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1. Intrduction 

Shellsort is a well-known sorting algorithm that 
uses an increment sequence h,, h, _ 1,. . . , h, and 
works by performing insertion sort on subfiles 
consisting of every high element for i from t down 
to 1. Sorting the elements in the h, subfiles con- 
stitutes a ‘pass’, after which the file is said to be 
hi+oFled. To guarantee that the file is sorted, d 
final pass using 1 as the increment completes the 
sort. This amounts to running insertion sort on the 
file. We examine variants of Shellsort that perform 
limited work per pass, i.e., not necessarily sorting 
the subfiles. One variant developed is shown to 
perform very well empirically and has potential as 
a practical sorting algorithm and as a possible 
sorting network. 

Knuth [5] suggests a variant of Shellsort that 
does one comparison for each element rather than 
inserting it in place within its subfile. That is, 
during the h-sort we compare each element only to 
the element that is h away, exchanging the ele- 
ments if necessary. Dobosiewicz [2] ran some em- 
pirical tests on what he calls a ‘variant of bubble- 
sort’; this is Knuth’s variant except that Dobo- 
siewicz finishes with bubblescrt rather than in- 
sertion sort. (Dobosiewicz also compares each ele- 
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ment with the element that is h away to the right 
while Knuth compares 3 to the element h away to 
the left. However, this is a cosmetic difference of 
the variants and does not affect overall perfor- 
mance.) Recall that bubblesort works by re- 
peatedly looping through the file (from left to 
right), comparing adjacent elements, and exchang- 
ing as needed. Dobosiewicz’s variant does not use 
bubblesort as the inner loop of Shellsort; rather, 
he uses one pass of bubblesort. 

The decision to finish the algorithm with bub- 
blesort is unfortunate, To complete a final inser- 
tion sort pass in linear time, we need only know 
that the n.umber of inversions prior to this pass is 
linear. This is not the case for bubblesort. For 
example, if the smallest element is in the rightmost 
position of the file, then each bubblesort pass 
moves it just one position to the left. In this case, 
N - 1 passes are needed; the time to complete the 
sort is O(N2), although there are only N - 1 inver- 
sions. In general, the number of passes needed is 
found by taking the maximum, over all elements 
in the file, of the number of lp.rger elements to the 
left. 

Dobosiewicz compares this variant to Shells@., 
using increments of the form 2j - 1, and quick- 
sort. He uses ;N as the first increment and then 
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hi= ihi+ I for subsequent increments. The results 
of his empirical tests show that this variant per,’ 
forms favorably for small files, less than a thou- 
sand elements. We discuss these results in greater 
detail below. 

The variation we consider is similar to those of 
Knuth and Dobosiewicz. Let ajl..N] represent the 
file of N elements stored in an array. Rather than 
h-sorting the file, we first make a pass, going left 
to right, that compares each element a@] with 
ax + h] and then make another pass, going right 
to left, through the file that coi+ares a[~] with 
a[~ - h]. Thus, while Dobosiewicz uses a bubble- 
sort pass from left to right and Knuth uses a 
bubblesort pass going from right to left, we use a 
two-way bubblesort pass as the inner loop. (The 
two-way bubblesort pass is a refinement suggested 
in [5]. The algorithm that repeatedly makes such 
passes is called ‘cocktail shaker sort’ by Knuth.) 

2. Shaker sort 

We begin by looking at what happens to a file 
when we perform the two passes: (i) starting with 
the first element in the file, each element is com- 
pared to the element to its right (exchanging if 
necessary); (ii) starting with the last element, each 
element is compared to the element to its left 
(exchanging if necessary). Table 1 gives the start- 
ing file, as well as the file after each pass is 
complete. In pass (i)% we see that the 11 is ex- 
changed with elements until it is compared with 
the 12. The 12 moves until it runs into the 13, 
which is moved to the rightmost position in the 
file. This is precisely a bubbkesort pass and the 
h-gest ekment is put in place. Pass (ii) goes from 
right to left through the file. Thus, the 7 exchanges 
with the 10, the 2 with the 8,12,4, 11, and 9. The 
I then moves past the remaining elements. This 
pass puts the smallest element in place. 

