
Robert Sedgewick
Princeton University

Putting the Science
Back into Computer Science

The scientific method

is essential in applications of computation

A personal opinion formed on the basis of decades of experience as a

• CS educator

• author

• algorithm designer

• software engineer

• Silicon Valley contributor

• CS researcher

Personal opinion . . . or unspoken consensus?

Fact of life in applied computing: performance matters

in a large number of important applications

Example: quadratic algorithms are
 useless in modern applications

• millions or billions of inputs

• 1012 nanoseconds is 15+ minutes

• 1018 nanoseconds is 31+ years

Lessons:

 1. Efficient algorithms enable solution of problems

 that could not otherwise be addressed.

 2. Scientific method is essential in understanding

 program performance

Important lessons for
• beginners
• software engineers
• scientists
• [everyone]

•Web commerce
• Bose-Einstein model
• String matching for
genomics
• Natural language
analysis
• N-body problem
.
.
.
[long list]

The scientific method

is essential in understanding program performance

Scientific method

• create a model describing natural world

• use model to develop hypotheses

• run experiments to validate hypotheses

• refine model and repeat

Algorithm designer who does not experiment gets lost in abstraction

Software developer who ignores cost risks catastrophic consequences

model

hypothesis

experiment

1950s: uses scientific method 2000s: uses scientific method?

Warmup: random number generation

Problem: write a program to generate random numbers

model: classical probability and statistics

hypothesis: frequency values should be uniform

weak experiment:

• generate random numbers

• check for uniform frequencies

better experiment:

• generate random numbers

• use x2 test to check frequency
values against uniform distribution

better hypotheses/experiments still needed

• many documented disasters

• active area of scientific research

• applications: simulation, cryptography

• connects to core issues in theory of computation

V = 10

random?

model

hypothesis

experiment

int k = 0;
while (true)
 System.out.print(k++ % V);

int k = 0;
while (true)
{
 k = k*1664525 + 1013904223);
 System.out.print(k % V);
}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 . . .

textbook algorithm that flunks x2 test

Warmup (continued)

Q. Is a given sequence of numbers random?

A. No.

Q. Does a given sequence exhibit some property
 that random number sequences exhibit?

Birthday paradox

 Average count of random numbers generated

 until a duplicate happens is about pV/2

Example of a better experiment:

• generate numbers until duplicate

• check that count is close to pV/2

• even better: repeat many times, check against distribution
• still better: run many similar tests for other properties

“Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin” — John von Neumann

V = 365

average probes
until duplicate

is about 24

Preliminary hypothesis (needs checking)

Modern software requires huge amounts of code

Preliminary hypothesis (needs checking)

Modern software development requires huge amounts of code

 but

performance-critical code implements relatively few fundamental algorithms

Starting point

How to predict performance (to compare algorithms)?

Not the scientific method: O-notation

• hides details of implementation, properties of input

• useful for classifying algorithms and complexity classes

• not at all useful for predicting performance

Scientific method: Tilde-notation.

• doubling test: T(2N)/T(N) ~ 2b

• an effective way to predict performance

Hypothesis: Running time is ~aNb

Theorem: Running time is O(Nb)

Detailed example: paths in graphs

A lecture within a lecture

is a fundamental operation that demands understanding

Ground rules for this talk
• work in progress (more questions than answers)
• basic research
• save “deep dive” for the right problem

Applications
• graph-based optimization models
• networks
• percolation
• computer vision
• social networks
• (many more)

Basic research
• fundamental abstract operation with numerous applications
• worth doing even if no immediate application
• resist temptation to prematurely study impact

Finding an st-path in a graph

t

s

Motivating example: maxflow

Ford-Fulkerson maxflow scheme
• find any s-t path in a (residual) graph
• augment flow along path (may create or delete edges)
• iterate until no path exists

Goal: compare performance of two basic implementations
• shortest augmenting path
• maximum capacity augmenting path

Key steps in analysis
• How many augmenting paths?
• What is the cost of finding each path?

research literature

this talk

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations
• shortest augmenting path
• maximum-capacity augmenting path

Graph parameters
• number of vertices V
• number of edges E
• maximum capacity C

How many augmenting paths?

