NEW RESEARCH
on
THEORY and PRACTICE
of
SORTING and SEARCHING

R. Sedgewick
Princeton University

J. Bentley
Bell Laboratories
Layers of abstraction in modern computing

- Applications
- Programming Environment
- Algorithm Implementations
- Operating System
- Hardware

Ongoing research and development at all levels

Sorting and searching

- fundamental algorithms
- still the bottleneck in modern applications
- primitive in modern programming environments
- methods in use based on 1970s research

BASIC RESEARCH on algorithm analysis
Motivation

MOORE'S LAW: Processing Power Doubles every 18 months
simlar maxims:
- memory capacity doubles every 18 months
- problem size expands to fill memory

Sedgewick's Corollary: Need Faster Sorts every 18 months!
- sorts take longer to complete on new processors
 \[
 \text{old: } N \log N \\
 \text{new: } \frac{(2N \log 2N)}{2} = N \log N + \color{red}N
 \]

Other compelling reasons to study sorting
- cope with new languages and machines
- rebuild obsolete libraries
- address new applications
- intellectual challenge of basic research

Simple fundamental algorithms: the ultimate portable software
Quicksort

Recursive procedure based on PARTITIONING

to PARTITION an array, divide it so that
- some element a[i] is in its final position
- no larger element left of i
- no smaller element right of i

After partitioning, sort the left and right parts recursively

PARTITIONING METHOD:
- pick a partitioning element
- scan from right for smaller element
- scan from left for larger element
- exchange
- repeat until pointers cross
Quicksort example
Partitioning examples

A S O R T I N G E X A M P L E

A S A M P L E
A A S M P L E
O X S M P L E
A A E E X O X S M P L E
R E R T I N G
A A E E T I N G O X S M P L R
Partitioning implementation

Use Item to embody records-with-keys abstraction
- less: compare two keys
- exch: exchange two records

```c
int partition(Item a[], int l, int r)
{
    int i = l-1, j = r; Item v = a[r];
    for (;;)
    {
        { 
            while (less(a[++i], v)) ;
            while (less(v, a[--j]))
                if (j == l) break;
            if (i >= j) break;
            exch(a[i], a[j]);
        }
        exch(a[i], a[r]);
        return i;
    }
}
```

Detail (?)
- how to handle equal keys [stay tuned]
Quicksort implementation

```c
quicksort(Item a[], int l, int r)
{
    int i;
    if (r > l)
    {
        i = partition(a, l, r);
        quicksort(a, l, i-1);
        quicksort(a, i+1, r);
    }
}
```

Issues

- overhead for recursion?
- small files
- running time depends on input
- worst-case time cost (quadratic, a problem)
- worst-case space cost (linear, a serious problem)
Quicksort analysis (distinct keys)

BEST case: split in the middle, $O(N \lg N)$ compares
- $C(N) = N + 2 \ C(N/2)$

WORST case: split at one end, $O(N^2)$ compares
- $C(N) = C(N-1) + N$

AVERAGE case: split at random position, $\sim 2 \ N \ln N$ compares
- $C(N) = N + 2 \ (C(0) + ... + C(N-1))/N$

Defense against worst case:
- choose random partitioning element
- $N \log N$ randomized algorithm (Hoare, 1960)

Mathematical analysis
- predicts performance
- guides performance tuning
- nontrivial
- ex: limit distribution?
Quicksort with equal keys

N keys, n distinct key values, N >> n
How to handle keys equal to PE?
DANGER: quadratic performance pitfalls

Method A: Put equal keys all on one
 \[
 \begin{array}{cccccccc}
 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
 \end{array}
 \]
NO: quadratic for n = 1 (all keys equal)