Table 1 

We call pass (i) an up-shake and pass (ii) a 
down-shake. The up-shake puts the largest element 
in plag while a down-shake moves the smallest 
element into position. Of course, if we perform 
another up-shake on the above file, the 12 would 
move into its final position. We call an up-shake 
and down-shake pair a l-shake. Thus, cocktail 
shaker soti repeats l-shakes until the file is sorted. 
We use this naming scheme since in our Shellsort 
va iant we talk about an h-shake, performing l- 
shakes cn the subfiles of elements that are h apart. 

What elements are moved during a l-shake? 
Define a left-to-right maximum of a permutation, 
denoted by a1a2.. . aM, as any a, that is greater 
than all aj, where j < i. That is, in scanning the 
permutation from left to right, those elements that 
are the largest value seen when scanned are left- 
to-right maxima. We can similarly define the 
right-to-left minimum of a permutation. It is easy 
to show that the only elements whose positions 
change after a l-shake are those that are either 
left-to-right maxima or right-to-left minima in the 
file (for details, see [3]). 

We now describe our Shellsort variant, which 
we call shaker sort. The algorithm is based on a 
sequence of integer increments, h,, . . . , h,. For the 
subfiles consisting of elements that are hi apart, 
we perform one l-shake; there are hi such sub- 
files. After one such pass we say that the file is 
hi-shaken. Notice that each pass results in every 
element getting compared to two elements, so id 
an N element file there are 2(N - hi) comparisons 
(and at most 2(N - hi) exchanges). Thus, the work 
done in each pass (comparisons and exchanges) is 
linear in the size of the file. To complete the sort 
we could either run insertion sort or finish with 
repeated 1 -shakes. 

We now look at a small example. The file 
shown in Table 2 is first 7-shaken; all the elements 
that are 7 apart get I-shaken. Next, we 3-shake the 
file; there are three subfiles each of which is 

5 11 3 6 1 9 12 4 13 8 2 10 7 

(9 5 3 6 1 9 11 4 12 8 2 10 7 13 

(ii) 1 5 3 6 2 9 11 4 12 8 7 IO 13 
- 

38 



Volume 26, Number 1 

Table 2 

INFORMATBON PROCESSING LETTERS 15 September 1987 

6 11 3 12 1 9 5 8 13 4 10 2 7 
7-shaken 6 11 3 10 1 7 5 8 13 4 12 2 9 
3-sha!xn 4 1 2 6 8 3 5 11 7 9 12 13 10 

l-shaken. Note that the T-shake sorts the subfiles 
because there are only two elements per subfile 
and a l-shake puts two elements in place. In the 
case of the 3-shake, two of the subfiles are sorted 
while the third has ody two elements out of place, 
the 6 and 5. 

How sorted are the subfiles in general? This 
depends on the increments used. Ideally, we want 
to find increments for which the subfiles arz al- 
most sorted and to prove that the last pass re- 
quires linear time. If the increment sequence has 
O(log N) increments, then up until the insertion 

sort (or repeated l-shakes) we perform 

i 

a number 
of O(N log N) comparisons and exchan es. There- 
fore, we restrict our attention to such sequences. 

Figs. 1, 2, and 3 give a graphic representation 
of the essential differences between shaker sort, 
Dobosiewicz’s varknt, and Shellsort, Each shows 
a series of plots of i vs. a[i], for i = 1, 2,. . . ,256, 

taken before the sort and after each stage for the 
increments 121, 40, 13, 4, 1. The figures do not 
show the relative costs of the algorithms, nor are 
they intended to expose the best increment se- 
quences for Dobosiewicz’s variant and shaker sort. 

Fig. 1. Shaker sort. 

Fig. 2. Dobosiewia’s variant. 

Fig. 3. Shellsort. 
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They do, however, strikinglyy illustrate two facts. 
First, Dobosiewicz’s method exhibits some asym- 
metry in that some elements below the diagonal 
may not move as close to their final place (on the 
diagonal) as those above the diagonal. Completing 
the sort can be quite expensive, especially using 
bubblesort. Second, shaker sort comes quite close 
to producing the same degree of sortedness as 
Shellsort does, even though each pass is much less 
expensive. 