How many steps to find each path? E (worst-case upper bound)

worst case
upper bound

shortest VE/2
VC

max capacity 2E lg C

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations
• shortest augmenting path
• maximum-capacity augmenting path

Graph parameters for example graph
• number of vertices V = 177
• number of edges E = 2000
• maximum capacity C = 100

How many augmenting paths?

How many steps to find each path? 2000 (worst-case upper bound)

worst case
upper bound for example

shortest VE/2
VC

177,000
17,700

max capacity 2E lg C 26,575

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations
• shortest augmenting path
• maximum-capacity augmenting path

Graph parameters for example graph
• number of vertices V = 177
• number of edges E = 2000
• maximum capacity C = 100

How many augmenting paths?

How many steps to find each path? < 20, on average

worst case
upper bound for example actual

shortest VE/2
VC

177,000
17,700 37

max capacity 2E lg C 26,575 7

total is a
factor of 1 million high

for thousand-node graphs!

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations
• shortest augmenting path
• maximum-capacity augmenting path

Graph parameters
• number of vertices V
• number of edges E
• maximum capacity C

Total number of steps?

worst case
upper bound

shortest VE2/2
VEC

max capacity 2E2 lg C

WARNING: The Algorithm General
has determined that using such results
to predict performance or to compare
algorithms may be hazardous.

Goals of algorithm analysis
• predict performance (running time)
• guarantee that cost is below specified bounds

Common wisdom
• random graph models are unrealistic
• average-case analysis of algorithms is too difficult
• worst-case performance bounds are the standard

Unfortunate truth about worst-case bounds
• often useless for prediction (fictional)
• often useless for guarantee (too high)
• often misused to compare algorithms

Bounds are useful in some applications:

Open problem: Do better!

Motivating example: lessons

worst-case bounds

actual costs

which ones??

Surely, we can do better

An actual exchange with a theoretical computer scientist:

Algorithm A is bad.

Google should be interested in my new Algorithm B.

What’s the matter with Algorithm A?

It is not optimal. It has an extra O(log log N) factor.

But Algorithm B is very complicated, lg lg N is less than
6 in this universe, and that is just an upper bound.
Algorithm A is certainly going to run 10 to 100 times
faster in any conceivable real-world situation.
Why should Google care about Algorithm B?

Well, I like it. I don’t care about Google.

TCS (in a talk):

RS:

TCS:

RS:

TCS:

is a basic operation in a great many applications

Q. What is the best way to find an st-path in a graph?

A. Several well-studied textbook algorithms are known
• Breadth-first search (BFS) finds the shortest path
• Depth-first search (DFS) is easy to implement
• Union-Find (UF) needs two passes

BUT
• all three process all E edges in the worst case
• diverse kinds of graphs are encountered in practice

Worst-case analysis is useless for predicting performance

Which basic algorithm should a practitioner use?

Finding an st-path in a graph

t

s

??

Grid graphs

Algorithm performance depends on the graph model

Initial choice: grid graphs
• sufficiently challenging to be interesting
• found in practice (or similar to graphs found in practice)
• scalable
• potential for analysis

Ground rules
• algorithms should work for all graphs
• algorithms should not use any special properties of the model

... (many appropriate candidates)

s

t

s

t

complete random grid neighbor

t

s

s

t

small-world

t

s

Ex: easy to find short paths quickly with A*
in geometric graphs (stay tuned)

Example 1: Percolation
• widely-studied model
• few answers from analysis
• arbitrarily huge graphs

Example 2: Image processing
• model pixels in images
• DFS, maxflow/mincut, and other algs
• huge graphs

Applications of grid graphs

conductivity
concrete
granular materials
porous media
polymers
forest fires
epidemics
Internet
resistor networks
evolution
social influence
Fermi paradox
fractal geometry
stereo vision
image restoration
object segmentation
scene reconstruction
.
.
.

t

s

t

s

M by M grid of vertices
undirected edges connecting each vertex to its HV neighbors
source vertex s at center of top boundary
destination vertex t at center of bottom boundary

Find any path connecting s to t

Cost measure: number of graph edges examined

Finding an st-path in a grid graph

t

s M 2 vertices

M vertices edges

7 49 84
15 225 420
31 961 1860
63 3969 7812

127 16129 32004
255 65025 129540
511 261121 521220

 about 2M 2 edges

Finding an st-path in a grid graph

Similar problems are covered extensively in the literature
• Percolation
• Random walk
• Nonselfintersecting paths in grids
• Graph covering
• . . .

