QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley
MOTIVATION

MOORE'S LAW: Processing Power Doubles every 18 months but also:
- memory capacity doubles every 18 months
- problem size expands to fill memory

Sedgewick's Corollary: Need Faster Sorts every 18 months!
(annoying to wait longer, even to sort twice as much, on new machine)
old: $N \lg N$
new: $(2N \lg 2N)/2 = N \lg N + N$

Other compelling reasons to study sorting
- cope with new languages, machines, and applications
- rebuild obsolete libraries
- intellectual challenge of basic research

Simple fundamental algorithms: the ultimate portable software
void quicksort(Item a[], int l, int r)
{
 int i = l-1, j = r; Item v = a[r];
 if (r <= l) return;
 for (;;)
 {
 while (a[++i] < v) ;
 while (v < a[--j]) if (j == l) break;
 if (i >= j) break;
 exch(a[i], a[j]);
 }
 exch(a[i], a[r]);
 quicksort(a, l, i-1);
 quicksort(a, i+1, r);
}

Detail (?): How to handle keys equal to the partitioning element
Partitioning with equal keys

How to handle keys equal to the partitioning element?

METHOD A: Put equal keys all on one side?

\[
\begin{array}{cccccccccccccccc}
4 & 1 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4
\end{array}
\]

NO: quadratic for n=1 (all keys equal)

METHOD B: Scan over equal keys? (linear for n=1)

\[
\begin{array}{cccccccccccccccc}
1 & 4 & 1 & 1 & 4 & 4 & 4 & 1 & 4 & 1 & 1 & 4 & 4 & 4 \\
1 & 1 & 1 & 1 & 4 & 4 & 4 & 1 & 4 & 1 & 4 & 4 & 4 & 4
\end{array}
\]

NO: quadratic for n=2

METHOD C: Stop both pointers on equal keys?

\[
\begin{array}{cccccccccccccccc}
4 & 9 & 4 & 4 & 4 & 1 & 4 & 4 & 4 & 9 & 4 & 4 & 1 & 4 \\
1 & 4 & 4 & 4 & 1 & 4 & 4 & 4 & 9 & 4 & 9 & 4 & 4 & 4
\end{array}
\]

YES: N\lg N guarantee for small n, no overhead if no equal keys
Partitioning with equal keys

How to handle keys equal to the partitioning element?

METHOD C: Stop both pointers on equal keys?

YES: $N \lg N$ guarantee for small n, no overhead if no equal keys

METHOD D (3-way partitioning): Put all equal keys into position?

yes, BUT: early implementations cumbersome and/or expensive
Quicksort common wisdom (last millennium)

1. Method of choice in practice
 - tiny inner loop, with locality of reference
 - $N\log N$ worst-case “guarantee” (randomized)
 - but use a radix sort for small number of key values

2. Equal keys can be handled (with care)
 - $N\log N$ worst-case guarantee, using proper implementation

3. Three-way partitioning adds too much overhead
 - “Dutch National Flag” problem

4. Average case analysis with equal keys is intractable
 - keys equal to partitioning element end up in both subfiles
Changes in Quicksort common wisdom

1. Equal keys abound in practice.
 - never can anticipate how clients will use library
 - linear time required for huge files with few key values

2. 3-way partitioning is the method of choice.
 - greatly expands applicability, with little overhead
 - easy to adapt to multikey sort
 - no need for separate radix sort

3. Average case analysis already done!
 - Burge, 1975
 - Sedgewick, 1978
 - Allen, Munro, Melhorn, 1978
Bentley-McIlroy 3-way partitioning

Partitioning invariant

<table>
<thead>
<tr>
<th>equal</th>
<th>less</th>
<th>greater</th>
<th>equal</th>
</tr>
</thead>
</table>

- move from left to find an element that is not less
- move from right to find an element that is not greater
- stop if pointers have crossed
- exchange
- if left element equal, exchange to left end
- if right element equal, exchange to right end