Method B. scan over equal keys?
 \[
 \begin{array}{cccccccc}
 1 & 4 & 1 & 4 & 1 & 4 & 1 & 4 \\
 1 & 4 & 1 & 4 & 1 & 4 & 1 & 4 \\
 1 & 1 & 1 & 4 & 1 & 4 & 4 & 4 \\
 \end{array}
 \]
NO: quadratic for n = 2 (linear for n = 1)

recursion GUARANTEES that above cases WILL occur for small n
randomization provides NO protection (!!)
Quicksort with equal keys (continued)

Method C. special case for small n?
- guaranteed O(N) for small n
- O(N) overhead even if no equal keys

Method D. stop both pointers on equal keys?
- 4 9 4 1 4 4 9 1 4
- 1 4 4 1 4 9 9 4 4
- guaranteed O(N lg N) for small n
- no overhead if no equal keys
- state of the art for library qsorts (through 1990s)

Not all library qsorts use Method D
Run qsort on huge file with two different keys
- doesn’t finish: A or B
- quick: C
- immediate: D
Can be inhibiting factor in library utility
Three-way partitioning

PROBLEM: Sort files with 3 distinct key values

Natural and appealing problem
- Hoare, 1960
- Dijkstra, "Dutch National Flag Problem"

Immediate application to quicksort
- put ALL keys equal to the PE into position

<table>
<thead>
<tr>
<th>less than v</th>
<th>equal to v</th>
<th>greater than v</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>l</td>
<td>j</td>
<td>i</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Early solutions cumbersome and/or expensive
- not used in practical sorts before mid-1990s
FOUR-part partition

- some elements between i and j equal to v
- no larger element left of i
- no smaller element right of j
- more elements between i and j equal to v

Swap equal keys into center

<table>
<thead>
<tr>
<th>equal</th>
<th>less</th>
<th>greater</th>
<th>equal</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>l</td>
<td>p</td>
<td>i</td>
<td>j</td>
<td>q</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
</tbody>
</table>

All the right properties

- easy to implement
- linear if keys all equal
- no extra compares if no equal keys (always N-1)

Expands utility of system qsort

- old: $N \lg N$ (or quadratic!) for small n
- new: LINEAR for small n
void quicksort(Item a[], int l, int r)
{
 int i, j, k, p, q; Item v;
 if (r <= l) return;
 v = a[r]; i = l-1; j = r; p = l-1; q = r;
 for (;;)
 {
 while (less(a[++i], v)) ;
 while (less(v, a[--j])) if (j == l) break;
 if (i >= j) break;
 exch(a[i], a[j]);
 if (eq(a[i],v)) { p++; exch(a[p],a[i]); }
 if (eq(v,a[j])) { q--; exch(a[q],a[j]); }
 }
 exch(a[i], a[r]); j = i-1; i = i+1;
 for (k = l ; k < p; k++, j--) exch(a[k], a[j]);
 for (k = r-1; k > q; k--, i++) exch(a[k], a[i]);
 quicksort(a, l, j);
 quicksort(a, i, r);
}
Analysis of 3-way partitioning

Average running time of Quicksort with 3-way partitioning?

Empirical studies (Bentley, 1993)
- LINEAR number of compares for small n

ONE key value
- $N - 1$ compares

TWO key values: x_1 instances of first, x_2 instances of second
- with probability x_1/N: $(N - 1) + (x_2 - 1)$ compares
- with probability x_2/N: $(N - 1) + (x_1 - 1)$ compares
- total avg:
 \[N - 2 + 2 \times x_1 \times x_2 / N \]
 \[\text{max at } x_1 = x_2: 1.5 \times N - 2 \]

THREE key values
- [analysis looks complicated]
Detailed analysis of 3-way partitioning

Burge (1975): analysis of search trees with equal keys
Sedgewick (1975): lower bound on Quicksort with equal keys
- n distinct key values
- xi instances of key i, for i from 1 to n
- $x_1 + x_2 + \ldots + x_n = N$

