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Data Movement in Odd-Even Merging
     by Robert Sedgewick ........

PF, 1977: “I believe that we have a formula in common!”
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Coming of age in CS (RS and PF generation)

when we entered schoolwhen we entered school when we started workwhen we started work

transistors integrated circuits

punched cards terminals

typewriter word processing

Math CS

A more profound change than PCs or the internet.
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Analysis of Algorithms (Babbage, 1860s)
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“As soon as an Analytic Engine exists, it will necessarily guide the future course of the science.  
Whenever any result is sought by its aid, the question will arise—By what course of 
calculation can these results be arrived at by  the machine in the shortest time?”
                                                                                                                                              — Charles Babbage (1864 )

Analytic Engine

how many times do you 
have to turn the crank?



Analysis of Algorithms (Turing (!), 1940s)
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“It is convenient to have a measure of the amount of work involved in a computing 
process, even though it be a very crude one. We may count up the number of times 
that various elementary operations are applied in the whole process . . .”
                                                                                                                                    — Alan Turing (1947)

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

{National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY
A number of methods of solving sets of linear equations and inverting matrices

are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known 'Gauss
elimination process', it is found that the errors are normally quite moderate: no
exponential build-up need occur.

Included amongst the methods considered is a generalization of Choleski's method
which appears to have advantages over other known methods both as regards
accuracy and convenience. This method may also be regarded as a rearrangement
of the elimination process.
THIS paper contains descriptions of a number of methods for solving sets
of linear simultaneous equations and for inverting matrices, but its main
concern is with the theoretical limits of accuracy that may be obtained in
the application of these methods, due to rounding-off errors.

The best known method for the solution of linear equations is Gauss's
elimination method. This is the method almost universally taught in
schools. It has, unfortunately, recently come into disrepute on the ground
that rounding off will give rise to very large errors. It has, for instance,
been argued by HoteUing (ref. 5) that in solving a set of n equations we
should keep nlog104 extra or 'guarding' figures. Actually, although
examples can be constructed where as many as «log102 extra figures
would be required, these are exceptional. In the present paper the
magnitude of the error is described in terms of quantities not considered
in HoteUing's analysis; from the inequalities proved here it can imme-
diately be seen that in all normal cases the Hotelling estimate is far too
pessimistic.

The belief that the elimination method and other 'direct' methods of
solution lead to large errors has been responsible for a recent search for
other methods which would be free from this weakness. These were
mainly methods of successive approximation and considerably more
laborious than the direct ones. There now appears to be no real advantage
in the indirect methods, except in connexion with matrices having special
properties, for example, where the vast majority of the coefficients are
very small, but there is at least one large one in each row.

The writer was prompted to cany out this research largely by the
practical work of L. Fox in applying the elimination method (ref. 2). Fox
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Analysis of Algorithms (Knuth, 1960s)
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Classical mathematics provides the necessary tools for 
understanding the performance of algorithms.

• Recurrence relations.

• Generating functions.

• Asymptotic analysis.

BENEFITS:
Scientific foundation for AofA.
Can accurately predict performance and compare algorithms.

D. E. Knuth
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Analysis of algorithms: classic application

Q. How many bits needed to represent a binary tree with N internal nodes?
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A. At least lg TN, where TN is the number of binary trees with N internal nodes.

Q. How many binary trees with N internal nodes?

typical application: 
data compression



First step in classic AofA: Develop a recurrence relation

Tk TN−1−k
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;5 =
�

��R<5

;R;5���R + �5�

k nodes N−1−k nodes

Q. How many binary trees with N internal nodes?



Second step in classic AofA: Introduce a generating function
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Generating functions have played a central role in scientific studies for centuries.

Rationale
• Provides concise representation of an infinite series with a single function.
• Studying the function provides information about the series.

Ordinary generating function (OGF)

Exponential generating function (EGF) Abraham deMoivre
1667-1754

((a) =
�

5��

(5a5

)(a) =
�

5��

)5
5!