Elementary algorithms are found in textbooks
• Depth-first search (DFS)
• Breadth-first search (BFS)
• Union-find
• . . .

Literature is no help, so
• Implement elementary algorithms
• Use scientific method to study performance

Which basic algorithm should a practitioner use
to find a path in a grid-like graph?

??

Data abstraction

a modern tool to separate clients from implementations

A data type is a set of values and the operations performed on them
An abstract data type (ADT) is a data type whose representation is hidden
An applications programming interface (API) is a specification

Implementation should not be tailored to particular client

Develop implementations that work properly for all clients
Study their performance for the client at hand

 Interface Clients Implementations
invoke operations API specifies how to

invoke operations
code that implements

operations

is an exercise in software engineering

Sample “design pattern” (for this talk)

Implementing a GRAPH data type

int e = 0;
Edge[] a = new Edge[E];
for (int i = 0; i < V; i++)
 { if (i < V-M) a[e++] = new Edge(i, i+M);
 if (i >= M) a[e++] = new Edge(i, i-M);
 if ((i+1) % M != 0) a[e++] = new Edge(i, i+1);
 if (i % M != 0) a[e++] = new Edge(i, i-1);
 }
GRAPH G = new GRAPH(a);
G.findPath(V-1-M/2, M/2);
for (int k = t; k != s; k = G.st(k))
 System.out.println(s + “-” + t);

Client code for grid graphs

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

M = 5

t

s

public class GRAPHpublic class GRAPH

 GRAPH(Edge[] a) construct a GRAPH from an array of edges

void findPath(int s, int t) conduct a search from s to t

int st(int v) return predecessor of v on path found

GRAPH API
Vertices are integers in [0, V)

Edges are vertex pairs

Three standard ways to find a path

Depth-first search (DFS): recursive (stack-based) search

Breadth-first search (BFS): queue-based shortest-path search

Union-find (UF): use classic set-equivalence algorithms

DFS BFS UF

put s on Q
while Q is nonempty
 get x from Q
 done if x = t
 for each v adj to x
 if v unmarked
 put v on Q
 mark v

DFS(s)

 DFS(v):
 done if v = t
 if v unmarked
 mark v
 DFS(v)

for each edge u-v
 union (u, v)
 done if s and t are
 in the same set

run DFS or BFS on set
containing s and t

First step: Implement GRAPH using each algorithm

Depth-first search: a standard implementation

for (int k = 0; k < E; k++)
 { int v = a[k].v, w = a[k].w;
 adj[v] = new Node(w, adj[v]);
 adj[w] = new Node(v, adj[w]);
 }

GRAPH constructor code

void findPathR(int s, int t)
 { if (s == t) return;
 visited(s) = true;
 for(Node x = adj[s]; x != null; x = x.next)
 if (!visited[x.v]) findPathR(x.v, t);
 }
void findPath(int s, int t)
 { visited = new boolean[V];
 searchR(s, t);
 }

DFS implementation (code to save path omitted)

0 1 2

3 4 5

 6 7 8

4

7

7

4

graph representation

vertex-indexed array of
linked lists

 two nodes per edge

cost strongly depends on arbitrary decision in client (!!)

Basic flaw in standard DFS scheme

...
for (int i = 0; i < V; i++)
 {
 if ((i+1) % M != 0) a[e++] = new Edge(i, i+1);
 if (i % M != 0) a[e++] = new Edge(i, i-1);
 if (i < V-M) a[e++] = new Edge(i, i+M);
 if (i >= M) a[e++] = new Edge(i, i-M);
 }
...

west, east, north, south south, north, east, west

order of these
statements
determines

order in lists

order in lists
has drastic effect
on running time

t t

s s

~E/2 ~E 1/2

bad news
for ANY

graph model

Addressing the basic flaw

Advise the client to randomize the edges?
• no, very poor software engineering
• leads to nonrandom edge lists (!)