THM: Average number of compares is
$$C = N - n + 2QN$$
Q is "Quicksort entropy"
- $p_i = x_i/N$ (convert to probabilities)
- $q_{ij} = p_i \cdot p_j / (p_i + \ldots + p_j)$
- $r_{ij} = q_{ij} + \ldots + q_{jj}$
- $Q = r_{1n} + r_{2n} + \ldots + r_{nn}$

Ex: xi all equal (to N/n)
- $p_i = 1/n$
- $q_{ij} = (1/n)(1/(i-j+1))$
- $r_{ij} = (1/n)(1 + 1/2 + \ldots + 1/(i-j+1))$
- $Q = \ln n + O(1)$
- $C = 2N \ln n + O(N)$
Information-theoretic sorting lower bound

DECISION TREE describes all possible sequences of compares

```
1 < 2 ?
  2 < 3 ?
    1 < 2 < 3
    1 < 2 < 3
  1 < 3 ?
  1 < 3 ?
    2 < 1 < 3
    2 < 1 < 3
  2 < 3 ?
    2 < 3 < 1
    3 < 2 < 1
    3 < 1 < 2
```

number of leaves > \(\frac{N!}{x_1! \ x_2! \ x_3! \ ... \ x_n!} \) [multinomial coefficient]

take \(\lg \) for bound on compares

- \(C > \lg N! - \lg x_1! - ... - \lg x_n! \)
- \(C > N \ lg N - N - x_1 \ lg x_1 - ... - x_n \ lg x_n \)
 (Stirling's approximation)

ENTROPY:

- \(H = \frac{x_1}{N} \lg(N/x_1) + ... + \frac{x_n}{N} \lg(N/x_n) \)
- \(N \ H = N \ lg N - x_1 \ lg x_1 - ... - x_n \ lg x_n \)

THM: \(C > N \ H - N \)
Entropy comparison

Relationship between Q and H??

Standard entropy H
- equal to \(\lg n \) if all freqs equal
- maximized when all freqs equal (H never exceeds \(\lg n \))

"Quicksort entropy" Q
- approaches \(\ln n \) if all freqs equal
- NOT maximized when all freqs equal

Ex: \(x_1 = x_2 = x_3 = N/3 \)
- \(Q = .4444... \)

Ex: \(x_1 = x_3 = .34N, x_2 = .32N \)
- \(Q = .4453... \)
Entropy comparison (continued)

Ex: x_2 through x_n all equal
horizontal axis: x_1 (ranges from 0 to N)
$N = 512$, curve for each n from 2 to 30

"Quicksort entropy" Q

Standard entropy H

General result relating Q and H?
 - answer found in basic research by Melhorn (1978)
Quicksort is optimal

"Quicksort entropy" function arises in analysis of "self-organizing" binary search trees

- Allen and Munro, 1978

THM (Melhorn, 1978): $Q < (\ln 2) H$

THM (1999): Quicksort is optimal (!)

Proof:

\[N H - N < C < (2 \ln 2) N H + N \]

[C grows asymptotically with NH]

Conjecture: with sampling, $C*/NH \rightarrow 1$

NO sorting method can use fewer compares (asymptotically) for ANY distribution of key values
Extensions and applications

Optimality of Quicksort
- underscores intrinsic value of algorithm
- resolves basic theoretical question
- analysis shows qsort to be sorting method of choice for randomly ordered keys, abstract compare small number of key values

Real-world applications
- nonuniform key values?
- varying key length?
- arbitrary distribution?