TO use shaker sort as an internal sorting method, 
we finish the algorithm with insertion sort. This 
guarantees that the file is sorted. ‘Ii’0 get an opti- 
mal sorting method we must show that the in- 
sertion sort pass takes Q(N log N) ti.me. That is, 
we must show that the file contains O(N log N) 
inversions prior to the insertion sort. 

To use shaker sort to build a sorting netwc .k, 
we must finish the algorithm with repeated l- 
shakes. Since each l-shake requires 2N compara- 
tois, for an optimal network we must show that at 
most O(log N) l-shakes are needed. Ajtai, Komlos 
and Szemeredi [l] presented an O(N log N) sort- 
ing network; however, their construction is not 
practical. Shaker sort, finished with :epeated l- 
shakes, easily translates into a sorting network 
since the comparisons made are completely de- 
termined by the increments used and the number 
of l-shakes made at the end. 

Shaker sort is of interest because it performs 
well in practice. It is also an attractive approach 
towards a structurally simple solution to the opti- 
mal sorting network problem. However, we have 
been unable to either bound the number of in- 
versions remaining in the file or bound the num- 
ber of l-shakes needed to complete the sort. 

3. Empirical study resuks 

We ran extensive tests trying to get a better 
understanding of the algorithm. We wanted to see 
how different increments performed-if there were 
sequenct: that almost sorted the subfiles at each 
stage. We nob * examine the results of the empirical 
tests. The tests were run on a VAX 11/780 and 
the programs were written in the C programming 
language. 

Initially, we ran shaker sort trying various in- 
crement sequences. We stopped the algorithm after 
the h-shakes and counted the number of in- 
versions remaining, (Recall that an inversion in a 
permutation is a pair of indices i, j such that 
ai < aj and j < i.) For those increments that per- 
formed well we counted the number of l-shakes 
needed to complete the sort. This reveals a num- 
ber of increment sequences that perform much 
better than others. However, it does not give us 
any indication why they perform so well. Thus, -we 
ran more tests for one of the better sequences to 
measure how sorted the file was after each pass. 
That is, we looked at the number of inversions in 
the whole file as well as the number of inversions 
along the subfiles of Gach pass. Finally, we ran 
tests timing shaker sort against Shellsort, Dobo- 
siewicz’s variant, and quicksort. The results are 
summarized below. (For more details on the tests 
reported here, see [3].) 

3.1. Counting inversions 

We begin our search for good shaker sort incre- 
ments by trying familiar sequences for Shellsort. 
We tested a wide range of increments, many of 
which are used in practice as well as some that are 
known to have good asymptotic bounds. Here, we 
report on those that perform well, along with a 
few standard O(log N) sequences. The sequences 
include a number of :he form [ QL~] for (01< 2, a 
sequence suggested by Knuth with increments 
+(3j - l), and a sequence suggested by Hibbard 
with increments 2j - 1. Finally, we tested a few 
sequences that merge two O(log N) sequences. for 
example, the merging of 2j and 3j as well as a 
sequence that combines 2j and 2j + 2j-’ + 1. 

We tested files of size 1OOk and lOOOk for 
k = 1, 2,. . . , 10. For each file size we ran shaker 
sort on five random permutations and counted the 
remaining inversions after all the passes were com- 
plete. We ran still larger files on those that did 
well. Table 3 contains a representative sample for 
files of size 10000, 20000, 40000, $0000, and 
1 Ff)OOO. The numbers in the table represent the 
average number of inversions rounded to the 
nearest integer (prior to any l-shakes or the in- 
sertion sort pass). The (2’ u 3j ) sequence and 
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Table 3 

Knuth’s 
Hibbard’s 2’u2j+2j-‘+1 
2’u3j 
uj 

sequences 
1.41 
1.5 
1.6 
1.7 
1.8 
1.9 

10000 20000 40000 80000 160000 

1445 416 5618 162 21537 191 88 171268 341897 550 
127119 499477 1758469 7969 322 33 584639 2611 

5432 12622 90470 1072 773 2508 
5053 10179 20 369 41834 

2486 5002 10047 20014 40128 
2633 5226 10 503 20938 41962 
2586 5127 10217 20 474 40924 
2491 5015 10015 20013 40159 
6703 13537 26 768 54164 107 560 
6013 12646 2s 206 51209 103699 

many of the aj sequences perform very ~~11. The 
number of inversions remaining seems to be about 
$N. 