Randomize each edge list before use?
• no, may not need the whole list

Solution: Use a randomized iterator

int N = adj[x].length;
for(int i = 0; i < N; i++)
 { exch(adj[x], i, i + (int) Math.random()*(N-i));
 process vertex adj[x][i];
 }

exchange random vertex from
adj[x][i..N-1] with adj[x][i]

randomized iterator

int N = adj[x].length;
for(int i = 0; i < N; i++)
 { process vertex adj[x][i]; }

standard iterator

represent graph
with arrays,

not lists

x

i N

x

i

N

i

x

Use of randomized iterators
turns every graph algorithm into a randomized algorithm

Important practical effect: stabilizes algorithm performance

Yields well-defined and fundamental analytic problems
• Average-case analysis of algorithm X for graph family Y(N)?
• Distributions?
• Full employment for algorithm analysts

s t

s

t

s

t

cost depends on problem
 not its representation

s

t s

t

(Revised) standard DFS implementation

for (int k = 0; k < E; k++)
 {
 int v = a[k].v, w = a[k].w;
 adj[v][deg[v]++] = w;
 adj[w][deg[w]++] = v;
 }

graph ADT constructor code

void findPathR(int s, int t)
 {
 int N = adj[s].length;
 if (s == t) return;
 visited(s) = true;
 for(int i = 0; i < N; i++)
 {
 int v = exch(adj[s], i, i+(int) Math.random()*(N-i));
 if (!visited[v]) searchR(v, t);
 }
 }
void findPath(int s, int t)
 {
 visited = new boolean[V];
 findpathR(s, t);
 }

DFS implementation (code to save path omitted)

0 1 2

3 4 5

 6 7 8

4

7

7

4

graph representation
vertex-indexed
array of variable-
length arrays

BFS: standard implementation

Use a queue to hold fringe vertices

 void findPath(int s, int t)
 { Queue Q = new Queue();
 Q.put(s); visited[s] = true;
 while (!Q.empty())
 { int x = Q.get(); int N = adj[x].length;
 if (x == t) return;
 for (int i = 0; i < N; i++)
 { int v = exch(adj[x], i, i + (int) Math.random()*(N-i));
 if (!visited[v])
 { Q.put(v); visited[v] = true; } }
 }
 }

put s on Q
while Q is nonempty
 get x from Q
 done if x = t
 for each unmarked v adj to x
 put v on Q
 mark v

FIFO queue for BFS

tree vertex

fringe vertex

unseen vertex

s

t

Generalized graph search: other queues yield DFS, A* and other algorithms

randomized iterator

give intuition on performance

Animations

BFS DFS

and suggest hypotheses to verify with experimentation

Aside: Are you using animations like this regularly?
 Why not?

UF (code omitted)

show that DFS is faster than BFS and UF on the average

Experimental results

M V E BFS DFS UF
7 49 168 0.75 0.32 1.05

15 225 840 0.75 0.45 1.02
31 961 3720 0.75 0.36 1.14
63 3969 15624 0.75 0.32 1.05

127 16129 64008 0.75 0.40 0.99
255 65025 259080 0.75 0.42 1.08

BFS DFS UF

Analytic proof?

Faster algorithms available?

gives a faster algorithm or finding an st-path in a graph

Use two depth-first searches
• one from the source
• one from the destination
• interleave the two

Examines 13% of the edges
3-8 times faster than standard implementations

Faster approach?
Other models?

A standard search paradigm

M V E BFS DFS UF two
7 49 168 0.75 0.32 1.05 0.18

15 225 840 0.75 0.45 1.02 0.13
31 961 3720 0.75 0.36 1.14 0.15
63 3969 15624 0.75 0.32 1.05 0.14

127 16129 64008 0.75 0.40 0.99 0.13
255 65025 259080 0.75 0.42 1.08 0.12

Not log log N, but not bad!

Small-world graphs

are a widely studied graph model with many applications

A small-world graph has

• large number of vertices

• low average vertex degree (sparse)

• low average path length

• local clustering

Examples:

• Add random edges to grid graph

• Add random edges to any sparse graph
with local clustering

• Many scientific models

Q. How do we find an st-path in a small-world graph?
t

s

s

t

Example 1: Social networks
• infectious diseases
• extensive simulations
• some analytic results
• huge graphs

Example 2: Protein interaction
• small-world model
• natural process
• experimental

validation

Applications of small-world graphs

social networks
airlines
roads
neurobiology
evolution
social influence
protein interaction
percolation
internet
electric power grids
political trends
.
.
.