Second step in classic AofA: Introduce a generating function

Recurrence that holds for all N. ;5 =
∑

�≤R<5

;R;5−�−R + δ5�

Switch order of summation ;(a) = �+
∑

R≥�

∑

5>R

;R;5−�−Ra5

Change N to N+k+1 ;(a) = �+
�

R��

�

5��

;R;5a5+R+�

Distribute. ;(a) = �+ a
��

R��

;RaR
���

5��

;5a5
�

;(a) = �+ a;(a)�
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recurrence yields 
functional equation

satisified by GF

Multiply by zN and sum. ;(a) ≡
∑

5≥�

;5a5 =
∑

5≥�

∑

�≤R<5

;R;5−�−Ra5 + �

GF



Third step in classic AofA: Extract coefficients

Functional GF equation. ;(a) = �+ a;(a)�

Solve with quadratic formula. a;(a) =
�
�
(�±

�
�� �a)

Expand via binomial theorem. a;(a) = ��
�

�

5��

� �
�
5

�
(��a)5
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Set coefficients equal ;5 = ��
�

� �
�

5+ �

�
(��)5+�

Expand via de"nition. = ��
�

�
� (

�
� � �)( �� � �) . . . ( �� �5)(��)5+�

(5+ �)!

Distribute (−2)N among factors. =
� · � · � · · · (�5� �) · �5

(5+ �)!

Substitute (2/1)(4/2)(6/3)... for  2N. =
�

5+ �
� · � · � · · · (�5� �)

5!
� · � · � · · · �5
� · � · � · · · 5

;5 =
�

5+ �

�
�5
5

�
Solution.

Isaac Newton
1642-1726



Analysis of algorithms: classic application

Q. How many bits needed to represent a binary tree with N internal nodes?
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A. At least lg
�

5+ �

(
�5
5

)

??

Q. How many bits needed to represent a binary tree with 1000 internal nodes?



Fourth step in classic AofA: Asymptotics

Asymptotic approximations have played a central role in scientific studies for centuries.

Example: 

Rationale
• Enables calculations of precise and accurate estimates for specific values.
• Provides concise representations using standard functions.
• Asymptotic expansions can increase accuracy with more terms.

16

James Stirling
1692-1770

ln5! � 5 ln5�5+ ln
�
��5     Stirling’s approximation

100 363.73 460.52 360.52 363.74

1000 5912.13 6907.76 5907.76 5912.13

10,000 82108.92 92103.40 82103.40 82108.93

Henri Poincaré
1854-1912

N. G. de Bruijn
1918-2012

Leonhard Euler
1707-1783

Pierre-Simon Laplace
1749-1827



Fourth step in classic AofA: Asymptotics
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;5 =
�

5+ �

�
�5
5

�
Solution.

Apply exp-log. = exp
�
ln
�
�5!)� � ln5!� ln(5+ �)

�

ln
�
��5� � ln

�
��5 = � ln

�
�5

Simplify. = exp
�
�5 ln �� ln

�
�5� ln5

�

ln5! � 5 ln5�5+ ln
�
��5

Stirling's approximation

Apply Stirling's 
approximation.

� exp
�
�5 ln(�5)� �5+ ln

�
��5� �(5 ln(5)�5+ ln

�
��5)� ln5

�

;5 � �5�
�5�

Undo exp-log. easy to evaluate (in "standard scale")
can extend to any desired accuracy



Analysis of algorithms: classic application

Q. How many bits needed to represent a binary tree with N internal nodes?

18

Thanks!

A. At least lg ;5 ∼ �5− �.� lg5

Note 2: Easy to do it with 2N bits

• Preorder traversal.

• Output 0 for internal nodes.

• Output 1 for external nodes.

Note 1: About 1985 for N = 1000



Classic AofA: Summary
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Challenge (1980): Efficiently teach math skills behind such derivations to CS students.

1. Develop recurrence relation. ;5 =
∑

�≤R<5

;R;5−�−R + δ5�

2. Derive GF equation. ;(a) = �+ a;(a)�

3. Extract coefficients. ;5 =
�

5+ �

�
�5
5

�

;5 � �5�
�5�

4. Develop approximation.



Analysis of Algorithms (Knuth, 1960s)
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To analyze an algorithm:

• Develop a good implementation and a realistic input model.

• Determine the cost and execution frequency of each operation.

• Calculate the total running time:

• Run experiments to validate model and analysis.