3.2. Counting I -shakes 

For those increments that had the fewest in- 
versions remaining, we ran tests that performed 
repeated l-shakes to finish the sort. This time we 
ran five trials of size lOOOk where k = 1, 2,. . . ,50, 
as well as some larger sizes. These tests were run 
on the CX~ sequences and the merged sequences. 

versions and l-shakes varied widely. The { 2’ u 3j) 
sequence performed very well, ahhough it occa- 
sionalIy had a file that required five or six l-shakes 
to complete the sort. However, the CX~ sequences 
were very consistent. In the case of the 1.7 se- 
quence we ran ten trials for N = 1OOk (k = 
1, 2,. . . , lo), as well as for N = lOOOk (k = 
1, 2 , . . . ,130) and only one l-shake was required to 
sort the file. The increments of this sequence are 

1 2 3 5 9 15 25 42 70 119 202 343 
583 991 1684 2863 4867 8273 . . . . 

In Table 4 we show the average number of The tests above try a small number of trials for 
l-shakes needed to sort five files of sizes 5000, a wide variety of file sizes. Another approach is to 
10000, 20000, 40000, 80000, and 160000. Note try many trials for a fixed file size. We ran an 
that most require a small number of l-shakes to experiment of this type with the 1.7 sequence. The 
finish. This is because many of the inversions are allgorithrn successively sorted over 6000 0~0 files of 
due to elements being close to their final position size 100 using one l-shake. Recently, we learned 
prior to the l-shakes. The merged sequence 2’ u 2j from Weiss [6] that he tried similar experiments 
+ 2j-’ + 1 performed well for files of size less for files of size 500000. After sorting 309 files 

than 40000; for larger files, the number of in- with one l-shake he discovered a file that required 

Table 4 

Fu2J+2j-l+1 
2’ u3j 
d sequences 

1.41 
1.5 
1.6 
1.7 
1.8 
1.9 

5000 10000 20000 40000 80000 160000 

1.0 1.2 2.0 5.0 26.0 61.8 

1.4 1.2 1.8 1.8 2.0 2.4 

1.4 1.6 1.8 1.6 2.4 2.2 

2.2 2.4 2.8 3.0 3.4 3.4 

1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 

3.2 3.2 3.2 3.4 3.6 4.0 

3.2 3.4 3.8 3.4 4.2 4.4 

41 



Volume 26, Number 1 INFORMATION PROCESSING LETTERS 15 September 1987 

two l-shakes to finish the sort. Clearly, 1.7 is not a k = 1, 2,..., 10 as well as 5000k for k = 1, 2, . . . ,15. 

magic number. Many of the CX~ sequences finished We timed the sorts (in seconds, including the 
after a small number of l-shakes. Also, there may generation of the permutations) as well as counted 
be other increment sequences that perform as well. comparisons and exchanges. The latter is used to 
AS with Shellsort, the large space of possible in- see where the algorithms spend their time. For 
crement sequences makes finding the ‘best’ one example, shaker sort has twice as many compari- 
(or even one with some provable properties) a sons as Shellsort because of the pass up and down 

daunting challenge. in the inner loop. 

Above, we mentioned that the small number of 
l-shakes reflects the fact that many elements were 
close to their final positions. How close to sorted 
are the subfiles of shaker sort when using a good 
increment sequence. 3 We examined the subfiles 
after each pass using the 1.7 sequence. once again 
the results were consistent for the different file 
sizes. No element was ever more than 5 places 
from its sorted position along its subfile. For 
example, after 9-shaking a file of 130 000 * ele- 
ments, no element was more than 2 from its 
correct position in subfiles of 14444 elements. 
Also, the most unsorted such subfile had only 137 
inversions. To gain a better understanding of the 
algorithm we need to study the interaction of 
passes more closely. 

Table 5 looks at the time of the algorithms in 
seconds for files of size 1000,5000, 10000, 35 000, 
and 75 000. 