Extension 1: Adapt for varying key length
- Multikey Quicksort
- SORTING method of choice

Extension 2: Adapt algorithm to searching
- Ternary search trees
- SEARCHING method of choice
MSD radix sort

Sort files where keys are sequences of BYTES
 • each byte has value less than M
 • typical: group of bits

METHOD:
 • Partition file into M buckets
 all keys with first byte 0
 all keys with first byte 1
 all keys with first byte 2
 ...
 all keys with first byte M-1
 • Sort M pieces recursively

Tradeoff
 • large M: space for buckets (too many empty buckets)
 • small M: too many passes (too many keys per bucket)
MSD radix sort potential fatal flaw

Each pass ALWAYS takes time proportional to N+M

- initialize the buckets
- scan the keys

Ex: (ASCII bytes) $M = 256$
 - 100 times slower than insertion sort for $N = 2$
Ex: (UNICODE) $M = 65536$
 - 30,000 times slower than insertion sort for $N = 2$

Too slow for small files

Recursive structure guarantees sort is used for small files

Solution: cut to insertion sort for small files

Practical problems for library sort

- choice of radix
- cutoff point
- nonuniformity in keys
Three-way radix Quicksort

PROBLEM:
- long keys that differ slightly can be costly to compare
- this is the common case!

SOLUTION:
- Do three-way partitioning on key characters
- Sort three parts recursively
 (increment char ptr on middle subfile)

Ex: N records with huge (w-byte) keys
- Byte comparisons for pointer sort
 MSD radix sort: Nw
 3-way radix quicksort: 2 N ln N
- SUBLINEAR sort

Multikey Quicksort
- same algorithm, keys are VECTORS
- Unicode (16-bit chars) blurs distinction
String sort example

<table>
<thead>
<tr>
<th>actinian</th>
<th>coenobite</th>
<th>actinian</th>
</tr>
</thead>
<tbody>
<tr>
<td>jeffrey</td>
<td>conelrad</td>
<td>bracteal</td>
</tr>
<tr>
<td>coenobite</td>
<td>actinian</td>
<td>coenobite</td>
</tr>
<tr>
<td>conelrad</td>
<td>bracteal</td>
<td>conelrad</td>
</tr>
<tr>
<td>secureness</td>
<td>secureness</td>
<td>cumin</td>
</tr>
<tr>
<td>cumin</td>
<td>dilatedly</td>
<td>chariness</td>
</tr>
<tr>
<td>chariness</td>
<td>inkblot</td>
<td>centesimal</td>
</tr>
<tr>
<td>bracteal</td>
<td>jeffrey</td>
<td>cankerous</td>
</tr>
<tr>
<td>displease</td>
<td>displease</td>
<td>circumflex</td>
</tr>
<tr>
<td>repertoire</td>
<td>repertoire</td>
<td>repertoire</td>
</tr>
<tr>
<td>dourness</td>
<td>dourness</td>
<td>dourness</td>
</tr>
<tr>
<td>centesimal</td>
<td>southeast</td>
<td>southeast</td>
</tr>
<tr>
<td>dilatedly</td>
<td>cumin</td>
<td>secureness</td>
</tr>
<tr>
<td>inkblot</td>
<td>chariness</td>
<td>dilatedly</td>
</tr>
<tr>
<td>southeast</td>
<td>centesimal</td>
<td>inkblot</td>
</tr>
<tr>
<td>cankerous</td>
<td>cankerous</td>
<td>jeffrey</td>
</tr>
<tr>
<td>circumflex</td>
<td>circumflex</td>
<td>displease</td>
</tr>
</tbody>
</table>
Perspective on radix sorting

Three-way radix quicksort
 - blends quicksort and MSD radix sort

quicksort
 - leading part of keys used in all compares
 - short inner loop otherwise

MSD radix sort
 - empty bins on small files
 - adapts poorly to variable-length keys
 - long inner loop

Three-way radix quicksort
 - compares characters, not strings
 - short inner loop
 - adapts to multiket
 - METHOD of CHOICE for sorting long keys
 easy to implement
 works well on nonuniform keys
 fastest in practice
M-way trie

SEARCH data structure corresponding to MSD radix sort

Nodes contain characters/links to implement M-way branching
M-way trie analysis

Assumptions

• N keys, total of C characters in keys
• approx. N trie nodes (or more, details omitted)
• M links per node