DRAWBACKS: 
Model may be unrealistic.
Significant classical math and excessive detail often needed for analysis.

BENEFITS:
Scientific foundation for AofA.
Can predict performance and compare algorithms.

�

X

MYLX\LUJ`(X)� JVZ[(X)

D. E. Knuth

the “scientific method”



AofA has played a critical role
in the development of our computational infrastructure

21

because the scientific approach enables performance predictions and algorithm comparisons

how many times 
to turn the crank?

how long to sort random data for 
cryptanalysis preprocessing?

how long to compile 
my program?

how long to check 
that my VLSI circuit
follows the rules?

how quickly can I find clusters?
how many bodies 

in motion can I 
simulate?

and the advance of scientific knowledge



Genesis of “Analytic Combinatorics” (PF and RS, early 1980s)
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Optimism and opportunity everywhere

Knuth volumes 1-3

Search for generality

Algorithms for the masses

Teaching and research in AofA

Main motivation: Discover and teach basic methods and models to advance  AofA.

2

ln 2
�(

k�i

ln 2
)�(

2k�i

ln 2
,
1

4
)



Thirty years in the making

1995

2009

~1992 Decision to split into two 
books (need to do the math!)

~1980 Decision to write an AofA book.

1986 Princeton course.

INRIA tech reports

23



Analysis of Algorithms, 1995
Goal: Teach the mathematics needed for scientific study of the performance of computer programs.

24

Recurrences
          1st order, nonlinear, higher order, divide-and conquer

Generating Functions
          OGFs, EGFs, recurrences, CGFs, symbolic method, Lagrange inversion, PGFs,  BGFs, special functions

Asymptotics 
          expansions, Euler-Maclaurin, bivariate, Laplace, normal and Poisson approximations, GF asymptotics

Trees
          forests, BSTs, Catalan trees, path length, height, unordered, labelled, t-ary, t-restricted, 2-3

Permutations
          properties, representations, enumerations, inversions, cycles, extremal parameters

Strings and Tries
          bitstrings, REs, FSAs, KMP algorithm, context-free grammars, tries

Words and Maps
          hashing, birthday paradox, coupon collector, occupancy, maps, applications

Teaches the basics 
for CS students to 

get started on AofA.

Done?



An emerging idea (PF, 1980s)
In principle, classical methods can provide
• full details
• full and accurate asymptotic estimates

In practice, it is often possible to 
• generalize specialized derivations
• skip details and move directly to accurate asymptotics

Ultimate (unattainable) goal: Automatic analysis of algorithms

25

Algorithm
Asymptotic
estimate of 

running time

input model



To address Knuth drawbacks:

• Analyze worst-case cost
[takes model out of the picture].

• Use O-notation for upper bound
[takes detail out of analysis].

• Classify algorithms by these costs.

Theory of Algorithms (AHU, 1970s; CLRS, present day)

26

DRAWBACK: Analysis is often unsuitable for scientific studies.
                   (An elementary fact that is often overlooked!)

BENEFIT: Enabled a new Age of Algorithm Design.

Aho, Hopcroft 
and Ullman

Cormen, Leiserson,
Rivest, and Stein



Analytic combinatorics context
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Drawbacks of Knuth approach:

• Model may be unrealistic.

• Analysis may involve excessive detail.

Drawbacks of AHU/CLRS approach:

• Worst-case performance may not be relevant.

• Cannot use O- upper bounds to predict or compare.

Analytic combinatorics can provide a basis for scientific studies.

• A calculus for developing models.

• Universal laws that encompass the detail in the analysis.
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Analytic combinatorics
is a calculus for the quantitative study of large combinatorial structures.

Generating functions are the central object of study.

Basic process:
• Define a combinatorial construction that precisely specifies the structure
• Use a symbolic transfer theorem to derive a GF equation.
• Use an analytic transfer theorem to extract coefficient asymptotics.

29

Combinatorial

construction

All three steps are often immediate.

GF equation
symbolic

transfer
theorem

Coefficient

asymptotics

analytic

transfer
theorem



Analytic combinatorics
is a calculus for the quantitative study of large combinatorial structures.
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Ex: How many binary trees with N nodes?