A tiny portion of the movie-performer relationship graph

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielguld

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Audrey
Tautou

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

Finding a path in a small-world graph

is a heavily studied problem

Milgram experiment (1960)

Small-world graph models

• Random (many variants)

• Watts-Strogatz

• Kleinberg

How does 2-way DFS do in this model?

Experiment:

• add M ~ E1/2 random edges to an M-by-M grid graph

• use 2-way DFS to find path

Surprising result: Finds short paths in ~ E1/2 steps!

add V random shortcuts
to grid graphs and others

A* uses ~ log E steps to find a path

no change at all in graph code
just a different graph model

Finding a path in a small-world graph
is much easier than finding a path in a grid graph

Conjecture: Two-way DFS finds a short st-path
in sublinear time in any small-world graph

Evidence in favor

 1. Experiments on many graphs

 2. Proof sketch for grid graphs with V shortcuts

• step 1: 2 E1/2 steps ~ 2 V1/2 random vertices

• step 2: like birthday paradox

Path length?

Multiple searchers revisited?

Next steps: refine model, more experiments, detailed proofs

t

t

s

s

two sets of 2V 1/2 randomly chosen
vertices are highly unlikely to be disjoint

Detailed example: paths in graphs

End of “lecture-within-a-lecture”

Lessons
• Data abstraction is for everyone
• We know much less about graph algorithms than you might think
• The scientific method is essential in understanding performance

The role of mathematics

in understanding performance

Worrisome point

• Complicated mathematics seems to be needed for models

• Do all programmers need to know the math?

Good news

• Many people are working on the problem

• Simple universal underlying models are emerging

Appropriate mathematical models

are essential for scientific studies of program behavior

Pioneering work by Don Knuth

Caution: Not all mathematical models are appropriate!

Large and active “analysis of algorithms”

research community is actively studying

models and methods.

is a modern basis for studying discrete structures

Developed by

 Philippe Flajolet and many coauthors (including RS)

based on
 classical combinatorics and analysis

Generating functions (GFs) encapsulate sequences

Symbolic methods treat GFs as formal objects

• formal definition of combinatorial constructions

• direct association with generating functions

Complex asymptotics treat GFs as functions in the complex plane

• Study them with singularity analysis and other techniques

• Accurately approximate original sequence

Analytic Combinatorics

Cambridge University Press

Cambridge 2009
also available

on the web

Analysis of algorithms: classic example

Quadratic equation

A binary tree is a node connected to two binary trees.

How many binary trees with N nodes?

B(z) = 1 - 1 - 4z

2z

Stirling’s approximation

Given a recurrence
relation

multiply both sides by
zN and sum to get

an equation

that we can solve
algebraically

and expand to
get coefficients

that we can
approximate BN ∼

πN

4N

N
Appears in birthday paradox

(and countless other problems)
Coincidence?

Binomial theorem

Basic challenge: need a new derivation for each problem

BN = B0 BN-1 +...+ Bk BN-1-k +...+ BN-1 B0

B(z) ≡ B0z0 + B1z1 + B2z2 + B3z3 + ...introduce a generating
function

B(z) = 1 + z B(z)2

BN =
1

N+1 ()2N
N

Analytic combinatorics: classic example

by quadratic equation

since ,

so G(z)2 - G(z) + z = 0

G(z) =
1

1 - G(z)

A tree is a node connected to a sequence of trees

How many trees with N nodes?

G(z) = 1 - 1 - 4z

2

N
GN ∼

4N

NΓ(½) πN

4N
=

First principle: location of singularity
determines exponential growth

Second principle: nature of singularity
determines subexponential factor

 <G> = ε + <G> + <G>×<G> + <G>×<G>×<G> + ...

G(z) = 1 + G(z) + G(z)2 + G(z)3 + ...

Combinatorial
constructions

directly map to GFs

that we can
manipulate

algebraically

and treat as a
complex function to
approximate growth 2N2N

Analytic combinatorics: singularity analysis

is a key to extracting coefficient asymptotics

Exponential growth factor

• depends on location of dominant singularity

• is easily extracted

Polynomial growth factor

• depends on nature of dominant singularity

• can often be computed via contour integration

[zN](1 - bz)c = bN [zN](1 - z)cEx:

[zN](1 - z)c = dz

 ~ dz

 ~

2πi
1 ⌠
⌡ zN+1

(1 - z)c

C

2πi
1 ⌠
⌡ zN+1

(1 - z)c

H

Γ(c)Nc+1
1

Ex:

C H

Cauchy coefficient
formula

Hankel contour

many details
omitted!