Space: \(N \times M + C \)

Time: \(\log N / \log M \) CHARACTER comparisons (constant in practice)

Ex: \(M=26, \ N=20000 \)

520,000 links, tree height 3-4

Ex: \(M=16, \ N=1M \)

16M links, tree height 5

Faster than hashing

• successful search: no arithmetic
• unsuccessful search: don't need to examine whole key

DRAWBACKS

• good implementation nontrivial
• too much space for null links
Ternary search trees (TSTs)

Search algorithm corresponding to 3-way radix Quicksort

Nodes contain characters and links for three-way branching
- left: key character less
- middle: key character equal
- right: key character greater

Equivalent to TRIE with BST implementation of trie nodes
TST implementation

Search algorithm writes itself

```c
int RSTsearchR(RSTptr x, char *v) {
    if (x == NULL) return 0;
    if ((*v == ' ') && (x->ch == ' ')) return 1;
    if (*v < x->ch)
        return RSTsearchR(x->l, v);
    if (*v == x->ch)
        return RSTsearchR(x->m, v+1);
    if (*v > x->ch)
        return RSTsearchR(x->r, v);
}
```

Optimal (fully balanced) tree

- SUCCESSFUL search: \(\lg N + [\text{key length}] \) character compares
- UNSUCCESSFUL search: \(\lg N \) character compares

Idea dates at least to 1962

- practical impact unnoticed until late 1990s
- casualty of compare abstraction
Perspective on radix searching

TSTs blend binary search trees (BSTs) and tries

BSTs (correspond to Quicksort)
- leading part of keys always used in compares
- short inner loop otherwise

tries
- too many null links for large radix
- long inner loop for small radix

TSTs
- compares characters, not strings
- equivalent to using BSTs for trie nodes
- automatically adapts radix to keys
- METHOD of CHOICE for searching
 - faster than hashing
 - gracefully grows and shrinks
 - support partial match, near-neighbor search, ...

AVERAGE-CASE ANALYSIS?
Clement, Flajolet, Valle (1999)
- unifies classical tree/trie analyses
- generalizes to nonuniform models
- extends to cover TSTs
- exploits powerful tools
 - generalized Ruelle operators
 - Mellin transforms

Eight theorems
- algebraic and asymptotic analysis
- Poisson and Bernoulli models
- path lengths and height

THM: Asymptotic TST search cost: \(\frac{Q}{H} \lg N \)

Open problems
- TST height?
- concentration of distribution?
- limit distributions?
New research on fundamental algorithms
- 3-way quicksort
 method of choice for small keys
- multikey quicksort
 method of choice for large keys
- TSTs
 searching method of choice

Direct practical impact
- new applications demand fast algorithms
- new algs improve performance for all apps

old basic research results establish optimality of new algs

Deep new theory analyzes new algorithms
- predict performance
- set parameters

Future challenges
- similar refinements for other classic fundamental algorithms
Allen and Munro, Self-organizing search trees
 • JACM, 1978
Hoare, Quicksort
 • Computer Journal, April 1962
Clampett, Randomized binary searching with trees
 • CACM, March 1964
devroye, A probabilistic analysis of the height of tries
 • Acta Informatica, 1984
 • Addison-Wesley, 1975
Sedgewick, Quicksort with equal keys
 • SICOMP, June 1977
Wegner, Quicksort for equal keys
 • IEEE Trans. on Computers, April 1985
Bentley and McIlroy, Engineering a sort function
 • Software Practice and Experience, Jan. 1993
Bentley and Sedgewick, Sorting/searching strings
 • SODA, January 1997
 • Dr. Dobbs Journal, April and November, 1998
Clement, Flajolet, and Vallee, Analysis of Tries
 • Algorithmica, 1999
Average number of compares for QUICKSORT with distinct keys

Recurrence from recursive program

\[C_N = N - 1 + \frac{1}{N} \sum_{1 \leq j \leq N} (C_{j-1} + C_{N-j}) \]