T = E + Z × T × T

combinatorial construction

symbolic

transfer
theorem

            ;(a) = �+ a;(a)�

GF equation

;5 � �5�
�5�

coefficient asymptotics

analytic

transfer
theorem



First step in classic AC: Specify the class of objects being studied
using a combinatorial construction built from natural combinatorial operations. 

Combinatorial constructions:
• Algebraic formulas built from natural combinatorial operators.
• Operands are atoms or other combinatorial constructions.
• Two cases: atoms are unlabelled (indistinguishable) or labelled (all different)

[Similar to formal languages, but with particular attention to ambiguity.]

31

Disjoint union A  =  B  +  C

Cartesian product A  =  B  ×  C

Sequence A  =  SEQ( B )

Basic constructions (unlabelled classes)

T = E + Z × T × T

empty 
class

"a binary tree is
empty or a node

and two binary trees"

Example

atom



Example: Binary trees

Second step in classic AC: Introduce generating functions
and use symbolic transfer theorems to derive GF equation from construction.

32

Disjoint 
union A  =  B  +  C

Cartesian 
product A  =  B  ×  C

Sequence A  =  SEQ( B )

Basic transfer theorems (unlabelled classes)

Combinatorial class

     T  ≡  Set of all binary trees

Size function

    | t |  ≡  Number of nodes in t

Counting sequence

    TN ≡  Number of trees with N nodes

Construction
    T = E + Z × T × T

Transfer to GF equation

((a) = )(a) + *(a)

((a) = )(a)*(a)

((a) =
�

�− )(a) T = E + Z × T × T             ;(a) = �+ a;(a)�

;(a) =
∑

5≥�

;5a5 =
∑

[∈;
a|[|

Ordinary generating function



Generating functions
are the key to analytic combinatorics (but were controversial for some time)
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“ Generating functions are the central objects of the theory, rather 
than a mere artifact to solve recurrences, as it is still often believed. ”

                                                                                          — Philippe Flajolet, 2007

“A property... is understood better, when one constructs a bijection... than when one calculates 

the coefficients of a polynomial whose variables have no particular meaning.  The method of 

generating functions, which has had devastating effects for a century, has fallen into 

obsolescence, for this reason.                                                                                       — Claude Berge, 1968



Third step in classic AC: Extract coefficients
using analytic transfer theorems based on viewing GF as complex function.

34

Fundamental transfer theorems immediately provide coefficient asymptotics.

and are effective even for approximations near singularities.

Simple pole

Standard scale

Standard scale
(logarithmic) [a5]

�
(�− a)α

ln
�

�− a
∼ 5α−�

Γ(α)
ln5

[a5]
�

(�− a/ρ)α
∼ 5α−�

Γ(α)
ρ−5

[a5]
�

(�− a/ρ)
= ρ−5

P. Flajolet and A. Odlyzko

Singularity analysis of generating functions.

SIAM J. Algebraic and Discrete Methods 3, 1990.

[long list, and growing ]

[a5]
√
�− �a ∼ 5−�/�

Γ(−�/�)�
5 = −� �5√

�5�



AofA vs. AC: Two ways to count binary trees

35

AofA
Recurrence ➛ GF

Expand GF
Asymptotics

Recurrence

AC

T = E + Z × T × T
                  

;5 � �5�
�5�

                            
;(a) = �+ a;(a)�

=
�
�
(��

�
�� �a)



labelled universe

“If you can specify it, you can analyze it”
AC is effective for a broad variety of combinatorial structures

36

and is fully extensible (new constructions and transfers are being regularly discovered).