Analytic combinatorics: universal laws

Groebner-basis
elimination

Ex. Context free constructions

G(z) ≡ G0(z) = F(G0(z), ... Gt(z))

 ∼ (1 - z)-c

GN ∼ a bN Nc for any context-free construction !

 < G0 > = OP0(< G0 >, < G1 >, ... , < Gt >)
 < G1 > = OP1(< G0 >, < G1 >, ... , < Gt >)
 ...
 < Gt > = OPt(< G0 >, < G1 >, ... , < Gt >)

G0(z) = F0(G0(z), G1(z) ..., Gt(z))
G1(z) = F1(G0(z), G1(z) ..., Gt(z))
 ...
Gt(z) = Ft(G0(z), G1(z) ..., Gt(z))

Combinatorial
constructions

directly map to
a system of GFs

that we can manipulate
algebraically to get a

single complex function

of sweeping generality derive from the same technology

Good news: Several such laws have been discovered

Better news: Distributions also available (typically normal, small sigma)

Drmota-Lalley-Woods

that is amenable
to singularity analysis

like context-free language
(or Java data type)

A general hypothesis from analytic combinatorics

The running time of your program is ~ a bN Nc (lg N)d

• the constant a depends on both complex functions
and properties of machine and implementation

• the exponential growth factor b should be 1

• the exponent c depends on singularities

• the log factor d is reconciled in detailed studies

Why?

• data structures evolve from combinatorial constructions

• universal laws from analytic combinatorics have this form

To compute values:

• lg(T(2N)/T(N) → c

• T(N)/bN Nc → a

Plenty of caveats, but provides, in conjunction with the scientific method,

 a basis for studying program performance

the doubling test that is the basis
for predicting performance!

Performance matters in software engineering

Writing a program without understanding performance is like

The scientific method is an integral part of software development

not knowing where a rocket will go not knowing the
strength of a bridge

not knowing
the dosage of
a drug

Unfortunate facts

Many scientists lack basic knowledge of computer science

Many computer scientists lack back knowledge of science

1970s: Want to use the computer? Take intro CS.

2000s: Intro CS course relevant only

 to future cubicle-dwellers

One way to address the situation

• identify fundamentals

• teach them to all students
who need to know them

• as early as possible

First-year college students need a computer science course

Computer science embraces a significant body of knowledge that is
• intellectually challenging
• pervasive in modern life
• critical to modern science and engineering

Traditional barriers
• obsolescence
• high equipment costs
• no room in curriculum
• incorrect perceptions about CS
• programming courses bludgeon students with tedium
• one course fits all?
• no textbook

Central Thesis (1992)

Messages for first-year students

Reading, writing, and computing

Programming is for everyone

• it’s easier than most challenges you’re facing

• you cannot be successful in any field without it

Computer science is intellectually challenging, worth knowing

Key ingredient: a modern programming model

StdDraw
StdAudio
Picture

any program you might want to write

assignment statements
primitive types

graphics, sound, and image I/O

conditionals and loops

Math text I/O

arrays

functions and modules

StdIn
StdOut

Basic requirements

• full support of essential components

• freely available, widely used

1990: C/C++, 2010: Java, 2020: ??

data abstractionin support of
encapsulation

CS in scientific context: a few examples

functions sin() cos(), log()

libraries I/O, data analysis

1D arrays sound

2D arrays images

strings genomes

object-oriented I/O streaming from the web

OOP Brownian motion

data structures small-world phenomenon

Progress report (2010)

Stable intro CS course for all students

Goals

• demystify computer systems

• empower students to exploit computation

• build awareness of intellectual underpinnings of CS

• Basic control structures

• Standard input and output streams

• Drawings, images and sound

• Data abstraction

• Use any computer, and the web

• Understanding of the costs

• Fundamental data types

• Computer architecture

• Computability and Intractability

modern programming model

relevant CS concepts

• Scientific method

• Data analysis

• Simulation

• Applications

scientific content

Standard enrollment pattern

Progress report (continued)

Humanities

Social Sciences

Science/Math

Engineering

intro
CS

AB

advising

system

computing
requirement

1995

Standard enrollment pattern (up and down)

