ANALYTIC COMBINATORICS
PART ONE

1. Analysis

AT of
LGORITHMS -
A|gor||'hm3

http://aofa.cs.princeton.edu

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation
e A scientific approach

ANALYSIS _
ALGORITHMS e Example: Quicksort
= * Resources

http://aofa.cs.princeton.edu

la.AofA.History

Why Analyze an Algorithm?

1. Classify problems and algorithms by difficulty.

2. Predict performance, compare algorithms, tune parameters.

3. Better understand and improve implementations and algorithms.

Intellectual challenge: AofA is even more interesting than programming!

Analysis of Algorithms (Babbage, 1860s)

“As soon as an Analytic Engine exists, it will necessarily guide the future course of the science.
Whenever any result is sought by its aid, the question will arise—By what course of
calculation can these results be arrived at by the machine in the shortest time?”

— Charles Babbage (1864)

Analytic Engine

how many times do you

/ have to turn the crank?

l\ TMEFEE "H:T’"]l

.usﬁ—-«w

Analysis of Algorithms (Turing (1), 1940s)

“It is convenient to have a measure of the amount of work involved in a computing
process, even though it be a very crude one. We may count up the number of times

that various elementary operations are applied in the whole process . ..”
— Alan Turing (1947)

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M, TURING
(National Physical Laboratory, Teddington, Middleser)
[Received 4 Novernber 1947}
SUMMARY
A number of methods of solving sets of linear equations and inverting matrices
are discussed. The theory of the rounding-off errors invoived is investigated for

some of the methods. In all cases examined, including the well-known ‘Gauss
elimination process’, it is found that the errors are normally quite moderate: no

exponential build-up need oceur.

Analysis of Algorithms (Knuth, 1960s)

To analyze an algorithm:

*Develop a good implementation. D. E. Knuth
ldentify unknown quantities representing the basic operations.

*Determine the cost of each basic operation.

*Develop a realistic model for the input.

«Analyze the frequency of execution of the unknown quantities.

« Calculate the total running time: Zfrequency(q) x cost(q)

q t L
BENEFITS:] :
Scientific foundation for AofA. H a A
Can predict performance and compare algorithms. }} I’“ ;: gl(l)tmxﬁtgi

! Thie | Programming

DRAWBACKS:
Model may be unrealistic. — 1

DONALD E. KNUTH

| D¢ Fundamental Algorithms

Too much detail in analysis.

Theory of Algorithms (AHU, 1970s; CLR, present day)

To address Knuth drawbacks:
Aho, Hopcroft
*Analyze worst-case cost and Ullman

[takes model out of the picture].

«Use O-notation for upper bound

[takes detail out of analysis].

Cormen, Leiserson,

Rivest, and Stein
*Classify algorithms by these costs.

BENEFIT: Enabled a new Age of Algorithm Design.

DRAWBACK: Cannot use to predict performance or compare algorithms.
(An elementary fact that is often overlooked!)

Example: Two sorting algorithms

Quicksort Mergesort
Worst-case number of compares: O(N?2) Worst-case number of compares: Nlog N
Classification O(N?2) Classification O(N log N)
BUT

Quicksort is twice as fast as Mergesort in practice and uses half the space

\ How do we know?

By analyzing both algorithms! (stay tuned)

Iyl
|||l”| Whlimn
gorithms

Cannot use O- upper bounds to predict performance or compare algorithms.

Analytic combinatorics context

Drawbacks of Knuth approach:
* Model may be unrealistic.
» Too much detail in analysis.

Drawbacks of AHU/CLRS approach:
« Worst-case performance may not be relevant.

» Cannot use O- upper bounds to predict or compare.

Analytic combinatorics can provide:
* A calculus for developing models.
» General theorems that avoid detail in analysis.

AC Part | (this course):
* Underlying mathematics.
e Introduction to analytic combinatorics.
« Classical applications in AofA and combinatorics.

The Art of The Art of The Art of The Art of
Computer Computer Computer Computer
Programming Programming Programming Programming

DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH

r\l.(;()lii']:ll.w\ls

Analytic
Combinatorics

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation
e A scientific approach

ANALYSIS _
ALGORITHMS e Example: Quicksort
= * Resources

http://aofa.cs.princeton.edu

la.AofA.History

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation
e A scientific approach

ANALYSIS _
ALGORITHMS e Example: Quicksort
= * Resources

http://aofa.cs.princeton.edu

1b.AofA.Scientific

Notation for theory of algorithms

“Big-Oh” notation for upper bounds

g(N) = O(f(N)) iff |g(N)/f(N)| is bounded from above as N — oo

“Omega” notation for lower bounds

g(N) = Q(f(N)) iff |g(N)/f(N)| is bounded from below as N — oo

“Theta” notation for order of growth (“within a constant factor”)

g(N) = O(f(N)) iff g(N) = O(f(N)) and g(N) = Q(f(N))

O-notation considered dangerous

How to predict performance (and to compare algorithms)?