Shaker sort and Shellsort performed about the 
same for files with less than 5000 elements. The 
ratio of the running times, Shellsort with the ‘di- 
visor’ increments to shaker sort, for larger files is 
approximately 0.85. Shaker sort is doing many 
more comparisons, due to having the up and down 
passes as well as having more passes. To guarantee 
a quick insertion sort, more passes are necessary. 

3.3. Shaker sort vs. other methods 

We examine how shaker sort performs against 
Shellsort, Dobosiewicz’s variant, and quicksort. 
We tried to optimize the algorithms equally for a 
fair test (using register variables and running a 
nonrecursive quicksort). For shaker sort we use 
the 1.7 sequence and end with insertion sort.. 

Shaker sort is also doing a number of unneces- 
sary exchanges. All elements that are not left-to- 
nght maxima or right-to-left minima are moved 
during the up-shake and moved back during the 
down-shake. There may be a way to improve 
shaker by avoiding unnecessary moves. That is, 
just move the maxima and minimd. However, it is 
not clear that the savings are great enough to 
warrant a more complicated algorithm with a 
longer inner loop. Note that as th? file becomes 
more nearly sorted, many more elem12nts are max- 
ima or minima. 

For Shellsort; we use the increments 1, 2, 5, IO, 
22, 55, 110, 1’7& 374, 935,. . . . These cannot be 
described with a simple form such as Hibbard’s 
sequence; the increments share large common di- 
visors and are known to perform better in practice 
than standard increments (see 141). AS well, we ran 
Shellsort using Hibbard’s increments. The quick- 
sort we use is a nonrecursive version thdt does 
median-of-3 partitioning and uses 16 as a cutof 

In [2], Dobosiewicz compares his algorithm 
against quicksort and Shellsort (using Hibbard’s 
increments). Most of the tests are on small files, 
although there is a test for a file of size 10000. 
These tests show that the variant is twice as fast as 
Shellsort for small files and it beats quicksort for 
files with less than 1000 elements (although the 

T&e 5 

1000 5000 l(ioo0 35Ooo 75ooo 

Dobosiewicz’s 1.5 3.0 5.1 18.2 142.4 
Shaker sort 1.5 3.6 5.2 17.2 37.9 
Shellsort 

‘divisors’ 1.5 2.9 4.6 14.7 32.4 
Mibbard’s 1.5 2.9 4.9 17.0 40.6 

Quicksort 1.7 2.6 3.8 10.5 20.8 

for small files. To finish the 
insertion-sort pass. Finally, 
variant we use his increments: 

We ran tests for files of size 1OOk and 100Ok for 

42 
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ratio of the running times was 0.97). Table 5 
shows that better increments make Shellsort win 
more consistently. Shaker sort performs similar to 
Dobosiewicz’s variant for files of less than 10000 
elements but does better for larger files. Dobo- 
siewicz’s increments change depending on the file 
size, so the running time of the algorithm varies. 
The running time for 75000 shows the type of 
hidden problems that arise from having incre- 
ments dependent on the file size. (These problems 
can occur for smaller files as well.) Ignoring such 
obvious ‘bad spots’; after running the variant the 
files are not nearly as sorted as after running 
shaker sort. Although doing twice as much work 
per pass and having more passes, shaker sort still 
wins. The reason is the asymmetrical treatment of 
subfile elements we mentioned earlier (see Figs. 
l-3). 

Shaker sort (or Shellsort) are best for files of 
less than 5000 elements. Both algorithms are ex- 
tremely easy to code. For larger files, quicksort is 
the method of choice. However, quicksort has an 
O(N2) worst-case performance, which we know 
that Shellsort has not. As yet, we do not know 
about shaker sort, because we have been unable to 
find bad cases or to prove that none exist for the 
increment sequences of interest. Also, there may 
exist better increments for which both algorithms 
win over quicksort for still larger files. 

. 

4. summary 

We have examined a variant of Shellsort, called 
shaker sort, that works by comparing each subfile 
element with just two other elements. Empirical 
tests have revealed increment sequences for which 
the algorithm performs very well. In comparison 
with other methods, shaker sort, like Shellsort, is 
the best method for files of a few thousand ele- 
ments. However, other increment sequences may 
lead to even better performance for larger files. 
We believe the results of our experiments make 
shaker sort a good candidate for further study as a 
fast internal sorting method and as a possible 
sorting network. 
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