Progress report (continued)

Humanities

Social Sciences

Science/Math

Engineering

intro
CS

AB

advising

system

computing
requirement

2001

2001

Standard enrollment pattern (up and down), but now is skyrocketing

40% of all Princeton students

Elective for 40% of enrollees

40% female

Progress report (continued)

Humanities

Social Sciences

Science/Math

Engineering

intro
CS

AB

advising

system

computing
requirement

2009

Progress report continued (2009)

Textbook and booksite available and widely used

Anyone can learn the importance of

• modern programming models

• the scientific method in understanding program behavior

• fundamental precepts of computer science

• computation in a broad variety of applications

• preparing for a lifetime of engaging with computation

www.cs.princeton.edu/introcs

Introduction

https://www.cs.princeton.edu/introcs
https://www.cs.princeton.edu/introcs

Textbook

Introduction to Programming in Java:
An interdisciplinary approach
R. Sedgewick and K. Wayne

Elements of Programming
 Your First Program
 Built-in types of Data
 Conditionals and Loops
 Arrays
 Input and Output
 Case Study: Random WebSurfer
Functions and Modules
 Static Methods
 Libraries and Clients
 Recursion
 Case Study: Percolation
Object-Oriented Programming
 Data Types
 Creating DataTypes
 Designing Data Types
 Case Study: Percolation
Algorithms and Data Structures
 Performance
 Sorting and Searching
 Stacks and Queues
 Symbol Tables
 Case Study: Small World

Stay tuned

Introduction to Computer Science
R. Sedgewick and K. Wayne

Building a Computer
 Boolean Logic and Gates
 Combinational Circuits
 Sequential Cricuits
 TOY machine architecture
Theory of Computation
 Formal Languages and Machines
 Turing Machines
 Universality
 Computability
 Intractability
Systems
 Library Programming
 Compilers, Interpreters, and Emulators
 Operating Systems
 Networks
 Applications Systems
Scientific Computation
 Precision and Accuracy
 Differential Equations
 Linear Algebra
 Optimization
 Data Analysis
 Simulation

Prologue
Elements of Programming
 Your First Program
 Built-in types of Data
 Conditionals and Loops
 Arrays
 Input and Output
 Case Study: Random WebSurfer
Functions and Modules
 Static Methods
 Libraries and Clients
 Recursion
 Case Study: Percolation
Object-Oriented Programming
 Data Types
 Creating DataTypes
 Designing Data Types
 Case Study: Percolation
Algorithms and Data Structures
 Performance
 Sorting and Searching
 Stacks and Queues
 Symbol Tables
 Case Study: Small World
A Computing Machine
 Data representations
 TOY machine
 Instruction Set
 Machine-Language Programming
 Simulator

extends text with supplementary material on the web

www.cs.princeton.edu/IntroCS
• Text digests
• Supplementary exercises/answers
• Links to references and sources
• Modularized lecture slides
• Programming assignments
• Demos for lecture and precept
• Simulators for self-study
• Scientific applications

Also: Book development laboratory
• 10000+ files
• 2000+ Java programs
• 50+ animated demos
• 20,000+ files transferred per week

Booksite

Obsolescence?
• focus on concepts reduces language dependencies
• basic features of modern languages are converging

High equipment costs?
• students use their own computers
• basic features of modern OSs are converging

No room in curriculum?
• extensive AP placement makes room
• replace legacy programming courses

Incorrect perceptions about CS?
• yesterday’s predictions are today’s reality
• young scientists/engineers appreciate importance of CS

Traditional barriers are falling

Distinctive features of our approach

also address some traditional barriers

No room in curriculum?
• appeal to familiar concepts from HS science and math saves room
• broad coverage provides real choice for students choosing major
• modular organization gives flexibility to adapt to legacy courses
• detailed examples useful throughout curriculum

Incorrect perceptions about CS?
• scientific basis gives students the big picture
• students are enthusiastic about addressing real applications

Excessive focus on programming?
• careful introduction of essential constructs
• nonessential constructs left for later CS courses
• library programming restricted to key abstractions
• taught in context with plenty of other material