TREES
Recursive structures

STRINGS
Character sequences

COMPOSITIONS
Sum to N

INTEGERS
N objects

PARTITIONS
Unordered

compositions

LANGUAGES
Sets of strings

PERMUTATIONS
Rearrangements

of 1..N

CYCLES
Cyclic permutations

URNS
N objects

WORDS
Functions

from 1..N to 1..M

MAPPINGS
Functions

from 1..N to 1..M CAYLEY TREES
Acyclic mappings

unlabelled universe



Coefficient

asymptotics

“If you can specify it, you can analyze it”

37

Combinatorial

construction
GF equation

Integers ●●●●●●● I  =  Z  ×  SEQ( Z )

Strings atttcgaa W  =  SEQ( Z0 + . . .  +  ZM −1)

Binary trees T = E + ● × T × T

Permutations 53724618 P  =  SEQ( Z )

Cycles C  =  CYC( Z )

Words 20010033 WM =  SEQM ( SET( Z ) )

Elementary examples

05 = � MVY 5 > �0(a) =
a

�� a

;(a) = �+ a;(a)� ;5 � �5�
�5�

7(a) =
�

�� a
75 = 5!

*5 = (5� �)!*(a) = ln
�

�� a

>4(a) = L4a >45 = 45

>45 = 45>4(a) =
�

��4a

3

1

2



Sweet spot for AC: Variations on fundamental structures

38

Ordered

G = ● × SEQ( G )

.(a) =
a

��.(a)

Binary

T = ● + ● × SEQ0,2( T )

;(a) = a(�+ ;(a)�)

Ternary

T [3] = ● + ● × SEQ0,3( T 
[3])

;(a) = a(�+ ;(a)�)

Arbitrary restrictions

T Ω = ● × SEQΩ( T Ω)

�(\) �
�

��£
\�

;£(a) = a�(;£(a))

Bracketings

S = ● × SEQ>2( S )

:(a) = a+
:(a)�

�� :(a)

Unary-binary

M = ● × SEQ0,1,2( M )

4(a) = a(�+4(a) +4(a)�)

Ex: Ordered (rooted plane) trees



Universal laws
of sweeping generality are one hallmark of analytic combinatorics

39

One goal of modern research: Discover more universal laws.

.�(a) = -�(.�(a),.�(a), . . . ,.[(a))

.�(a) = -�(.�(a),.�(a), . . . ,.[(a))

. . .

.[(a) = -[(.�(a),.�(a), . . . ,.[(a))

transfers to a system of GF equations

symbolic 
transfer

.�(a) = -(.�(a),.�(a), . . . ,.[(a))

that reduces to a single GF equation

Grobner basis 

elimination

.(a) ∼ J− H
√
�− Ia

that has an explicit solution

Drmota-Lalley-Woods 
theorem

.5 ∼ H

�
√
�5�

I5 !!
that transfers to a simple 

asymptotic form

analytic transfer

Example: Context-free constructions

A system of combinatorial  constructions

.� = 67�(.�,.�, . . . ,.[)

.� = 67�(.�,.�, . . . ,.[)

. . .

.[ = 67[(.�,.�, . . . ,.[)



Schemas

40

Combinatorial problems can be organized into broad schemas, covering infinitely 

many combinatorial types and governed by simple asymptotic laws.

The discovery of such schemas and of the 

associated universality properties constitues 

the very essence of analytic combinatorics.



Analytic combinatorics at the next level

Combinatorial parameters are handled with MGFs, often leading to limit laws.

Complicated singularity structure leads to oscillatory behavior (like RS/PF formula in common).

GFs with no singularities require saddle-point asymptotics.

"If you can specify it, you can generate a random structure."

Analytic transfer theorems have technical conditions that need to be checked.

AofA involves understanding transformations from one combinatorial structure to another.

New types of implicit GF functional equations can arise.

41



Coefficient

asymptotics

“If you can specify it, you can analyze it”

42

Combinatorial

construction
GF equation

Partitions P  =  MSET( I )

Series-parallel
networks S =  Z +  ( SEQ>1 ( S ) )

Surjections 20010021 R =  SEQ ( SET>0 ( Z ) )

Components 
in mappings

C  =  Z  ×  SET( C )
Y  =  CYC( C )

Representative examples

[very long list, and growing ]

75 � L�
�

�5/�

�5
�
�

7(a) =
�

(�� a)(�� a�)(�� a�) . . .

9(a) =
�

�� (La � �)
=

�
�� La

95 � 5!
�(ln �)5+�

:(a) = a+
:(a)�

�� :(a)
:5 � �5

�
�
��5�

� =
�

��
�
�

@5 � 55���
�5@(a) = ln

�
�� *(a)

*(a) = aL*(a)3

4

1 5 4



“If you can specify it, you can analyze it”

43

Speci!cation

GF equation

Symbolic transfer

Analytic transfer

Asymptotics



What is "Analytic combinatorics"?

