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THE AVERAGE CASE ANALYSIS OF
ALGORITHMS:
Saddle Point Asymptotics

PHILIPPE FLAJOLET! & ROBERT SEDGEWICK?

Abstract. This report is part of a series whose aim is to present in a synthetic
way the major methods of “analytic combinatorics” needed in the average-case
analysis of algorithms. Il reviews the use of the saddle point method in order
to estimate asymplotically coefficients of fast growing generating functions. The
applicatlions treated concern the enumeratlion of set partilions and inleger parti-
lions, permutations with cycle restrictions, increasing subsequences, as well as
distribution estimates when large powers are involved.

L’ANALYSE EN MOYENNE D’ALGORITHMES:
Asymptotique et méthode de col

Résumé. Ce rapport fait partie d’une série dont le but est de présenter de
maniére unifiée les principales méthodes de “combinatoire analytique” utiles a
I’analyse d’algorithmes. Il y est décrit 1’utilisation de la méthode de col en
analyse complexe afin d’estimer le comportement asymptotique des coefficients
de fonctions génératrices qui présentent une croissance rapide. Les applications
traitées concernent les partitions d’ensembles et d’entiers, les permutations avec
contraintes sur les longueurs de cycles, les sous-suites croissantes, ainsi que des
estimations de distributions de probabilité lorsque de grandes puissances sont
en jeu.

! Algorithms Project, INRIA Rocquencourt, F-78153 Le Chesnay (France)
2Department of Computer Science, Princeton University, Princeton, New-Jersey 08544
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THE AVERAGE CASE ANALYSIS OF
ALGORITHMS:
Saddle Point Asymptotics

PHILIPPE FLAJOLET! & ROBERT SEDGEWICK?

Foreword -

This report is part of a series whose aim is to present in a synthetic way
the major methods of “analytic combinatorics” needed in the average—case
analysis of algorithms. The series should comprise the following chapters;

1. Symbolic Enumeration and Ordinary Generating Functions;

Labelled Structures and Exponential Generating Functions;

LN

Parameters and Multivariate Generating Functions;

b

Complex Asymptotic Methods;

5. Singularity Analysis of Generating Functions;
Saddle Point Asymptotics;

Mellin Transforin Asymptotics;

Functional Equations and Generating Functions;

© ®» N oo

Multivariate Asymptotics and Combinatorial Distributions.

Chapters 1-3 have been issued as INRIA Research Report 1888 (“The
Average Case Analysis of Algorithis: Counting and Generating Functions”,
116 pages, 1993). Chapters 4-5 as INRIA Research Report 2026 (“The
Average Case Analysis of Algorithins: Complex Asymptotics and Generating
Functions”, 100 pages, 1993). The present report corresponds to Clapter 6
of the series.

! Algorithims Project, INRIA Rocynenconrt, F-78153 Le Chesnay (France).

Work of this anthor has been supported in part by the ESPRIT III Basic Research
Action Programme of the E.C. nuder contract ALCOM II (#7141).

ZDepartment of Compnter Science, Princeton Uuiversity, Princeton, New-Jersey (18544

(USA)
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Chapter 6

Saddle Point Asymptotics

Like a lazy hiker, the path crosses the ridge at a low point;
but unlike the hiker, the best path takes the steepest ascent to the ridge.
[ - -] The integral will then be concentrated in a small interval.

— DANIEL GREENE AND DoNALD KNUTH [12, sec. 4.3.3]

A saddle point of a surface is a point reminiscent of the inner part of a saddle
or of a geographical pass between two mountains. If the surface represents
the modulus of an analytic function, saddle points are simply determined as
the zeros of the derivative of that function. .

In order to estimate complex integrals with an analytic integrand, it is a
good strategy to take as a contour of integration a line that “crosses” one
or several of the saddle points of the function. When applied to integrals
depending on a large parameter —as is the case for Cauchy integrals giving
coefficients of generating functions- this often provides useful asymptotic
information.

The saddle point method, whenever it applies, leads to asymptotic es-
timates or even full asymptotic expansions depending on the nature of the
problem. Its principle is to use a saddle point crossing path, then estimate
the integrand locally near this saddle point (at which point the integrand
achieves its maximum), and deduce by termwise integration an asymptotic
expansion of the integral itself. Some sort of “concentration” property is
required to ensure that this local contribution captures the essential part of
the integral. A simplified forin of the method, called the saddle point bound,
permits to derive useful upper bhounds by simnply usiug trivial bounds on a
saddle point crossing path.
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The method applies well to rapidly varying functions, like entire functions
and functions with singularities at a finite distance that exhibit some form
of exponential growth. It is also suitable for the analysis of coefficients of
large powers of some fixed function.

Applications are given lLiere to the asymptotics of the Bell numbers, Stir-
ling’s formula and the asymptotic counting of integer partitions.

6.1 Introduction

Saddle point analysis is a general method suited to the estimation of integrals
of analytic functions F(z),

I= /AB F(z)dz, (6.1)

where F(z) = F,(z) involves some large parameter n — +o0o0. The method
is appropriate when the integrand F is subject to rather violent variations,
typically when there occurs in it some exponential or some fixed function
raised to a large power (for instance, n).

This situation covers a large number of Canchy coefficient integrals of

the form
dz

0= () = 5= o) e (6.2)

Two simple examples that we shall discuss throughout this introductory
section are

d {
J, = Lf(l + z)" dz K, L){(;z z("%’ , (6.3)

T 2 zn+l’ T ur

giving the central binomial coefficient (') and the inverse factorial (n!)~!
respectively. In that case, with reference to Eq. (6.1), one can think of the
end points A and B as coinciding and taken somewlat arbitrarily on the
negative real axis while the contour naturally has to encircle the origin once
and counter—clockwise.

Saddle point bounds. Considering the general form (6.1), we let C be a
contour joining A and B and taken in a domain of the complex plane where
F(z) is analytic. By standard inequalities, we have

11 < JfC)f - max | F(2), (6.4)
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with ||C|] representing the length of C. This is the usual trivial bound from
integration theory.

For an analytic integrand F' with A and B inside the domain of analyt-
icity, there is an infinite class P of acceptable paths to choose from, all in
the analyticity domain of F. Thus, we may write

11 < g [l max ()] (6:5)

where the minimum is taken over all paths C € P. Broadly speaking, a
bound of this type is called a saddle point bound. The irruption of saddles
in the story of complex integrals is to he explained shortly.

Notice that the optimization problemn need not e solved exactly, as any
approximate solution to (6.5) still furnishes a valid upper bound because of
the universal character of the trivial bound (6.4). In the particular case of
Cauchy coefficient integrals (6.2) where F(z) = g(z)z~""!, it is convenient
(and usually sufficient) to restrict attention to contours that are circles cen-
tered at the origin. In that case, the trivial bound for ¢, = [2”]g(2) becomes

1
192} < - max|y(2)| (6-6)
and the saddle point bound for this class of contours reads
1
< min { — ma . .
|9l < min [ 7 max ly(Z)l] (6.7)

If in addition g(z) has positive coefficients, the maximum in (6.7) is attained
on the positive real line and

R
g < min o ),

Ru

where the minimum may be determined by cancellation of a derivative (see
Theorem 6.1).

The quality of the saddle point bound may be checked by applying it to
J. and K, where it provides for the inequalities valid for all 7,

<2, K< S
T = ] An S —,

n'
as the minimum is achieved for B = 1 and R = n respectively. These hounds
are actually surprisingly good when compared to the corresponding precise

asymptotic forms
o o

g, ~ , N, ~ . 6.8
VT V2rn ( )
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Figure 6.1: A region of a surface with a saddle point in its center.

It is seen on these two examples that the saddle point bhounds catch the
proper exponential growths, being off only by a factor of O(n~'/2?). This is
in fact a common phenomenon well explained by the saddle point method.

Saddle point paths. Understanding the general nature of contours satis-
fying minmax properties of the form (6.5) requires an incursion into general
properties of the surface that represents the modulus of an analytic function.
Let F(2) denote a function analytic in an open set Q. The quantity |F(z))
as a function of z defines a surface ¥ with specific properties.

e The surface ¥ has no maxima; it has no minimma except for isolated
zeros of F(z).

e A point 2, such that F(z,) # 0, F'(2,) # 0 is called an ordinary point.
It is traversed by two curves, the level curve and the steepest descent
curve that cross each other at a right angle.

e A point z, such that F(z,) # 0, F'(zy) = 0 is called a saddle point.
The nae is due to the particular shape of £ around that point. (See
Fig. 6.1.)



6.1. INTRODUCTION 5

Figure 6.2: A plot of |1 + 2 — 22 + 23] as a function of z reveals ordinary
points, a zero, and a saddle point.

The assertions above are all consequences of the analyticity of F(z) at z,
which strongly constrains |F(2)]:

F(z) =~ F(z0) + F'(20)(z = 20) + 3 F*()(= = 7).

They are to be examined in greater detail in Section 6.3. Figure 6.2 shows
the typical landscape induced by the modulus of an analytic function.

A path C that traverses a saddle point by connecting two points at a
lower altitude on the surface and by following two steepest descent lines
across the saddle point is clearly a local minimuin for the path functional

o(C) = max |F(=)],

as neighbouring paths have a higher maximum. Such a path is called a
saddle~point path or a. steepest deseent path. Thns, the search for a path

realizing the minimum

mci“ [lilélcx |F(3)|] ’

naturally leads to considering saddle points and saddle-point paths.
Borrowing a metaphor of De Bruiju [5], the situation mnay be described as

follows. Estimating a path integral is like estimating the difference of altitude

between two villages in a mountain range. If the two villages are in different
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valleys, then the least effort! (the greatest accuracy in integral evaluations)
should result from following paths that cross boundaries between valleys at

passes, i.e., saddle points.