Swap equals to center after partition

<table>
<thead>
<tr>
<th>less</th>
<th>equal</th>
<th>greater</th>
</tr>
</thead>
</table>

KEY FEATURES

- always uses N-1 (three-way) compares
- no extra overhead if no equal keys
- only one “extra” exchange per equal key
void quicksort(Item a[], int l, int r)
{
 int i = l-1, j = r, p = l-1, q = r; Item v = a[r];
 if (r <= l) return;
 for (;;)
 {
 while (a[++i] < v);
 while (v < a[--j]) if (j == l) break;
 if (i >= j) break;
 exch(a[i], a[j]);
 if (a[i] == v) { p++; exch(a[p], a[i]); }
 if (v == a[j]) { q--; exch(a[j], a[q]); }
 }
 exch(a[i], a[r]); j = i-1; i = i+1;
 for (k = l; k < p; k++, j--) exch(a[k], a[j]);
 for (k = r-1; k > q; k--, i++) exch(a[i], a[k]);
 quicksort(a, l, j);
 quicksort(a, i, r);
}
Information-theoretic lower bound

Definition: An \((x_1, x_2, \ldots, x_n)\)-file has

\[N = x_1 + x_2 + \ldots + x_n \text{ keys}, \]

\(n \) distinct key values, with

\[x_i = \text{number of occurrences of the } i\text{-th smallest key} \]

\[p_i = \frac{x_i}{N} \]

THEOREM. Any sorting method uses at least

\[NH - N \text{ compares (where } H = -\sum_{1 \leq k \leq n} p_k \log p_k \text{ is the entropy) } \]

to sort an \((x_1, x_2, \ldots, x_n)\)-file, on the average.
Information-theoretic lower-bound proof

DECISION TREE describes all possible sequences of comparisons

Number of leaves must exceed number of possible files
\[
\binom{N}{x_1 x_2 \ldots x_n} = \frac{N!}{x_1! x_2! \ldots x_n!}
\]

Avg. number of compares is minimized when tree is balanced
\[
C > \lg \frac{N!}{x_1! x_2! \ldots x_n!} = \lg N! - \lg x_1! - \lg x_2! - \ldots - \lg x_n!
\]

By Stirling’s approximation,
\[
C > N \lg N - N - x_1 \lg x_1 - x_2 \lg x_2 - \ldots - x_n \lg x_n
\]
\[
= (x_1 + \ldots + x_n) \lg N - N - x_1 \lg x_1 - x_2 \lg x_2 - \ldots - x_n \lg x_n
\]
\[
= NH - N
\]
\[C(1, n) = N - 1 + \frac{1}{N} \sum_{1 \leq j \leq n} x_j (C(1, j - 1) + C(j + 1, n)) \]

1. Define \(C(x_1, ..., x_n) \equiv C(1, n) \) to be the mean number of compares to sort the file

\[NC(1, n) = N(N - 1) + \sum_{1 \leq j \leq n} x_j C(1, j - 1) + \sum_{1 \leq j \leq n} x_j C(j + 1, n) \]

2. Multiply both sides by \(N = x_1 + ... + x_n \)

\[(x_1 + ... + x_n)D(1, n) = x_1^2 - x_1 + 2x_1(x_2 + ... + x_n) + \sum_{2 \leq j \leq n} x_j D(1, j - 1) \]

3. Subtract same equation for \(x_2, ..., x_n \) and let \(D(1, n) = C(1, n) - C(2, n) \)

\[(x_1 + ... + x_n - 1)D(1, n - 1) = 2x_1x_n + x_n D(1, n - 1) \]
Analysis of Quicksort with equal keys (cont.)

\[(x_1 + \ldots + x_n)D(1, n) - (x_1 + \ldots + x_{n-1})D(1, n-1) = 2x_1x_n + x_nD(1, n-1)\]

5. Simplify, divide both sides by \(N = x_1 + \ldots + x_n\)

\[D(1, n) = D(1, n-1) + \frac{2x_1x_n}{x_1 + \ldots + x_n}\]