44

Analytic combinatorics aims to enable precise quantitative predictions of the properties of 

large combinatorial structures. The theory has emerged over recent decades as essential 

both for the analysis of algorithms and for the study of scientific models in other 

discliplines, including statistical physics, computational biology, and information theory.

[ In case someone asks... ]



Analytic Combinatorics, 2009

Symbolic Methods

Generating functions (OGFs, EGFs, MGFs)

Complex Asymptotics

Singularity Analysis
Saddle Point

Random Structures

Multivariate Asymptotics
Singularity Perturbation

Exact
Counting

Asymptotic 
Counting

Large
Deviations

Moments
of Parameters

Limit Laws

Combinatorial
Structures

45

A calculus for the study 
of discrete structures

✓



OF

"If You Can Specify It, You Can Analyze It"
• Brief History
• Analysis of Algorithms
• Analytic Combinatorics
• Flajolet Collected Works
• New Directions



Collected Works of Philippe Flajolet
to be published by Cambridge University Press, 2014

Seven volumes
• Analytic Combinatorics
• Limit Laws and Dynamical Systems
• Text, Information Theory, and the Mellin Transform
• Trees and Graphs
• Combinatorial Structures
• Effective methods
• Theses and other writings

Strategy for this talk
• List of chapters in each volume.
• Discussion of a representative paper that is worth reading.
• Eye candy.

47

“ If you read a paper of Philippe's, you will learn something. ”
                                                                                          — H. K. Hwang, 2011



Introduces fundamental complex-analytic transfer theorems

• Before this paper: "Folk theorems"

• After this paper: An effective calculus emerges.

Volume One: Analytic Combinatorics
covers the basic research underlying the development of the field

48

Analytic Combinatorics

P. Flajolet and A. Odlyzko

Singularity analysis of generating functions.

SIAM J. Algebraic and Discrete Methods 3, 1990.

Representative paper:

Chapter 1. Analytic Combinatorics

Chapter 2. Singularity Analysis

Chapter 3. Thèse d'État (in English)



Introduces models and analysis for string processing algorithms.

• Before this paper: Simplistic models.

• After this paper: Realistic models.

Volume Two: Limit Laws and Dynamical Systems
explores innovative approaches to the analysis of algorithms

49

Dynamical Systems

J. Clément, P. Flajolet and B. Vallée

Dynamical sources in information theory: A general analysis of trie structures.

Algorithmica 29, 2001.

Representative paper:

Chapter 1. Gaussian Limit Laws

Chapter 2. Airy Function

Chapter 3. Dynamical Systems



Presents tools and techniques for analyzing recursive algorithms.

• Ties to classic analytic number theory.

• Volume 2 of Analytic combinatorics ?

Robert Mellin
1854-1933

Volume Three: Text, Information Theory, and the Mellin Transform
addresses fundamental problems related to splitting processes.

50

IT and Mellin

P. Flajolet, X. Gourdon, and P. Dumas

Mellin transforms and Asymptotics: Harmonic Sums.

Theoretical Computer Science 144, 1994.

Representative paper:

Chapters 1/2. Text / Information Theory

Chapter 3. Tries & Digital Search Trees

Chapter 4. Mellin Transform

Chapter 5. Divide & Conquer

Chapter 6. Protocols



Gives full analysis of properties of random mappings.

• Poster child for utility of analytic combinatorics.

• Starting point for study of graph models and finite fields.

Volume Four: Trees and Graphs
illustrates the emergence of AC in the study of fundamental combinatorial structures.

51

Trees and Graphs

P. Flajolet and A. Odlyzko

Random mapping statistics.

in Advances in Cryptology, Springer-Verlag, 1990.

Representative paper:

Chapter 1. Term Trees

Chapter 2. Height of Trees

Chapter 3. Search Trees

Chapter 4. Hashing

Chapter 5. Random Graphs/Mappings



Surveys well-studied algebraic model from quantum physics.

• “Contains few new results.”