Familiar and easy-to-motivate applications

Ideal programming example/assignment

• teaches a basic CS concept

• solves an important problem

• appeals to students’ intellectual interest

• illustrates modular programming

• is open-ended

Bouncing ball

Simulation is easy

Familiar and easy-to-motivate applications

Ideal programming example/assignment

• teaches a basic CS concept

• solves an important problem

• appeals to students’ intellectual interest

• illustrates modular programming

• is open-ended

Bouncing balls

OOP is helpful

Familiar and easy-to-motivate applications

Ideal programming example/assignment

• teaches a basic CS concept

• solves an important problem

• appeals to students’ intellectual interest

• illustrates modular programming

• is open-ended

N-body

data-driven programs are useful

Familiar and easy-to-motivate applications

Ideal programming example/assignment

• teaches a basic CS concept

• solves an important problem

• appeals to students’ intellectual interest

• illustrates modular programming

• is open-ended

Bose-Einstein colliding
particle siimulation

efficient algorithms are necessary

a poster child for priority queue abstraction

Scientific method is not harmful

“Algorithms” and “Systems Programming” benefit from the approach.

About half of the IntroCS students take both!

Half of those pursue a certificate program in Applications in Computing

Algorithms

Systems
Programming

Summary

Proof of concept: Intro CS at Princeton

• 40% of Princeton students in a single intro course

• Stable content for a decade

Next goal: 40% of US college students

• Classical textbook model

• New media

• Evangelization

• Viral spread of content

Computer science embraces a significant body of
knowledge that is pervasive in modern life and critical
to every students’ education

Embracing, supporting, and leveraging science in a
single intro CS course can serve large numbers of
students.

FAQs

Q. Why Java?

A. Widely available, easily installed on any machine.

A. Modern language, widely used in real applications.

FAQs

Q. Why Java?

A. Widely available, easily installed on any machine.

A. Modern language, widely used in real applications.

Q. Why not C/C++ ?

A. Low-level pro tools; pros can learn later.

A. Been there, done that.

FAQs

Q. Why Java?

A. Widely available, easily installed on any machine.

A. Modern language, widely used in real applications.

Q. Why not C/C++ ?

A. Low-level pro tools; pros can learn later.

A. Been there, done that.

Q. Why not Python?

A. Poor data abstraction; everyone needs layers of abstraction.

FAQs

Q. Why Java?

A. Widely available, easily installed on any machine.

A. Modern language, widely used in real applications.

Q. Why not C/C++ ?

A. Low-level pro tools; pros can learn later.

A. Been there, done that.

Q. Why not Python?

A. Poor data abstraction; everyone needs layers of abstraction.

Q. Why not Matlab?

A. Not free.

A. Poor data abstraction (“i = 0”).

A. Not so relevant to students who do not know linear algebra.

FAQs

Q. Why Java?

A. Widely available, easily installed on any machine.

A. Modern language, widely used in real applications.

Q. Our students are not as smart as Princeton students.

A. They’re all relatively smart teenagers.

A. You use the same calculus and physics texts that we use.

FAQs

Q. Why Java?

A. Widely available, easily installed on any machine.

A. Modern language, widely used in real applications.

Q. Our students are not as smart as Princeton students.

A. They’re all relatively smart teenagers.

A. You use the same calculus and physics texts that we use.

Q. The math and science is too difficult/advanced.

A. We are just leveraging high-school math and science.

FAQs

Q. Why Java?

A. Widely available, easily installed on any machine.

A. Modern language, widely used in real applications.

Q. Our students are not as smart as Princeton students.

A. They’re all relatively smart teenagers.

A. You use the same calculus and physics texts that we use.

Q. The math and science is too difficult/advanced.

A. We are just leveraging high-school math and science.

Q. How do students learn to program, if you give them the code?

A. They see numerous examples.

A. They face a new, interesting challenge each week (see booksite).

FAQs

Q. Why Java?

A. Widely available, easily installed on any machine.

A. Modern language, widely used in real applications.

Q. Our students are not as smart as Princeton students.

A. They’re all relatively smart teenagers.

A. You use the same calculus and physics texts that we use.

Q. The math and science is too difficult/advanced.

A. We are just leveraging high-school math and science.

Q. How do students learn to program, if you give them the code?

A. They see numerous examples.

A. They face a new, interesting challenge each week (see booksite).

Q. How do I use the booksite?

A. 17-year olds have absolutely no trouble doing it!