The saddle point method. Given a fixed contour C traversing a saddle
point along its axis, the saddle point corresponds locally to a maximum of
the integrand along the path. It is therefore natural to expect that a small
neighbourhood of the saddle point might provide the dominant contribution
to the integral. The saddle poiut method is applicable precisely when this
is the case and when this dominant contribution can be estiinated by local
expansions.
To proceed, it is convenient to set F(z) = ¢/and consider

I =/cf(z)(lz,
c

where f(2) like F(z) involves some large parameter. We assume that C
connects the end points A and B and is a path traversing a unique saddle
point z, € C. Thus, we also have the saddle point equation F'(z,) = 0 or
equivalently

f(z0) = O,.

and by assumption, /(M| < |e/GW)|, [/(B)] < |¢/CW|. The saddle point
method is based on splitting C as ¢ = C(™M UC(), where C(") contains z,, and
estimating separately the integrals [..) and [.q).

In order for the method to work, conflicting requirements must he satis-
fied. First, we assume that, by design, C(") captures most of the contribution
to the integral; this forces C) to be a sufficiently large portion of C (though
usually [|CO]|/]IC]] — 0) and requires F(z) to be small compared to F(z,)
on CM). Next we assume that f(z) can be expanded locally near the saddle
point z, in snch a way that only the first two terms matter asymptotically.
This forces C™" to be sufficiently small and implies

/ I {E ,./(:«.)/ exp( F'(z0)(z = =0 ) dx.
Jewy Jow

By coustruction, the contour € is such that f(z0)(z — z,)* is negative
for z € C, in accordance with the requirement that z, is a local maximumn.

YThis is precisely what road networks do!
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Then, up to normalizations and up to minor tail contributions, the integral
on the right can be approximated by a comnplete Gaunssian integral

+o0 )
—ari/e T

/ e Ty = () 2=,
o «

This discussion can now bhe suminarized.

Saddle poiﬁt principle. For wcll-behaved functions f(z)

fa(2),
1 Py

B
~—/ Iz~ —_—_—
21im Ja \/27r|f"(z(,)|

where z, is a saddle point of f(z) on a path from A to B:
f(z) =0.

In asymptotic problems the saddle point z, usually depends on .
- As an illustration, a blind application of this principle to J,, and K, gives

for f(2)
2ulog(l + 2) — (n + 1) log 2, z—(n+1)logz,

for the saddle point equation,
2n n+1 _ , n+1

o, 1-—
1+2 z z

and for z,,

1
1+0(;)) n+1,

which results in the correct asymptotic equivalents (6.8) for J,, and K.

In the sequel, we make use of these general principles but focus on the
particular case of Cauchy coefficient integrals for generating functions with
positive coefficients. The geometry of the problem is simpler in that case
and it suffices to consider, as integration contours, circles with proper radii
centered at the origin and passing through saddle points.

6.2 Saddle point bounds

This section implements the principles set forth in the introduction concern-
ing saddle point bounds and details two situations that are important for
applications: coefficient extraction for either a fixed function or powers of a
fixed function.
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Cauchy coefficient integrals. The saddle point hounds are especially
easy to apply in the case of coefficient integrals relative to analytic functions
with positive coefficients.

Theorem 6.1 (Saddle point bounds for Cauchy integrals) Let f(z) be

a function analytic at 0 that has nonnegative Taylor cocfficients and radius
of convergence p, 0 < p < +o0o0. Assume that f(0) # 0 and that f(z) is not
a polynomial.

(1). The coefficients of f satisfy

["1f(z) < inf L) (6.9)

ugr<p "

f'l
(). If in addition f(p) = +oo, then for n large enough, the equation

e _
o = (6.10)

has a unique positive solution ( = ((n) in )0, p[, and
fu < FLNC(R))™ (6.11)

Proof. (i). By trivial bounds, any analytic function satisfies

d
/|z|=r f(z) Z"i’

Since f(z) has nonnegative coefficients, the triangular inequality applies and

< 2 max |£(2)]

=t zl=r

1
< —_—
lfnl -— 27r

max|[f(2)| € f(r)  so that fo< (6.12)

7 L

This bound is valid for all r < p, and part (i) of the statement follows.
(ii). The equation giving ¢ is

d o

which determines a possible local extremum of the hound (6.9). We ohserve
that f(r)r~" is decreasing near 0 and increasing near p. Thus it has at least
one minimum in the interval [0, p)].

tr
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We next prove that its derivative only vanishes once, so that the zero
of the derivative deterinines the position of that minitnum. Unicity of the
solution to the saddle point equation is guaranteed by the positivity of

S = TLE 2B DIE) gy

for z > 0 where the numerator,

dS(n+1-k)(n—k)fiz*

has only nonnegative coefficients. Thus f(2)z~" is convex for z € (0, p) and
unicity of the minimumn results.

For Tlieorem 6.1, a direct argument hased on the nonnegativity of co-
efficients is of course possible as f,r* < f(r). However the approach taken
in the proof above has the advantage of pointing the way to a number of
extensions of the method, to functions with negative coefficients and to the
complete saddle.point method.

Equation (6.10) gives, under mild restrictions, the solution to the min-
imization problem of (6.9). However the general character of (6.12) that is
valid for any (legal) = permits to replace {(n) by an approximate value (: (n)
while still retaining the validity of inequality (6.11). The tightness of the
bound so obtained will naturally depend on the quality of the approximation,
¢(n) = {(n) as well as on the growth pattern of f(z).

We have already indicated the application to the inverse factorial in the -
introduction. A few more applications follow.

1. Involutions. Let I, be the number of involutions of [1..n], that is the
number of permutations 7 such that 72 is the identity permutation. The egf
of I, is

I(z)= es+2'/2,

From Theorem 6.1, the value of ( is the positive root of (({ + () = n + 1,

hence
(= It s f + O(n™%),

By routine asymptotic computatious, the bound (6.11) hecomes

]—'; < (.'_]/4’[L_"/2—!/2(.‘"/2+ﬁ(1 + o(1)).
n!
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Notice that if we use the approximate saddle point value, ((n) = /n, we
ouly lose tle factor of ¢=1/4 = .78,

In agreement with the discussion in the infroduction these hounds are
quite good, and we shall see later that they only off by a factor of O(n!/?)
from the trne asymptotic form of I, given in [17].

2. Bell numbers. The number of partitions of a set of n elements defines

the Bell number B, and one has
B, = nule™Yz"]f(2)  where f(z)y=¢"
The saddle point equation for f(z) is

CeC =m.

This famous equatlon ;uluuts an asymptotic solution obtained by iteration

(“bootstrapping”)

((n) =logn — loglogn + Tog o

loglog + O (log2 log n)

and the saddle point bound reads

¢
e —1

n

B, < u!

With the approximate solution {(#) = log ., this provides the upper bound
n—l

B, <! (log n)"'

In particular, there are much fewer set partitions than permutations, the
ratio being ronghly e=r1oslokn,

3. A lurye singular function. Define

ot

fR) =em(i=s)  ad f = [

The saddle point equation is

ta
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By the observation following Theorem 1, we need only solve it approximately
the resulting bounds being still valid. Here it is natural to take

2 1
Y =1]1-—
C(”‘) \/’I—L,
leading to

fn < e“1/2e'“"/’;(1 + o(1)).

which is only off the true value by a factor of O(n3/4).

4. Integer partitions. Let p, denote the number of integer partitions of

n, with OGF
‘ 1
p(z) = Hl-—zf'

jz21

A form more amenable to hounding derives from the exp-log reorganization,

r(z) = expz:log(l—z")'l
. n=1 )

xp( z +1 P +1 23
= exp - - ..
ll—g 21-22 " 31—

< exl)(m:’r?-z_)')v

where the last equation results fromn the elementary bound valid for z €
(0,1),
k
Y
1—2zF = k(1-2)

together with the identity Y k=% = n2/6.
An approximate saddle point is

-~ . bin

n)=1—- —=,
((n) Vin
which gives a saddle point bound of the forin

P < ((,w‘l/l‘.e + ('(l))(:w\/'hn/'d.

Again, the true value is ouly a factor of O(n~1!) from this upper hound.
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Large powers. Probabilistic analysis of algorithms and combinatorial strue-
tures often require extracting coefficients of large order in powers of large
exponents of some fixed function. This is a particularly favorable sitnation
for saddle point analysis.

We start with an entire function ¢(z) that has nonnegative coefficients
and satisfies g(0) # 0. If ¢ is a polynomial, we let d denote its degree; in this
chapter, we define the degree to be d = oo if ¢ is entire but not a. polynomial.

Theorem 6.2 (Saddle point bounds for large powers) Lct g(z) be an
entire function of degrec d < oo with positive cocfficients. Let A be a positive
number of the open interval 10, d[. Then, with N = [An], one has

9% = [V )(g(2))™ < (g(O))"¢V,

where { s the unique positive root of the cquation

g'(Q)
g(C) A

Proof. Saddle point hounds applied to Cauchy integrals give directly

¢

)y o 9(r)”
< =

_ll("
N T

and the best bound of this kind is-obtained for ¢ that cancels the derivative.
The discussion is entirely similar to that of Theorem 6.1. a

This theorem is also effective for deriving bounds on powers of implicitly
defined functions in conjunction with Lagrange inversion. Another of its
important uses is for multivariate asymptotics and estimation of tail distri-
butions.