• “Perhaps all known expansions in this orbit correspond to classic combinatorial models.”

Volume Five: Combinatorial Structures
studies fundamental and unusual combinatorial structures of widespread applicability.
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Combinatorial Structures

P. Blasiak and P. Flajolet

Combinatorial Models of Creation-Annihilation.

Séminaire Lotharingien de Combinatoire 65, 2011.

Representative paper:

Chapter 1. Languages

Chapters 2/3. Polynomials/Continued Fractions

Chapter 4. Random Walks and Lattice Paths

Chapter 5. Urns

Chapters 6/7. Number Theory/Register Function



Culmination of field of research initiated by PF in 1985.

• Estimate cardinality in streams >> 109 to within 2% using ~1500 bytes.

• Method of choice in a broad variety of practical situations.

Volume Six: Effective Methods
covers practical and validated computational procedures.
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Methods

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier

Hyperloglog: analysis of a near-optimal cardinality estimation algorithm.

AofA 2007.

Representative paper:

Chapter 1. Computer Algebra

Chapter 2. Automatic Analysis

Chapter 3. Random Generation and Simulation

Chapter 4. Approximate Counting



Scalable algorithm for generating random structures.

• Immediate from combinatorial specification.

• Linear time.

Volume Six: Effective Methods
covers practical and validated computational procedures.
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Methods

P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer

Boltzmann Samplers for the Random Generation of Combinatorial Structures.

Combinatorics, Probability and Computing 13, 2004.

Representative paper:

Chapter 1. Computer Algebra

Chapter 2. Automatic Analysis

Chapter 3. Random Generation and Simulation

Chapter 4. Approximate Counting



Volume Seven: Theses and other writings
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Chapter 1. Ph.D. thesis

Chapter 2. Thèse d'État

Chapter 3. Short papers

Chapter 4. Notes for courses

Chapter 5. Reviews eses and Other

[mostly in French]



Standing on the shoulders of a giant
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eses and Other
Methods

Combinatorial Structures

Trees and Graphs

IT and Mellin

Dynamical Systems

Analytic Combinatorics

" Read Flajolet, read Flajolet, he is the master of us all." [ Adapted from Laplace's comment about Euler.]

~185 papers

~5000 pages

Philippe Flajolet

1948-2011

Computer scientist



OF

"If You Can Specify It, You Can Analyze It"
• Brief History
• Analysis of Algorithms
• Analytic Combinatorics
• Flajolet Collected Works
• New Directions



AofA/AC is more relevant than ever
because modern applications address huge and increasingly sophisticated problems
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still demanding a scientific approach that enables performance predictions and algorithm comparisons

how much 
power left? how long to download 

this TV series?

how long to search for 
patterns in this data?

how long to learn what ad 
to serve to this customer??

how long to 
index the web?



Example 1: Back to the Analysis of Algorithms
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Q. Precise analysis of Divide-and-Conquer algorithms ?

A. Looks complicated. Use continous approximation and settle for order of growth.

Theorem. The solution to the recurrence

is given by α terms

HU = HU/�+6(�) + HU/�+6(�) + . . .+ HU/�+6(�) +�(U�(log U)�)

HU = �(U�(log U)�) ^OLU � < log� �

HU = �(U�(log U)�+�) ^OLU � = log� �

HU = �(Ulog� �) ^OLU � > log� �

Ex. Suppose that an algorithm attacks a problem of size n by

dividing into α parts of size about n/β with extra cost Θ(nγ(log n)δ)



Example 1: Back to the Analysis of Algorithms
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Q. Precise analysis of Divide-and-Conquer algorithms, suitable for scientific studies ?

A. YES! Classic AC.

M. Drmota and W. Szpankowski

A Master Theorem for Discrete Divide-and-Conquer Recurrences.

Journal of the ACM, to appear.

;(U) = HU +
�

��Q�T

IQ;(�OQ(_)�) +
�

��Q�T

IQ;(�OQ(_)�)

;(U) = U+ ;(�U/��) + ;(�U/��) ;(U) � U lg U+�(lg U)

;(U) = U log U+ �;(�U/��) + �;(�U/��) ;(U) � JU�.���...