Change \(j \) to \(N + 1 - j \) in second sum

\[C_N = N - 1 + \frac{2}{N} \sum_{1 \leq j \leq N} C_{j-1}. \]

Multiply both sides by \(N \)

\[NC_N = N(N - 1) + \frac{2}{N} \sum_{1 \leq j \leq N} C_{j-1}. \]

Subtract same equation for \(N - 1 \)

\[NC_N - (N - 1)C_{N-1} = 2N + 2C_{N-1} \]

Rearrange terms

\[NC_N = (N + 1)C_{N-1} + 2N \]

Divide by \(N(N + 1) \)

\[\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1} \]

Telescope

\[\frac{C_N}{N + 1} = 2(H_{N+1} - 1) \]

Approximate

\[C_N \approx 2N \ln N \]
Average number of compares for QUICKSORT with equal keys

Recurrence for average number of comparisons

\[C(x_1, \ldots, x_n) = N + 1 + \frac{1}{N} \sum_{1 \leq j \leq N} x_j (C(x_1, \ldots, x_{j-1}) + C(x_{j+1} \ldots x_n)) \]

Multiply both sides by \(N = x_1 + \ldots + x_n \)

\[NC(x_1, \ldots, x_n) = N(N-1) + \sum_{1 \leq j \leq N} x_j C(x_1, \ldots, x_{j-1}) + \sum_{1 \leq j \leq N} x_j C(x_{j+1}, \ldots, x_n) \]

Subtract same equation for \(x_2, \ldots, x_n \) (with \(D(x_1 \ldots x_n) \equiv C(x_1, \ldots, x_n) - C(x_2, \ldots, x_n) \))

\[(x_1 + \ldots + x_n)D(x_1 \ldots, x_n) = x_1^2 - x_1 + 2x_1(x+2 + \ldots + x_n) + \sum_{2 \leq j \leq n} x_j D(x_1, \ldots, x_{j-1}) \]

Subtract same equation for \(x_1, \ldots, x_{n-1} \)

\[(x_1 + \ldots + x_n)D(x_1, \ldots, x_n) - (x_1 + \ldots + x_{n-1})D(x_1, \ldots, x_{n-1}) = 2x_1 x_n + x_n D(x_1, \ldots, x_{n-1}) \]

Simplify, divide by \(N \)

\[D(x_1, \ldots, x_n) = D(x_1, \ldots, x_{n-1}) + \frac{2x_1 x_n}{x_1 + \ldots + x_n} \]

Telescope (twice)

\[C(x_1, \ldots, x_n) = N - n + 2 \sum_{1 \leq k \leq j \leq n} \frac{x_k x_j}{x_k + \ldots + x_j} \]
Upper bound on QUICKSORT entropy

Quicksort entropy definition

\[Q = \sum_{1 \leq k < j \leq n} \frac{p_k p_j}{p_k + \ldots + p_j} \]

Separate double sum

\[Q = \sum_{1 \leq k < n} p_k \sum_{k < j \leq n} \frac{p_j}{p_k + \ldots + p_j} \]

Substitute \(q_{ij} = (p_i + \ldots + p_j / p_i) \) (note: \(1 = q_{ii} \leq q_{i(i+1)} \leq \ldots \leq q_{in} < 1 / p_i \))

\[Q = \sum_{1 \leq k < N} p_k \sum_{k < j \leq n} \frac{q_{kj} - q_{k(j-1)}}{q_{kj}} \]

Bound with integral

\[Q < \sum_{1 \leq k < n} p_k \int_{q_{kk}}^{q_{kn}} \frac{1}{x} \, dx \]

Simplify

\[Q < \sum_{1 \leq k < n} p_k \ln q_{kn} \leq \sum_{1 \leq k < n} p_k (- \ln p_k) = H \ln 2 \]