1. Entropy bounds for binomial coefficients., Consider the problem of
providing estimates on the hinomial coefficients (') for some X with 0 <
A < 1. We assumne for notational convenience that An is an integer and set
N = An. Theorem .2 provides

( A) =ML+ 2 < (140N,

where

¢ .
1+<—)\ ie.,
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A simple computation .then shows that
(;) <exp(nH())), — where  H(A) = —Alogh — (1 — A)log(1 - X)

is the entropy function.

Thus, for A # 1, the binomial coefficients () are exponentially smaller
than the central coefficient (n'/‘z), and the entropy function precisely quanti-
fies this exponential gap. '

EXERCISE 1. Develop similar bonnds for dice players who are interested
m i
1 ; .
q(z) = 6(1 +z4 224234244 2%,

Which function plays the role of the entropy? Plot it for A € [0, 5] and
determine its belhiaviour as A — 0.
Develop a general theory of entropy bounds for any positive poly-

nomial function.

2. Tail estimates and large deviations. Theoremn 6.2 is only one of a large
number of closely related applications of saddle point hounds in this range
of problems. For instance, under tlle same conditions, cousideration of the
integral representation

y N+1
(n) _ 1 nl—Z (lz
Z Y = A f(!/(z)) 1= 2 ZN+17

k<An

with N = An assumed for siinplicity to be integral, leads to hounds for the
partial suius of the g,(L.") when f—‘ < A

The idea is to use the same value of ¢ as for the hound on ¢{?), this being
an approximate saddle point. It is easy to check that ( < 1 when A is less
than the threshold

_g'(1)
h— TN
g(1)
The bhound obtained is then
”n l . -
> g < l—:z(ﬂ(())NC M.

k<An

Observe that Ay is the mean of the probability distribution with prob-
ability generating function ¢(z)/g(1) and Ayn the mean of the distribution
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with generating function (g(z)/¢(1))*. The constraint A < Ay is then nat-
ural as exponentially small bounds are expected to hold only for a region
excluding the mean. The formula above provides estimates relative to the
left tail of the probability distribution. The exponential bound on the tail
coincides with what probabilists call a large deviation law.

Large deviation hounds for right tails are developed in a similar manner

from the integral representation,

1 dz

(") 1 j{ n
E :gk = 3" y(Z) =1 N N
k_>_/\n 27.7!' J. - Z 1 Z +1

With ¢ satisfying the saddle point equation, for A > A, and A < d, one has

¢ >1and : .
(n) « ¢ n, —N

Yoo < C_l(y(C)) M.

E>An » '

Corollary 6.1 (Large.deviation bounds for powers) Assume the con-

ditions of Theorem 6.2, and define Ay = ¢'(1)/g(1). Let ¢ = ((X) be the

unique positive root of Cg'(¢)/9(¢) = A.
For fized A and all n, with N = [An], one has the left and right tail

bounds
‘ 1 :
2 oV < g, e < Cf—l(g(o)"c-N

k<An k>An

corresponding respectively to the two cases

A< Ay and A> A,

EXERCISE 2. Use the saddle point bounding technique to get an upper
bound on the number of solutions of the equation in the 2; € Z

:l:'f+a:;“:+~--+r:". < An,

which represents the number of integer lattice points in a sphere of

radius v An in high dimensional space.
The bounds should involve the function

O(z) = Z:"ﬁ = I-{-ZZz"“.
nel n=1

How does the result compare to the the volume of the hypersphere of

radins Vv An in n-dimensional space?
[Such bounds are useful in combinatorial optimization, the knapsack

problem and cryptography.)
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EXERCISE 3. Develop a similar theory for
(22" 1h(2)(a(2))"

when li(z) is an entire function with positive coefficients.

6.3 Saddle point paths

As a preparation for the full saddle point wmethod, we briefly elaborate the
indications given in the introduction relative to the classification of points
on a surface |f(z)] where f(z) is an analytic function. The existence of an

analytic expansion

5(2) = F(z0) + £z = 20) + 5 20z = 20)f 4o

strongly constrains the “topography” of the surface. In the vicinity of z,
we set z — z, = pe'? and consider the properties of | f(z)| for small p, p — 0.
An ordinary point is such that f(z,) # 0 and f'(z4) # 0. At such a point

f(z) ~ | i(6—1) ) f'(20) _ it
e |1+ epe |  where Ty = ce™ ",

‘with ¢ > 0. Along the half-line # = ¢ the function [f(z)| increases at the
fastest rate when 2 moves away frown z,, while along the half-line § =t + =
the function decreases at the fastest rate. The direction § =t (mod 7) is
a direction of steepest descent. Along the perpendicular direction # =t + 7,
to the contrary, | f(2)| is stationary (up to second order terms), so that this
direction is tangent to a level curve |f(z)| = | f(24)| on the surface.

A zcro is defined by the condition f(zy) = 0. It is a local minimum of
the modulus of the function. The surface defined by | f(z)] can neither have
local maxima (this is the “maximum principle”) nor local minima, apart
from zeros. We just proved it for ordinary points, and the discnssion that
follows establishes the property for saddle points as well.

A saddle point is by definition a point snch that f(z,) # 0and f'(z,) = 0.
We counsider first siinple saddle points at which f(z,) # 0. At such a point

l_ff((f))‘ ~ |l + c/)(""i(”—t)l wlere 5o e o,
Zu ‘
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Figure 6.3: The different types of points on a surface |f(z)|: an ordinary
point, a zero, a simple saddle point. Here f(z) = cos z and the points are an
ordinary point at 7/4 (upper left), a zero at /2 (upper right), and a saddle
point at 0 (bottom center). Level lines are shown on the surfaces.
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with ¢ > 0. Consider p small, p — 0, and examine the various possibilities
for # taken in an interval of amplitude 27 when moving away from the saddle
point. The direction # = ¢ is one of fastest increase; the direction # = t+r/4
is stationary; the direction # = t+47/2 is one of fastest decrease; the direction
6 =t + 37 /4 is again stationary. The same pattern repeats itself when ¢ is
changed to t + .

In other words, at a simple saddle point, two level curves cross at a right
angle; there is a direction of steepest descent and a perpendicular direction
of steepest ascent away from tle saddle point. The direction of steepest
descent is also called tlie aris of the saddle point. '

The discussion of multiple saddle points defined by cancellation of more
derivatives is similar: there are m level curves and m steepest ascent/descent
curves interlaced if all derivatives till order 1 — 1 inclusively vanish.

The various types of points are depicted on Figure 6.3.

EXERCISE 4. Describe precisely the topography of the surface |f(z)| =

0 at a multiple saddle point where more than one derivative vanishes.
Show that the angle hetween consecutive level curves is % and that

tlie steepest ascent/descent curves bissect the level curves.

EXERCISE §. [Gauss] Use the classification of points to prove the fun-
damental theorem of algebra: “A polynomial of degree d has exactly d
complex zeros.” :

6.4 Saddle point analysis of the exponential

The purpose of this section is to provide the basis for full saddle point anal-
yses by working out in some detail the problem of estimnating [z"]e®.
The starting point is the Cauchy coefficient integral

o= 1 / o dz
n = 3 : y
NI . z]=r zrntl

where the contour of integration is taken to be a circle of radius . Of conrse,
it is known in advance that

1 o

f“ -_— -—' ~N ——
n! nt\/2mrn
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Figure 6.4: The modulus of ¢*/2"*! and the saddle point at 2 = n 4 1 (here
n =9).

The topography of the modnlus of the integraud is displayed in Fig-
ure 6.4. It has a saddle point at z = n 4+ 1 with an axis perpendicular to
the real line. From the previous discussion of saddle point bounds, we thus
expect good bounds to derive from adopting as integration contour a circle
centered at the origin with radins = + 1 (or about!) as integration contour.

It proves convenient to switch to polar coordinates and set z = re®. The
original integral becomes

A 1 + 8 :
f" -~ ‘_/ et —nlogr—nié Jd6.
2w J_x

In accordance with saddle point principles we adopt now the clhoice r = n
(n+1 would do equally well but would unnecessarily encumnber calculations).
The integral rewrites

c” 1 *r n[r'g—l—iﬂ] >
fo= S Z_W/ e 8. (6.14)
" —r
Set /i(#) = ¢*® — 1 — i with expansion
0 163 o*
ey = -2 4
) =-g -5+t

The absence of a linear term in # indicates a saddle point. The function

l(_h(ﬂ)i —_ Ccoxﬂ—l

L)
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is unimodal with its peak at # = 0 and the same property holds for |e®"(®)]
which is even more strongly peaked at § = 0.

An estimation of f,, should naturally proceed by isolating a small portion
-of the contour (corresponding to z near the real axis). We thus set

+6 2x -4
I'(‘O) - / enh(()) de’ I'(,l) - / enh(@) 110,
-6 )

and choose é in such a manner that (<« means here “much smaller than”
(C1) né* — oo, that is & > n~1/2;
(C2) né® — 0, that is 6 < n™1/3.