;(U) =
U�

log U
+ �;(�U/��) + �

 
;(��U/��) ;(U) � JU� ln ln U 0 if          is rational

log W
log X

;(U) = �+ W;(�WU+ ��) + X;(�XU� ��) ;(U) � log U� �+�(log U)
W log(�/W) + X log(�/X)



Example 2. Models for discrete structures in biochemistry
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Q. Models for RNA pseudoknot structures ?

Critical for molecular function

Applications
• catalytic cores of ribozymes
• telomerase activity
• programmed frameshifting

Issue. Problem is NP-complete. Need to consider restricted structures of various types.



Example 2. Models for discrete structures in biochemistry
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Q. Model for restricted RNA pseudoknot structures?

A. YES!  Need a new transfer theorem for MCGFs, but AC enables new research.

M. Nebel and F. Weinberg

Algebraic and Combinatorial Properties of Common RNA Pseudoknot Classes.

Journal of Computational Biology 10, 2012.



Example 3: Random generation and modeling
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Q. Models for Software ?

Applications
• model driven engineering
• ontology development
• abstract representations of knowledge

Example: QuickCheck
• combinator library
• written in Haskell
• generates test cases for test suites

Issue. Need better specifications of random structures



Example 3: Random generation and modeling
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Q. Metamodels for Software ?

A. Mougenot, A. Darrasse, X. Blanc, M. Soria

Uniform Random Generation of Metamodel Instances.

Model Driven Architecture Foundations and Applications LNCS 5562, 2009.

A. YES! Use Boltzmann samplers.



Example 4: Finite fields
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Q. Characterize polynomial factorizations over finite fields?

Applications
• design of cyclic redundancy codes
• partial fraction decompositions
• properties of elliptic curves
• building arithmetic public key cryptosystems
• computing discrete logarithms

Issue. Need to understand sizes of factors to design efficient algs



Example 4: Finite fields
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Q. Characterize polynomial factorizations over finite fields?

A. YES! Classic AC.

J. von zur Gathen, D. Panario and B. Richmond

Interval partitions and polynomial factorization.

Algorithmica 63, 2012.

P. Flajolet, X. Gourdon and D. Panario

The complete analysis of a polynomial 

factorization algorithm over finite fields.

Journal of Algorithms 40, 2001.



Dissemination
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2013

2nd edition
with intro to AC

web content online courses

Thirty years in the making and still counting
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Dissemination
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Analytic Combinatorics

10 lectures on AofA
10 lectures on AC

25,000+ registrants

Next offering: 
      September-December 2013

aofa.cs.princeton.edu

text digests
code
exercise solutions
lecture slides

ac.cs.princeton.edu

(under construction)

web content

online course



1. Ordinary GFs
2. Exponential GFs
3. Bivariate GFs
4. Meromorphic Asymptotics
5. MA applications
6. Singularity Analysis
7. SA Applications
8. Saddle Point
9. Epilog

"Analytic Combinatorics" lectures

1. Introduction
2. Recurrences
3. Generating Functions
4. Asymptotic Analysis
5. Analytic combinatorics
6. Trees
7. Permutations
8. Strings and Tries
9. Words and Mappings 

~500 slides
  ~50 videos

Part I: Analysis of Algorithms

Part II: Analytic Combinatorics 

~500 slides
  ~50 videos



Just the beginning
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“ What is the most effective way to produce and disseminate knowledge with today’s 
technology?   How can we best structure what we know and learn so that students, researchers, 
and scholars of the future can best understand the work of today’s researchers and scholars? ”

                                                                                                                                              — Robert Sedgewick, 2007



If you can specify it, you can analyze it

Applications of analytic combinatorics
• patterns in random strings
• polynomials over finite fields
• quantum physics
• data compression
• geometric search
• combinatorial chemistry
• arithmetic algorithms        
• planar maps and graphs
• probabilistic stream algorithms
• master theorem for divide-and-conquer
• bioinformatics
• automated testing 

       . . .

A calculus for the study 
of discrete structures. ✓
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"If You Can Specify It, You Can Analyze It"

the lasting legacy of Philippe Flajolet



Thanks, Philippe. It is a pleasure to be working with you!

Philippe Flajolet 1948-2011


