . . . These cannot be
described with a simple form such as Hibbard’s
sequence; the increments share large common di-
visors and are known to perform better in practice
than standard increments (see 141). AS well, we ran
Shellsort using Hibbard’s increments. The quick-
sort we use is a nonrecursive version thdt does
median-of-3 partitioning and uses 16 as a cutof

In [2], Dobosiewicz compares his algorithm
against quicksort and Shellsort (using Hibbard’s
increments). Most of the tests are on small files,
although there is a test for a file of size 10000.
These tests show that the variant is twice as fast as
Shellsort for small files and it beats quicksort for
files with less than 1000 elements (although the

T&e 5

1000 5000 l(ioo0 35Ooo 75ooo

Dobosiewicz’s 1.5 3.0 5.1 18.2 142.4
Shaker sort 1.5 3.6 5.2 17.2 37.9
Shellsort

‘divisors’ 1.5 2.9 4.6 14.7 32.4
Mibbard’s 1.5 2.9 4.9 17.0 40.6

Quicksort 1.7 2.6 3.8 10.5 20.8

for small files. To finish the
insertion-sort pass. Finally,
variant we use his increments:

We ran tests for files of size 1OOk and 100Ok for

42

sort we make an
for Dobosiev, icz’s

Volume 26, Number 1 INFORMATION PROCESSING LETTERS 15 September 1987

ratio of the running times was 0.97). Table 5
shows that better increments make Shellsort win
more consistently. Shaker sort performs similar to
Dobosiewicz’s variant for files of less than 10000
elements but does better for larger files. Dobo-
siewicz’s increments change depending on the file
size, so the running time of the algorithm varies.
The running time for 75000 shows the type of
hidden problems that arise from having incre-
ments dependent on the file size. (These problems
can occur for smaller files as well.) Ignoring such
obvious ‘bad spots’; after running the variant the
files are not nearly as sorted as after running
shaker sort. Although doing twice as much work
per pass and having more passes, shaker sort still
wins. The reason is the asymmetrical treatment of
subfile elements we mentioned earlier (see Figs.
l-3).

Shaker sort (or Shellsort) are best for files of
less than 5000 elements. Both algorithms are ex-
tremely easy to code. For larger files, quicksort is
the method of choice. However, quicksort has an
O(N2) worst-case performance, which we know
that Shellsort has not. As yet, we do not know
about shaker sort, because we have been unable to
find bad cases or to prove that none exist for the
increment sequences of interest. Also, there may
exist better increments for which both algorithms
win over quicksort for still larger files.

.

4. summary

We have examined a variant of Shellsort, called
shaker sort, that works by comparing each subfile
element with just two other elements. Empirical
tests have revealed increment sequences for which
the algorithm performs very well. In comparison
with other methods, shaker sort, like Shellsort, is
the best method for files of a few thousand ele-
ments. However, other increment sequences may
lead to even better performance for larger files.
We believe the results of our experiments make
shaker sort a good candidate for further study as a
fast internal sorting method and as a possible
sorting network.

References

Ill

PI

131

141

ISI

M. Ajtai, J. KomIos and E. Szemeredi, An O(n log n)
sorting network, Proc. 15th Ann. ACM Symp. on Theory of
Computing, Boston, MA (1983) l-9.
W. Dobosiewicz, An efficient variation of bubble sort,
inform. Process. Lett. 11 (1) (1980) 5-6.
J. Incerpi, A study of the worst-case of Shellsort, Tech.
Rept. CS-85-15, Ph.D. Thesis, Dept. of Computer Science,
Brown Univ., Providence, RI, August 1985.
J. Incerpi and R. Sedgewick, Improved upper bounds on
Shellsort, Proc. 24th Ann. Symp. on Foundations of Com-
puter Science, Tucson, AZ (1983) 48-55.
D.E. Knuth, The Art of Computer Programming, Vol. 3:
Sorting and Searching (Addison-Wesley, Reading, MA,
1973).

[61 M. Weiss, Personal communication, February 1986.

43