One way of realizing the compromise is to take é = n® where ¢ is any number

between 1 and %, for instance

2
6= 6(n)=n45,

From (C1), there follows that ¢™*(*) js exponentially small, being dom-
inated by a term of the form e=®"*), As |¢"(®)] decreases on [4, 7], one
has

(C3) [ < |e"®]  for @€ [6,2m - 6] (6.15)
so that a similar upper hound also holds for the noncentral integral: since
[I{D] < 27ne™™®). We also have h($) ~ 62/2, hence the bound

[ID] = Oe= "), (6.16)

Thus, by (C1), é has heen taken large enough so that the central integral
I “captures” most of the contribution, while the remainder integral I{!) is

exponentially small by (C3).

_ We now turn to the precise evaluation of the central integral I{"). Near § =
0, only the terms till order 2 matter in the expansion of /.(#) because of the -

condition (C2) which ensures 6% — 0. One has:

+8 )
10~ [ ey

1 +6/W )
~ —/ ey
ARG (6.17)
~ —/ ™1t
N Jeeo
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The first line of (6.17) uses the fact that né® — 0 so that /(#) can be reduced
to its quadratic approximation, with error terms of order 76 = n~1/5; the
second line is hased on the rescaling ¢t = #\/n. The third line is justified by
the fact that the tails of the Gaussian integral are exponentially small so that
the integral can be completed to the full range (—o0, +00), which induces
error terms that are exponentially small. Finally, the complete Gaussian
integral can be evaluated and the estimate follows. Thus condition (C2) has
ensured that the integration interval is not “too large” so that a local ex-
pansion of the integral till quadratic terms suffices for asymptotic estimates,
but large enough so that a valid estimate results by (C3) from completion
of the integral.
Putting everything together, we have obtained

I 4 1) /&r_
n n ) n

.= 1 N e”
Tl oan2rn
We have thus established Stirling’s formula by the saddle point method.

In summary the process of saddle point analysis is made possible by a
fundamental split of the integration contour —here, a circle— into a small
arc centered on the real axis. The small arc has to satisfy two conflicting
requirement: to be large enough by (C1) so as to capture the essential con-
tribution of the integral; and to be small enough to allow the function to
be well approximated loc‘ally by its quadratic terms. In addition, the esti-
mation was made possible because the function decays appropriately, away
from the real axis, so that the integrand stays small on the noncentral part
of the contour as expressed hy (C3) of (6.15). :

Hence the final result

6.5 Admissibility

It is possible to encapsulate the conditions that render possible the analysis
of [z"]e¢* into a general definition. This leads to the notion of admissible
functions. By design, saddle point analysis applies to such functions and
asymptotic forms for their coefficients can he systematically determined.
Such an approach was initiated by Hayman [15] whose steps we closely fol-
low in this section. A crisp account is also given in Section I1.7 of Wong’s
book [30]. ’
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Figure 6.5: Plots of |e*2~"~!| for n = 3 and n = 30 (scaled according to the
value of the saddle point) illustrate the essential concentration condition as
higher values of n produce steeper saddle point paths.
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In addition, admissible functions satisfy useful closure properties so that
an infinite class of admissible functions relevant to combinatorial applications
can be constructed. Such a class includes OGF’s and EGF’s for integer
partitions, set partitions, involutions, etc. '

We consider here a function f(z) that is analytic at the origin. As was
done with the exponential, we switch to polar coordinates and examine the
expansion of f(re'®) when the argument is near the real axis. The basic
expansion is

i0)”
(V') : (6.18)

log f(re®®) =log f(r) + Y_ a,(r)
v=1l

One has, in general, a,(r) = rZa,_4(r).

The basic quantities for saddle point analysis are the first two terms,
a(r) = oy(r) and b(r) = ay(r). It proves convenient to operate with f(z)
put into exponential form, f(z) = e**) and a simple computation yields

a(r) = rh'(r)
b(r) = r2h"(r)+ rh'(r).

(6.19)

In terms of f, itself, one has:

()
- f(()> £ FUr)
M) = Tyt T T )

When f(z) has nonnegative Taylor coefficients, a(r) and b(r) are always
positive for 7 > 0, by an argument already encountered in (6.13).

EXERCISE 6. Let f(z) have nonnegative coefficients. Relate the mean
and variance of a discrete distribution with generating function

_ fra)
i@

to a(r) and b(r). As a variance cannot be negative, one must have
b(r) > 0, with strict inequality, except in degenerate cases.

9(z)

Definition 6.1 Let f(z) have radius of convergence p with 0 < p < oo and
be always.positive on some subinterval |Rq, p[ of 10, p[. The function f(z) is
said to be admissible if it satisfies the following three conditions.
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H1. [Capture conditic;n] ’l_ll’(}) b(r) =
H2. [Locality condition] For some function 6(r) defined over |Ry,p[ and
satisfying 0 < § < m, one has
f(re”) ~ f(r)eioa(r)-o%(r)/z as r — Ry,
uniformly in |0] < §(r).

H3. [Decay condition] Uniformly in §(r) < |0 < =

re'y=o ()
ety =0 (JH2X).

Admissible functions in the above sense are also (rightly!) called Hayman
admissible functions in the literature.

Theorem 6.3 (Coefficients of admissible functions) Let f(z) be an ad-
missible function and ( = ((n) be the unique solution in the interval | Ry, p|
of the the saddle point equation

f'Q) _
fQ) T

The Taylor coefficients of f(z) satisfy

v f(€)
n = [2")f(2) v —=— as n — oo (6.20)

: (" v/2mb(¢)

with b(z) = z2h"(2) + zh'(2) and h(z) = log f(2).

Proof. 1. The first step involves proving a more general result that describes

the shape of the individual terms f,r" in the Taylor expansion of f(z) as r

gets closer to its limit value p. The terms turn out to exhibit a bell-shaped

profile. The asymptotic form (6.20) will then then results from a proper
choice of r.

Lemma 6.1 Asr tends to p, one has

far" = ——g%(r) [exp (—ﬂ%:—)n—)?) + 0(1)] , (6.21)

where the error term o(1) is uniform for all integers n.
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The coeflicients f,, are given by Cauchy’s formula,

1 2x—-6 ) .
fn"'n / . f(rew)e—mv d0,

:2—”-—6

where 6 = 8(n) is as specified by the admissibility definition. The estimation
of this integral is once more based on a fundamental split

© 4 o L [ oL 7
farm =T+ T where I =2—7r/_6,1 =§;/+6 .
From condition H3 (the “decay” condition), uniformly in n:
T = o(f(r)) (6.22)

T ob(r)/2”
On the other hand, condition H2 (the “locality” condition) gives uni-

formly in n:

§
I(o) — %(Tr)_ + ei(a(r)—n)O-%b(r)O’(l+0(1)) dé
-6

— f2(;) [/+6 ei(a(r)—n)8=35(r)8> 4o +o (/+°° e—%b(r)o’)} ]
.y S —-o0

The second integral in the last line of (6.23) is O(b(r)'lyz) as r — p. Rescal-
ing the first integral and setting (a(r) — n)(2/b(r))"/? = ¢, we obtain

f(T) +é+/8(r)/2
21 |J-s /i
Now, it follows from conditions H2 and Hé, both taken at § = é(r) that

b(r)6?> — oo as r — p. Thus the integral in (6.24) can be extended to a
complete Gaussian integral, introducing only o(1) error terms. This entails

(6.23)

70 =

e~ 4 0(1)] . (6.24)

1O = %__\/_:;%T_) [/_:o emtHHiet 4 0(1)] ’ (6.25)

and the Gaussian integral evaluates to \/7_l'e‘°°/4 (by completing the square.
and shifting vertically the integration line). Thus, combining the estimate (6.25)
for the central integral I(®) and the estimate (6.22) for the remainder integral,
we obtain the estimate (6.21).



6.5. ADMISSIBILITY 25

2. To establish the theorem, we first observe that a(r) is increasing (as
its derivative b(r)/r is positive) and, in addition tends to infinity (this results
from setting n = 0 in formula (6.21)). Thus ((n) is well-defined. Setting
r = ((n) in (6.21) then completes the proof of the theorem. a

The role of the various conditions should be clear from the preceding
discussion and from the study of the exponential function. The choice of the
function §(n) for a particular problemis to be guided by consideration of

the expansion (6.18). We must have
ay(r)é* — oo and az(r)é® — 0.

This is because the method requires a nearly complete integral to arise while
the error terms after the quadratic part of log f(re*?) should be kept small
enough. Thus, in order to work, the method necessitates a priori

(as(r)? _ o
(az(r))?
Then, é§ should be taken in such a way that (K still means “much smaller
than”) )

1 1
— s K6 K —73, 6.26
At << (6:26)

a possible choice being the geometric mean of the two bounds

6(r) = a3 a3 "®. (6.27)

Non-admissible functions. Before showing cases of applications, we briefly
comment on functions that fail to satisfy admissibility conditions.

The function f(z) = ;1 cannot be admissible as the asymptotic form
that Theorem 6.3 would imply is the erroneous

n oe”!

(2"
1-z 2r’
corresponding to a saddle point near 1 — . The expansion (6.18) has

al(,,.) = IL_T’ a?(r) = (T;TTT’ 03(7‘) = Egl_-*-,’_”)%,

log f(r) = log 7—,

and the coefficient of order v involves (1 — r)~”. The locality condition and
the decay condition cannot be simultaneously satisfied (see also the discus-
sion around Eq. (6.26) and (6.27)) and the order of growth requirements
discussed above are not satisfied.
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More generally, functions of the form (1 —z)~* are typical instances with
too slow a growth to be admissible. In a sense, singularity analysis salvages
the situation by using a larger part of the contour and by normalizing to a
“global” Hankel Gamma integral instead of a more “local” Gaussian integral.
(This is also in accordance with the fact that the saddle point formula gives
for the coefficient a fraction 0.14676 of the true value which is 1.)