6. Telescope (twice)

\[C(1, n) = N - n + \sum_{1 \leq k < j \leq n} \frac{2x_kx_j}{x_k + \ldots + x_j}\]

THEOREM. Quicksort (with 3-way partitioning, randomized) uses \(N - n + 2QN\) compares (where \(Q = \sum_{1 \leq k < j \leq n} \frac{p_k p_j}{p_k + \ldots + p_j}\), with \(p_i = x_i/N\)) to sort an \((x_1, \ldots, x_n)\)-file, on the average.
Basic properties of quicksort “entropy”

\[Q = \sum_{1 \leq k < j \leq n} \frac{p_k p_j}{p_k + \ldots + p_j} \quad \text{with } p_i = x_i / N \]

Example: all frequencies equal \((p_i = 1/n)\)

\[Q = \sum_{1 \leq k < n} \frac{1}{n} \sum_{k < j \leq n} \frac{1}{j - k + 1} = \ln n + O(1) \]

Conjecture: \(Q\) maximized when all keys equal?

\[\text{NO:} \]

\[Q = .4444... \quad \text{for } x_1 = x_2 = x_3 = N / 3 \]
\[Q = .4453... \quad \text{for } x_1 = x_3 = .34N, \ x_2 = .32N \]
Upper bound on quicksort “entropy”

\[Q = \sum_{1 \leq k < j \leq n} \frac{p_k p_j}{p_k + \ldots + p_j} \]

1. Separate double sum

\[Q = \sum_{1 \leq k < n} p_k \sum_{k < j \leq n} \frac{p_j}{p_k + \ldots + p_j} \]

2. Substitute \(q_{ij} = (p_i + \ldots + p_j)/p_i \) (note: \(1 = q_{ii} \leq q_{i(i+1)} \leq \ldots \leq q_{in} < 1/p_i \))

\[Q = \sum_{1 \leq k < n} p_k \sum_{k < j \leq n} \frac{q_{kj} - q_{k(j-1)}}{q_{kj}} \]

3. Bound with integral

\[Q = \sum_{1 \leq k < n} p_k \int_{q_{kk}}^{q_{kn}} \frac{1}{x} \, dx < \sum_{1 \leq k < n} p_k \ln q_{kn} < \sum_{1 \leq k < n} p_k (-\ln p_k) = H \ln 2 \]
The average number of compares per element \(C/N \) is always within a constant factor of the entropy \(H \)

- lower bound: \(C > NH - N \) (information theory)
- upper bound: \(C < 2\ln2NH + N \) (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling, \(C \div N \to H \) as sample size increases.
Extensions and applications

Optimality of Quicksort
- underscores intrinsic value of algorithm
- resolves basic theoretical question
Analysis shows Quicksort to be sorting method of choice for
- randomly ordered keys, abstract compare
- small number of key values

Extension 1: Adapt for varying key length
 Multikey Quicksort
 SORTING method of choice: \((Q/H)N\lg N\) byte accesses

Extension 2: Adapt algorithm to searching
 Ternary search trees (TSTs)
 SEARCHING method of choice: \((Q/H)\lg N\) byte accesses

Both conclusions validated by
- Flajolet, Clèment, Valeé analysis
- practical experience
References

Allen and Munro, Self-organizing search trees, JACM, 1978
Hoare, Quicksort, Computer Journal, April 1962
Clampett, Randomized binary searching with trees, CACM, March 1964
Sedgewick, Quicksort with equal keys, SICOMP, June 1977
Wegner, Quicksort for equal keys, IEEE Trans. on Computers, April 1985
Bentley and McIlroy, Engineering a sort function,
 Software Practice and Experience, Jan. 1993
Bentley and Sedgewick, Sorting/searching strings, SODA, January 1997
 and Dr. Dobbs Journal, April and November, 1998
Clement, Flajolet, and Vallee, Analysis of Tries, Algorithmica, 1999