Other functions failing to satisfy the decay condition alone are e*’ and
e*” +¢* as they are also large, away from the central arc and near the negative

real axis.

EXERCISE 7. Show that

i 1 /1—1/n+ioo 1 dz

=L"l— = (1 _ ) n¥l”
fo =]z ](1 —z)"‘ 2i7 Ji_1/n—ico (1 = z)@ 2n+!

Get the asymptotic form of f,, by a suitable normalization reminiscent
of singularity analysis.

.Closure properties. A valuable characteristic of Hayman’s work is that
it leads to general theorems guaranteeing that large classes of functions are
admissible.

Theorem 6.4 (Closure of admissible functions) Let f(z) and g(z) be
admissible functions and let P(z) be a polynomial with real coefficients.
Then:

o (i) The product f(z)g(z) and the ezponential e/) are admissible fune-

tions.

o (it) The sum f(2)+ P(z) is admissible. If the leading coefficient of
P(z) is positive then f(z)P(z) and P(f(z)) are admissible.

e (ii1) If the Taylor coefficients of eF(*) are eventually positive, then eF(?)

is admissible.

Proof. We refer to Hayman’s original paper [15] for full proofs that are not
difficult. They essentially reduce to making an inspired guess for the choice
of the é function, which may be guided by Equations (6.26) and (6.27), and
then checking the conditions of the admissibility definition. For instance,
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in the case of the exponential, F(z) = e/(*), the conditions H1, H2, H3 are
satisfied if one takes
§(r) = (f(r))™*".
O

6.6 Combinatorial enumeration and admissibility

- Admissible functions involve some sort of exponential growth, so that their
domain of application is closely related to various forms of set constructions.

1. Involutions. The involution numbers have EGF f(z) = e**+:*/2 which
is the exponential of a polynomial with positive coefficients, hence an admis-
sible function by Theorem 6.4. The saddle point {(n) was already analyzed:

((n) = Vi - 5+ O(~V?).

For the involution numbers, the saddle point bound needs only be multiplied

by a factor of
' 1

V2r((2(+1)

This quantity “measures” the quality of the saddle point bound and is only
O(n~1/2). Substitution of the expansion of  into the saddle point formula
finally yields an asymptotic equivalent

Proposition 6.1 The number I, of involutive permutations satisfies

-1/4
e~/ n—n/2en/2+\/r_l.

I, ~n!
2rn

This result is originally due to Moser and Wyman.

EXERCISE 8. Find an asymptotic equivalent for the number of permu-
tations of [1..n] of order m (¢™ = 1) that have EGF

=(z%)
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ExXERcISE 9. Find an asymptotic equivalent for the number of permu-
tations of [1..n] with longest cycle of size < m that have EGF

2d
exp Z ri B
1<d<m

2. Bell numbers and set partitions. The Bell numbers have f(z) =
exp(e® — 1) as EGF. Theorem 6.4 provides all that is needed: f(z) is the
exponential of e — 1; the latter function is admissible being the sum of
e’ known to be admissible and of the polynomial —1. Hence the saddle
point formula of Theorem 6.3 applies. The computation of { has been given
already in Section 6.2.

Proposition 6.2 The number B, of set partitions satisfies

ec‘—l

n! .
*v2r((¢ + 1)ec
where ( is defined implicitly by

(6.28)

B, ~

(et =n, so that  ( =logn —loglogn + o(1).

This example is probably the most famous application of saddle point tech-
niques to combinatorics, see [5].

We observe here that the asymptotic form in terms of ( itself is the proper
one as no back substitution of an asymptotic expansion of { (in terms of n
and logn) can provide an asymptotic expansion for B, solely in terms of n.
It is often the case that saddle point estimates involve implicitly defined
quantities.

EXEeRcISE 10. For involution numbers and Bell numbers, find a direct
proof by the saddle point method.

EXERCISE 11. Using explicit sums for I,, and B, rederive their asymp-
totic forms by the Laplace method.

3. A large singular function. Take f(z) = exp(z/(1 — 2)), a function
closely related to the number of increasing subsequences in permutations.
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The saddle point bounds suggest a growth of the coefficient driven by a
term of the form e2V™, Proving f(z) to be admissible essentially reduces to

finding a proper §~function. We have
1 T oy, 171+ 7)

logf(reio) = 1—7‘+(1 —7‘) (20)'*'2(1 )3( )2 6 (1

The condition a2a;? — 0 of Eq. (6.26) are satisfied here, and one may choose

8(r) = (1 — r)¢ for any e €]}, 3[; for instance in accordance with (6.27) the
value 6(r) = (1 — 7)13 is adequate. Checking admissibility from this point is
a routine mater left to the reader.

We know already that the saddle point is ~ 1 —n~!/2, An application of
Theorem 6.3 furnishes the estimate

1r(1+4r+r)( 0Y+-

., e—1/2e2V7
[Z }f(Z)N 2\/7_'."3/4 ’

which is only O(n~3/4) of the corresponding saddle point bound.

EXERCISE 12. Interpret f(z) as the generating function of a combina-
torial class. [Hint: fragmentations of a permutation into pieces.]

ExERCISE 13. Show that

s (1)

grows like exp(2./cn).

4. Integer partitions. This final example involves a function with a finite
radius of convergence that arises from an unlabelled-set construction.

Proposition 6.3 The number p, of partitions of integer n satisfies

a 1 C 1 /2n/3
. = [2" ~ ever 6.29
pn = ]LH=1 ey (6.29)

The asymptotic formula (6.29) is only the first term of a complete expansion
involving decreasing exponentials (!) that was discovered by Hardy and Ra-
manujan in 1917. While the full Hardy-Ramanujan expansion necessitates
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considering infinitely many saddle-points near the unit circle and requires
the so-called modular transformation [1], the first term (6.29) follows from
the admissibility theorem. We shall not prove this here, but the form (6.29)
only requires the asymptotic expansion of the partition generating function
near 2 = 1 the major steps of which were given in Section 6.2. The sin-
gular behaviour along and near to the real line is comparable to that of
exp((1 — z)~!), which explains a growth like V™ for the number of integer

partitions.
EXERCISE 14. Find an expansion till terms of order o(1) for
© 1 .n

1 =2
logp(z) = ) -

nl-—2z"
n=1

¥

t

as z — 17, [Hint: this may be done by setting z = e~' and using

Mellin transform techniques from the next chapter.)

EXERCISE 15. Complete the proof that the partition OGF p(z) is
admissible and find an asymptotic expansion of p(re'’) when r — 1
and @ is small. Complete the proof of (6.29).

EXERCISE 16. Analyse asymptotically the number of partitions of n
into distinct summands:

g =[P T 1+ 54).

E>1

EXERCISE 17. Let r, be the number of partitions of n into sumands
that are squares. Find an asymptotic equivalent of logr,,. Generalize
to cubes, etc.

6.7 Large powefs

Saddle point analysis of coefficients of large powers has the happy feature
that integrals are always taken in a bounded part of the complex plane.
In this way, saddle point conditions analogous to those of admissibility are
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directly verified and strong uniformity of estimates results. We treat here
the analysis of dominant terms; a simple variation of the proof to be given
in the next section then suffices to derive full expansions.

The context of the analysis is similar to Theorem 6.2 though an additional
aperiodicity condition has to be imposed. Here, a function g(z) analytic at 0
with g(z) # 0 is periodic if it can be put under the form g(z) = y(z™) for
some analytic 7 and some m > 2; otherwise, it is said to be aperiodic. Some
aperiodicity condition'is a necessity for asymptotic expansions as otherwise
2"]g(z) = 0 when n # 0 mod m.

Theorem 6.5 (Saddle point analysis for large powers) Let g(z) be an
entire function of degree d with positive coefficients assumed to be aperiodic
and such that g(0) # 0. ‘Let A be a positive number of some subinterval
[As, As] of the open interval |0,d[. Then, with N = |An], one has uniformly
for A € [Aa, 4]

n) _ N n __ (g(C))"
o) = [2")g(2)" = W(l +o(1)),

where ( is the unique positive root of the equation
gI(C) d2
== and V=—llo - AMog(}. 6.30
G) 3¢z 108 9(<) g (] (6.30)
Proof. We may freely assume that An is an integer, An = N. Then
1 dz
() o L [ nnee) 82 - -

) 2in fe > where h(z) =logg(z) — Alogz.  (6.31)
Integration along a circle passing through the saddle point of e™*(*) Jeads to
taking z = (e'®, where ¢ depends on X only:

g'¢)
(=== A\
9(¢)

The expansion of h(z) around ( is
() - h(Q) = 3z~ 07 4 O((2 - ), (6.32)

According to general saddle point principles, the integral of (6.31) has to be
split. We set

Cetts . Cet(3v=0) .
mzL/ wmmﬂ;ng/ n(h()-h() 82
2im Jie-re z 2t Jeoris 2

(6.33)
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In order for I® to represent most of the contribution to the full integral,

one should take § = §(n) such that (« means again “much smaller than”)
1 1

3
né? — 0o, né* -0 = 1/2<<5<< i3

which is satisfied for instance by the geometric mean § = n=3%/12,

The integrand in (6.31) satisfies a form of decay condition similar to
condition H3 of admissibility by virtue of the following lemma:

Lemma 6.2 (Periodicity lemma) Let f(z) be analytic in |z| < R, have
nonnegative Taylor coefficients and satisfy f(0) # 0. If for some r with
0 < r < R and some 8 €)0,2n][ one has |f(re'?)| = f(r) then f(z) is periodic
of some period m > 2 and €'® is an mth root of unity.

Proof. As f(z) has positive coefficients, the triangular inequality implies

If(re) < 3 far™ = f(r).

Equality can be realized only if f,e™? = f, for all n. An easy a contrario
argument shows that, for 8 # 0, this is only possible if f(z) is periodic and
e'® a root of unity. O

We now return to the proof of Theorem 6.5. From the lemma above, an
aperiodic entire function attains its maximum only on the positive real axis.

For n large enough, which means é small enough, one then has

sup lg(¢e)| = lg(¢e)l. (6.34)

Under these conditions,
IM=0E™"")  since  n(h(Ce) — h(()) = O(né?) = O(n'/*).
(6.35)
This bound disposes automatically of the noncentral part of the integral.
Evaluation of the central integral I(® results directly from local expan-
sions. Along the lines of Theorem 6.4, we have

+6
10 ~ / exp(n(h((e®) — h(c))da
1 ]
- /:mexp( RS )do
o / exp(—nc%"(o;)de

27!’ C\/27rh"i

(6.36)
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- The theorem 6.5 results from combining (6.35) and (6.36). Uniformity
results from the fact that all estimates are uniform as one operates in a
bounded region of the complex plane. a

We comment now on the uniformity property. Under the form stated
in Theorem 6.5, this means that for all ¢ > 0, there exists some ng such
that for all n > ny the o(1) term can be taken smaller than ¢. Such unifor-
mity considerations prove important for the derivation of Gaussian laws in
a Section 6.10. :

A simple example of application is to the central binomial coefficient.
There, we have A = 1 and g(z) = (1 + 2)?, so that

2 1 2
= 21 -1 h'(z) = -=, M@=+ =.
h(z) = 2log 1 ~log=, W(2)= 5 — 50 W)=~ + 3

The saddle point is then at { = 1 where h”(¢) = § and a direct application
of Theorem 6.5 yields

(2:) = ["](1 4 2)* ~ \;%.

EXERCISE 18. Prove an adapted version of Theorem 6.5 for functions
with a finite radius of convergence.

ExERcISE 19. With h(z) an entire function with positive coefficients,

analyze similarly
[2*"1h(2)(9(2))".

6.8 Combinatorial enumeration and large powers

We start with an estimation of the so-called central trinomial coefficients
defined by

T, =[z"}1+ z + 23)".
A direct application of Theorem 6.5 with A = 1 yields { = 1 by the saddle

point equation, so that
) gn+1/2

T"N‘Z\/w__'
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The Motzkin numbers count unary-binary trees, so that they may be
defined by
M, =[2"|M(z) where M = 2(1+ M + M?).

The standard approach is the one seen earlier based on singularity analysis
as the implicitly defined function M(z) has an algebraic singularity of the

\/-'typea

1-2z—-/(1+2)(1-32)
2z )
The Lagrange inversion formula provides an alternative route. It gives

M(z) =

M, = %[z"'l](l + z + 2%)",

which is amenable to saddle point analysis using A = (n — 1)/n. Hence,
n+1/2
My~
2v/mnd

In general, the Lagrange inversion formula establishes an exact corre-
spondence between two estimations problems relative to

— coefficients of large order in large powers and
— coefficients of implicitly defined functions.

Thus it can bring the evaluation of coefficients of implicit functions into the
orbit of the saddle point method. The saddle point method is then sometimes
more convenient to work with?, especially when explicit or uniform upper
bounds are required, since bounds are more easily obtained on fixed circles

than on variable Hankel contours.
EXERCISE 20. Use Lagrange inversion to relate explicitly the analysis

of
[2"1Y (2) where Y (2) = z¢(Y (2)).

by singularity analysis, and the analysis of large powers according to
Theorem 6.5. ,

2In his original memoir [4], Darboux however goes in the converse direction and shows
for instance that the Laplace method for integrals may be reduced to analysis of singular-
ities at a finite distance of a generating function.
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EXERCISE 21. Analyse the asymptotic behaviou; of integrals

1
I, = /0 f(2)(9(z))" dz,

by taking the corresponding generating function. (This exercise prop-
erly belongs to Chapter 5.)
[Hint. See Darboux’s memoir [4].]

Proceed similarly for contour integrals § f(z)(g(z))" dz.

EXERCISE 22. In his first letter to Hardy, Ramanujan announces that

2 n-1 n

L PR oI
20— Tty (n=1)! " al”
where
gl 4
T3 T 135(n+k)’

and k lies between £ and 2—"’1 Prove Ramanujan’s assertion for all
n > 1. [Hint. See [9]4]

6.9 Full asymptotic expansions

Full asymptotic expansions for large powers derive from a simple modifica-
tion of the proof of Theorem 6.5 via an analytic change of variables. For the
case of coeflicients of a fixed function, the situation is more intricate and we
content ourselves with giving pointers to the literature.

Theorem 6.6 (Full asymptotic expansions for large powers) Under the
conditions of Theorem 6.5, there exists a full asymptotic expansion for g,(J')

in descending powers of n:

") _r. " (g(9))" -

with { and V defined by (6.50).
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In addition, the error terms in any terminating form of (6.37) are uniform,
when ) satisfies the conditions of Theorem 6.5.

Proof. The proof implies an algorithm to compute the e;. From the devel-
opments of Theorem 6.5, it suffices to derive a full asymptotic expansion of
I® as (M) js exponentially small. We start from

otHis

&
7O = /( y e"("(‘)“"(‘))—zf, (6.38)

with v
h(z) — () ~ T8 (e — oy

The idea is to perform the change of variables

hll
(=)~ h(q) = 80e,
which defines ¢ as an analytic function of 2. From the expansion of h(z), one
has -
, ?=(z2-¢)? [1+Zak(z—g’)"],
k=1

or, equivalently,

t=(z-¢) [1+ibk(3“<)k] )

k=1
for some computable coefficient sequences {a;} and {b,}. The last expansion,
upon inversion, provides

(z=¢) =t [1+chtk] )
k=1
which entails a similar expansion for the differential coefficient
dz dt s
— == |14 d:it¥|.
Thus, one has formally

1 +r " 2 >
1O = o [ e [1 + de} dt, (6.39)
7!'( ~-T k=1

for some 1 of the same order as §.
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A terminating form of order 2m of the expansion in (6.39) can justifiably
be used and it yields

47 : 2m-1 +r
1O = L [T s [1 + > dkt"} dt+ O (/ ™ h (% 22m dt) :
27"( =T k=1 =T

The integral in the remainder-term is O(n~™). By a (now) standard argu-
ment, the integration range can be changed to [-o0, +00] introducing only
exponentially small error terms. The integrals with a t* of odd exponent &
vanish. The integrals of even exponent are all expressible in terms of the
Gamma function. One gets in this way

1 —  T(kk-1 1
IO = —— 11 d 2 ,
" \/—2an[ + L AT oy

and the statement follows. O

We observe that the developments are a little simpler if one considers
N = An — 1. Henrici develops a general derivation along these lines in
Chapter 11 of his book [16].

- A similar treatment can be inflicted to the exponential function as the the
integral involved happens to be a pure power. In this way, a full asymptotic
expansion of 1/n! equivalent to Stirling’s formula comes out.

EXERCISE 23. Give explicit forms for the coefficients of the asymptotic
expansion of 1/n! by using Lagrange inversion to support the change
of variable z — t in the proof of Theorem 6.6.

Discuss the general forms obtained in this way in Theorem 6.6 when
N=Jn-1

Full asymptotic expansions can be determined for many admisssible func-
tions. However, conditions stronger than plain admissibility are then re-
quired. The situation is also more intricate as several asymptotic scales
interfere so that one does not generally obtain expansions in descending
powers n or logn, but rather in functions of the implicitly defined saddle
point. This situation was already encountered in the dominant term analy-
sis of Bell numbers.

Sets of conditions leading to full expansions have been given by Harris
and Schoenfeld [14). Odlyzko and Richmond showed in [24] that for any
Hayman admissible function, a full expansion of e/*) can be determined by
Harris and Schoenfeld’s method. The later situation covers for instance the
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Bell numbers. In combinatorial practice, full expansions can be derived for
most explicitly constructed generating functions.

EXERCISE 24. Show the existence of a full asymptotic expansion for
the involution numbers and determine the corresponding asymptotic
scale. Compute 20 terms of this expansion with a computer algebra
system.

EXERCISE 25. Discuss the shape of a full asymptotic expansion for Bell
numbers.

EXERCISE 26. Apply the method of Theorem 6.6 to an implicitly de-
fined function Y (z) = 2¢(Y(z)) and compare the process with singu-
. larity analysis.

6.10 Gaussian distributions.

Saddle point analysis has consequences for multivariate asymptotics and is
a direct way of proving that many discrete distributions tend to the Gaus-
sian law in the asymptotic limit. For large powers, this property derives
painlessly from our earlier developments, especially Theorem 6.5, by means
of a “perturbation” analysis.

Theorem 6.7 (Gaussian limit law) Assume that g satisfies the condi-
tions of Theorem 6.4. Let Ay be such that 0 < Ay < d and define

No = Aon, N = /\0n+ .'E\/E,

where z belongs to a fized finite interval of the real line. Then, uniformly in

z, one has
N L
25 = €N (1 4 o(1))
No

where / / R )
ot = (2 ), 91 4(2_(4_)) with Cﬂc_) ~ A,

TG GG a0 -
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Proof. [Sketch] Use the estimate of Theorem 6.5. The saddle point cor-
responding to Ay + zn~!/? is a function & = £(z,n). It is defined by the

equation
9@ _\ L &
o0 -t A

so that £(0,n) = ¢ and &(z,n) — ( as n — oco. A complete expansion of
&(z,n) for fixed z and n — oo is computed by standard devices. Propagation
of this expansion into the main formula of Theorem 6.5 then yields the result.

a

In the particular case when g(z) is the probability generating function
of a discrete distribution, which implies g(1) = 1, and when A, is taken to
be the mean g¢'(1) of the distribution, Theorem 6.7 describes a Gaussian ap-
proximation near the mean for the distribution. The results of Theorem 6.7
then simplify: the saddle point is at ( = 1, and the quantity o2 reduces to

o* = ¢"(1) +¢'(1) - (¢ (1))

which is the variance of the distribution.

" The theorem then expresses the occurrence of a Gaussian law for the sum
of n identicalldentify distributed random variables with probability generat-
ing function g(z). In probability theory, this is usually called a local limit
theorem as it is relative to the density of a probability distribution. In
contrast estimates relative to the cumulative distribution function, which
involves large “segments” of the probability distribution, are called central
limit theorems or integral limit theorems.

Corollary 6.2 (Local limit theorem) Let X be a discrete nonnegative
random variable with probability generating function g(z), mean p = g'(1)
and variance o = g"(1)+¢'(1) - (¢'(1))%. Assume that g(z) is aperiodic and
analytic in |z] < 1 + € for some € > 0. Then, the generating function g™(z)
of a sum of n independent random variables equidistributed with X satisfies
Jor integer N = un + z/n

[M](9(2))" = \/1_6_,,,(2,,)(1 +o(1),

2ron

uniformly in n, for z in any fized compact set of the real line.

EXERCISE 27. Prove a central limit theorem by the methods and under
the conditions of Theorem 6.5.
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ExeRrcise 28. Extend the Gaussian law, for suitable k(z), to

EXERCISE 29. Use the saddle point method to prove that Stirling’s

distribution
ezt 1)--(z4n-1)
[] =~

is asymptotically normal. [Hint: consider k = logn 4 z+/logn.]

EXERCISE 30. Show that Theorem 6.7 can conversely be deduced from
a local limit theorem by the technique of “shifting the mean”. [Hint:
see [12].]

6.11 Combinatorial averages, distributions, and sad-
dle points

Saddle point methods are useful not only for estimating combinatorial counts
(sections 6.6 and 6.8), but also for analyzing asymptotically characteristics
of combinatorial structures. Their range of applications in this context can
be categorized as follows:

— Estimations of moments, especially mean and variance, when the corre-
sponding generating functions are admissible (increasing subsequences,
set partitions).

— Large deviation bounds for combinatorial distributions that are associ-
“ated with powers or “quasi-powers” (cycles in permutations, capacity
in random allocations).

— Indirect bounds for parameters that can be related combinatorially
to simpler parameters of one of the previous types (longest increasing
subsequence, height of permutation trees). '
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Increasing sequences in permutations. Define a tagged permutation as
a permutation together with one of its increasing subsequence distinguished.
(We also consider the null subsequence as an increasing subsequence.) For
instance,
71352(641(89

is a tagged permutation with the increasing subsequence 368 that is dis-
tinguished. The vertical bars are used to identifty the tagged elements, but
they may also be interpreted as decomposing the permutation into subper-

mutation fragments.
Let P be the class of all permutations, P* the subclass of non empty

permutations, and 7 the class of tagged permutations. Then, it is readily
recognized that, up to isomorphism,

T = Pxset(PY),

since a tagged permutation can be reconstructed from its initial fragment
and the set of its fragments (by ordering the set according to increasing

values of initial elements).
! ex ( z )
1-z P\1-2/"

Thus, for EGFs, one has
The quantity t, = T,,/n! is precisely the mean number of increasing subse-
quences in a random permutation of size n. Analytically, this function is a
variant of the “large singular function” of Sections 6.2, 6.6. Admissibility
conditions are again easily checked and Theorem 6.3 gives

T, 2R
| tn:?lTN_—_Qﬁnl“.
The result is due to Lifschitz and Pittel [19] who obtained it using real
analysis methods. (See exercises below).

This analysis provides indirectly information about the parameter (o)
representing the length of the longest increasing subsequence in o, a much
less accessible parameter. If (o) is the number of increasing subsequences,
then clearly

T(z) =

(6.40)

2X9) < y(a).
Let ¢, be the expectation of A over permutations of size n. Then, by con-
vexity of the function 2%, one has

20 < t,, so that L, < E?g_iﬁ(l + o(1)), (6.41)
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by (6.40).

Proposition 6.4 The ezpected length of the longest increasing subsequence
tn a random permutation of size n satisfies

t, < %2-\/5(1 + o(1)).

The upper bound obtained in this way is of the form 2.89y/n. In fact, Logan,
Shepp, Vershik, Kirov established the much more difficult result

¢, ~2v/n.

(Their proof is based on a detailed analysis of the profile of a random Young
tableau.) The bound obtained here by a simple mixture of saddle point
estimates and combinatorial approximations already provides the right order
of magnitude.

ExeERrRciseE 31. Let t,, = #Tn be the expected number of increasing .

subsequences in a random permutation of [1..n]. By decomposing
according to the location of n in the permutation, establish directly
the recurrence : :

1 n—1
tn=ta_1+ =3t to=1
k=0
Hence T(z) satisfies the ODE
o d
(1-2) B-:T(z) =(2-2)T(2), T(0)=1,

which can be solved.

EXERCISE 32. One has

L /n\ n!
T = (k) k-
k=0

Perform an analysis by the Laplace method for sums.
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Parts in random set partitions. The function
flz,u) = "7

is the bivariate generating function of set partitions with u marking the
number of parts. We set f(z) = f(z,1) and define

o) = o flzw)| = e,

u=1

Thus, the quantity
gn _ [z"e(2)
T )
represents the mean number of pa.rts in a random partition of [1..n]. We
already know (Section 6.6) that f(z) is admissible and so is g(z) by closure
properties. The saddle point for the coeflicient integral of f(z) occurs at ¢
such that (e¢ = n, and it is already known that { = log n — loglogn + o(1).
It would be possible to analyze g(z) by means of Theorem 6.3 directly:
the analysis then involves a saddle point ¢; # { that is relative to g(z). An
analysis of the mean would then follow, albeit at some computational effort.
It is however more transparent to appeal to Lemma 6.1 and analyse the
coefficients of g(z) at the saddle point of f(z).
Let a(r),b(r) and a,(r),b;(r) be the functions of Eq. (6.19) relative to

f(2) and g(z) respectively:

log f(z) = e —1 logg(z) = e +2-1
a(r) = re a,(r) = re"+r=a(r)+r °
b(r) = (rP4r)e by(r) = (r’4r)e"+r=0b(r)+r.

Thus, estimating g, by Lemma 6.1 with the formula taken at r = (, one

finds
e 0 o () ]

while the corresponding estimate for f, is

_JQ
n = 1 1
= gl o)
Given that b,(¢) ~ b(¢) and that (* is of much smaller order than b,((), one

has
gn —_ —-n +O
A = ef(1+0(1)) = logn(1 (1)).

n
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A similar computation applies to the second moment of the number of
parts which is found to be asymptotic to €* (the computation involves taking
a second derivative). Thus, the standard deviation of the number of parts is
of an order o(e¢) that is smaller than the mean. This implies a concentration
property for the distribution of the number of parts.

Proposition 8.5 The variable X, equal to the number of parts in a random
- partition of [1..n] has ezpectation

E{X.} = l_o'g‘_r;(l + o(1)).

The distribution satisfies a “concentration” property: for any € > 0, one has

"

EXERCISE 33. Generalize to bivariate generating functions e**(*), as-
suming e*(*) to be admissible. Find conditions for the mean value to
be asymptotic to

h(¢),

with ¢ the saddle point relative to e®.

1>€}-—>0 as n — +4o00.

Xa
E{X.}

EXERCISE 34. The mean number of parts in a random integer partition
of size n is O(n!/?).

Cycles in permutations. A random permutation of size n has k cycles
with probability equal to
1 [n]
Tnk = '75 k b

where [}] is a Stirling cycle number (Stirling number of the first kind). As
is well-known, this distribution also gives the statistics of left-right maxima
in permutations. The horizontal generating function,

1 &Ko . u Nu+2)--(u+n-1
»mé[k]u = (u+')( + 73! (ut ), (6.42)
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provides the mean and the variance of the distribution as
H, =logn + O(1), H, - H® =logn + O(1).

The standard deviation being of an order smaller than the mean, the distri-
bution is concentrated. The saddle point bounds further quantify this fact.
Though (6.42) is not a power, the occurrence of a large number of factors
makes it share many analytic properties of powers. (We can think of it as a
“quasi-power”.)

Let us examine first the probability p, that a random permutation has
k = |2logn]| cycles. From trivial bounds, one has for any fixed ¢ €]0, +oo[

< CC+1)(C+2)--((+n- l)c—k'

n!

‘Now, Stirling’s formula shows that, as n — oo, for a fixed ¢,

C(C+1)(E+2)---(C+nr—-1) N né-1
"! G

Thus, for any fixed ({, one has
Pn < O(1)expllog n(¢ — 1 - 2log ()]

The optimal choice of {, which corresponds to a saddle point bound, is
obtained when the coefficient of logn attains its minimum, and this occurs
at { = 2, giving
= O (n'~?l8?) (6.43)
Let g, be the proba.blhty that a permutation has no more than |_2 logn|
cycles. The technique for right tails developed in Section 6.2 gives

IA

qn O(l)nl 2log 2 (1+ + — “_)

¢ C" (6.44)
— O(nl—21032).

A similar computation applies to the number of permutations with no
more than zlogn cycles, for any fixed > 1, the optimal choice of { being
then { = z.

Proposition 6.6 For any fized z, the probability that a permutatzon has at
least xlogn cycles is of the form

O (n—l+z:—1: logz) .
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This technique has been put to use by Robson [27] who obtained similar
bounds for the distribution of nodes in strata of random permutation trees
(i.e., heap-ordered trees and binary search trees). The distribution again
involves the Stirling cycle numbers. In this way, Robson was able to derive
an upper bound on the height of permutation trees of the form

Clogn where C =431.

Once more, the upper bound obtained in this way is excellent as evidenced
by the fact that it does in fact represent the exact order of growth. In
effect, Devroye [6, 7] later showed by means of branching processes that the
expected height is asymptotic to Clogn with C being Robson’s constant.

EXERCISE 35. Prove similarly left tail estimates bounding the proba-
bility that a permutation has a smaller number of cycles than expected.

"EXERCISE 36. Show that the mean number of external nodes at altitude
k in a random permutation tree of size n is

" uk](1 RETS

Prove Robson’s upper bound on height of permutation trees.

Capacity in occupancy problems. A word of length n over an alphabet
of cardinality m can be viewed as an allocation table that describes the way
n balls are thrown into m urns. The size of the most filled urn, which
corresponds to the maximum number of occurrences of any letter from the
m-ary alphabet in the table, is called the capacity. We let C,, . denote this
random variable, when all m" tables are taken equally likely.

For many applications, m and n grow roughly proportionately. This is
the case in hashing algorithms where n keys are thrown into m lists (buckets,
urns) by means of a hash function; the constraint n/m = O(1) ensures a
constant retrieval time on average. (Knowledge of the capacity is useful,
especially in the context of paging.)

Proposition 6.7 Letn and m tend simultaneously to infinity, with the con-

straint that = = « remains constant. Then, the erpected capacity satisfies
_logn

log log

1 logn

EIOglogn(l + 0(1)) S E{Cn,m} S

oloent T o(1)).
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Proof. We detail the proof when o = 1 and abbreviate C, = C,, ,,. From
Chapter 2, we know that

PHC, <) = Z@)e(2))"

n? (6.45)
Pr{C,, > b} F (C"z - (eb(z))n)’

where e,(2) is the truncated exponential:

b .
a(z) =25
=0
The two equalities of (6.45) permit to bound the left part and right part
of the distribution of capacity. We know already, from the study of large
powers, that the central part of a distribution may be approached via the
saddle point value { = 1. Thus, taking saddle point bounds at 1, we get

Pr{C. <b} < ™ ﬂ@)

n" [

Pr{C,>b} < "rij" 1 (@)") . (6.46)
We set
puln) = (eb(l)) (6.47)

This quantity represents the probability that n Poisson variables of rate 1
all have value b or less. (We know for elementary probability theory that
this should be a reasonable approximation of the problem at hand.) A weak
form of Stirling’s formula,

Tn (n2>1)

then yields an alternative form of (6.46),

Pr{C, < b} < 2/mnpy(n)
Pr{C, >b} < 2Vmn(1 - ps(n))

(6.48)

For fixed n, the function p,(n) increases steadily from e™" to 1 as b varies
from 0 to oco. The problem is thus reduced to analyzing its variation. In
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particular, the “transition region” where p,(n) stays away from both 0 and
1 is expected to play a role. This suggests defining by = by(n) such that

so that
log n

bo(n) = log logn

(14 o(1)).

We also observe that, as n,b — oo,

o . e! 1 "
() = (1= gy + O y)

exp (—(m-{- 1)1 +O((m+2)!) .

Léft tail. We take b = | 1b] and a simple computation from (6.49) shows
~ that for n large enough, '

ps(n)
(6.49)

ps(n) < exp(—v/n).

Thus, by the first inequality of (6.48), the probability that the capacity be
less than b, is exponentially small:

1
Pr{C,. < Ebo(n)} < 2v/mnexp(—v/n). (6.50)
Right tail. Take b = 2by. Then, again from (6.49), for n large enough,
1 1
1—ps(n) <1—exp(—=) = —(1+0(1)).
n n
Thus, the probability of observing a capacity that exceeds 2b, is vanishingly

small, and is O(n=1/2).
Taking next b = 2by + r with r > 0, similarly gives the bound

T 1\
PI‘{C,, > 2bo(n) + T} < 2\/; (m) . (651)
Then Equations (6.50) and (6.51) imply

E{C.} < 2by(n)+ i?ﬁ(bo(n))" = 2bo(n)(1 +0(1))

Ldb0(n)]
E{C) 2 3 [1-2/Fmexp(~V3) = go(n)(1+o(1)).

r=0

(6.52)
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This justifies the claim of the proposition when a = 1. The general case
(a # 1) follows similarly from saddle point bounds taken at { = a. a

The analysis in the proof above is not tight. Actually, the full saddle
point method may be used, which eliminates the spurious y/n factors in the
estimates above. In this way, it can be proved that the expected capacity
satisfies, for any fixed a = n/m:

logn

E{Cum}~ loglogn’

This result, in the context of longest probe sequences in hashing, was ob-
tained by Gonnet [11] under the Poisson model. Many key estimates re-
garding random allocations (including capacity) are to be found in the book
by Kolchin et al. [18]. Analysis of the type discussed above are also useful
in evaluating various dynamic hashing algorithms by saddle point meth-
ods [8, 26].

6.12 Notes

Saddle point methods take their sources in applied mathematics, one of
them being the asymptotic analysis by Debye (1909) of Bessel functions
of large order. Saddle point analysis is sometimes called steepest descent
analysis, especially when integration contours strictly coincide with steepest
descent paths. Saddle points themselves are also called critical points (i.e.,
' points where a first derivative vanishes). Because of its roots in applied
mathematics, the method is well covered by the literature in this area, and
we refer to the books by Olver [25], Henrici [16] or Wong [30] for extensive
discussions. A vivid introduction to the subject is to be found in De Bruijn’s
book [5]. We also recommend Odlyzko’s impressive survey [23].

To a large extent, saddle point methods have made an irruption in com-
binatorial enumerations in the 1950’s. Early combinatorial papers were con-
cerned with permutations (involutions) or set partitions: this includes works
by Moser and Wyman [20, 21, 22] that are mostly directed towards entire
functions.

Hayman’s approach [15] which we have exposed here (see also [30]) is
notable in its generality as it considered saddle point analysis from a more
abstract perspective by introducing general closure theorems. A similar
thread was followed by Harris and Schoenfeld who gave stronger conditions
then permitting full asymptotic expansions [14]; Odlyzko and Richmond [24]
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were successful in connecting this with Hayman admissibility. Another valu-
able work is Wyman’s extension to nonpositive functions [31].

Interestingly enough, developments that parallel the ones in combinato-
rial analysis have taken place in other regions of mathematics.

In 1954, Daniels [3] introduced saddle point methods to obtain refined
versions of the central limit theorem of probability theory. See for instance
the description in Greene and Knuth’s book [12]. Since then, the saddle point
method has proved a useful tool for deriving Gaussian limiting distributions.
We have given here some idea of this approach which is to be developed
further in a later chapter, where we shall discuss some of Canfield’s results [2].
In a related context, Flajolet and Odlyzko proved that iterates of positive
polynomials lead to Gaussian laws [10], a property that is useful in the
combinatorial analysis of balanced trees.

Analytic number theory also makes a heavy use of saddle point analysis.
In additive number theory, the works by Hardy, Littlewood, and Ramanu-
jan relative to integer partitions were especially influential, see for instance
Andrews’ book [1) and Hardy’s book on Ramanujan [13] for a fascinating
perspective. In multiplicative number theory, generating functions take the
form of Dirichlet series while Perron’s formula replaces Cauchy’s formula.
For saddle point methods in this context, we refer to Tenenbaum'’s book [29]
and his seminar survey [28].

A more global perspective on limit probability distributions will be given
in a later chapter. ' '
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Problems and Exercises

A large number of fast growing functions are amenable to saddle point
analysis.
EXERcCISE 37. Give an asymptotic equivalent for

" exp( b
(=" exp( =532

ExERcCISE 38. Compare

{z"]tan(e® — 1) and [z"]etan 1,

EXERCISE 39. Discuss

[=")(9(2))*h(z)
when g(z) is positive but h is not constrained. In particular discuss.
the shape of the asymptotic equivalent when several of the derivatives

of h vanish at the saddle point.
Find an asymptotic equivalent for fixed r and n — 40 of

["}(1 - )7 (1 + =)™,

EXERCISE 40. Analyse

[z"] et/ (1= :) [z"] log z/(l 2)

(i- )
Devise an elementary perturbation theory of saddle points in order to
cover this and similar cases.

Nonpositive functions can also be analysed by saddle point methods. In
this case, selection of a saddle point path is dictated by the considerations
of Section 6.3. Rather unexpected types of fluctuations may arise in such

cases.
EXERCISE 41. Analyse

a2\ (—1)%

EXERCISE 42. Analyze

["] exp( T4 ).
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