Not the scientific method: O-notation
Theorem: Running time is O(N¢) | X
\ not at all useful for predicting performance
Scientific method calls for tilde-notation.
Hypothesis: Running time is ~aN¢ | /

\an effective path to predicting performance

O-notation is useful for many reasons, BUT
Common error: Thinking that O-notation is useful for predicting performance

Surely, we can do better

A typical exchange in Q&A

RS (in a talk):

RS:

RS:

O-notation considered dangerous.
Cannot use it to predict performance.

7?2 O(N log N) surely beats O(N?2)

Not by the definition. O expresses upper bound.

So, use Theta.

Still (typically) bounding the worst case.
Is the input a worst case?

(whispers to colleague) I'd use the O(N log N)
algorithm, wouldn’t you?

Galactic algorithms

R.J. Lipton: A galactic algorithm is one that will never be used.
Why? Any effect would never be noticed in this galaxy.
Ex. Chazelle’s linear-time triangulation algorithm

s theoretical tour-de-force

e too complicated to implement

 cost of implementing would exceed savings in this galaxy, anyway

One blogger’s conservative estimate:
75% SODA, 95% STOC/FOCS are galactic

OK for basic research to drive agenda, BUT

Common error: Thinking that a galactic algorithm is useful in practice.

Surely, we can do better

An actual exchange with a theoretical computer scientist:

TCS (in a talk):

RS:

TCS:

RS:

TCS:

Algorithm A is bad.
Google should be interested in my new Algorithm B.

What’s the matter with Algorithm A?
It is not optimal. It has an extra O(log log N) factor.

But Algorithm B is very complicated, Ig Ig N is less
than 6 in this universe, and that is just an upper
bound. Algorithm A is certainly going to run 10 to
100 times faster in any conceivable real-world
situation. Why should Google care about Algorithm B?

Well, I like Algorithm B. | don’t care about Google.

Analysis of Algorithms (scientific approach)

Start with complete implementation suitable for application testing.

Analyze the algorithm by
« Identifying an abstract operation in the inner loop.
« Develop a realistic model for the input to the program.

* Analyze the frequency of execution Cy of the op for input size N.

Hypothesize that the cost is ~aCy where a is a constant.

Validate the hypothesis by
« Developing generator for input according to model.

 Calculate a by running the program for large input.
* Run the program for larger inputs to check the analysis.

Validate the model by testing in application contexts.

Refine and repeat as necessary

et =
..t"f ‘

eI

&

L

Al

Sedgewick and Wayne
Algorithms, 4th edition
Section 1.4

Notation (revisited)

for theory of algorithms

!

“Tilde” notation for asymptotic equivalence

g(N) ~ f(N) iff |g(N) /f(N)| = T as N — o0

!

for analysis to predict performance
and to compare algorithms

Components of algorithm analysis

Empirical
*Run algorithm to solve real problem.

* Measure running time and/or
count operations.

Challenge: need good implementation

Mathematical
* Develop mathematical model.

* Analyze algorithm within model.

Challenge: need good model, need to do the math

Scientific
«Run algorithm to solve real problem.

* Check for agreement with model.

Challenge: need all of the above

% java SortTest 1000000

10

100
1000
10000
100000

44 .44
847.85
12985.91
175771.70
2218053.41

Cn=N+1+ Z

T<k<AJ

% java QuickCheck 1000000

10

100
1000
10000
100000

44 .44
847.85
12985.91
175771.70
2218053.41

(Ck + Cn—k—1)

26.05
721.03
11815.51
164206.81
2102585.09

Potential drawbacks to the scientific approach

1. Model may not be realistic.
A challenge in any scientific discipline.

» Advantage in CS: we can randomize to make the model apply.

.|||I|||||” > |‘||||.|I|||

2. Math may be too difficult.
A challenge in any scientific discipline (cf. statistical physics).
A “calculus” for AofA is the motivation for this course!

3. Experiments may be too difficult.
* Not compared to other scientific disciplines.
e Can’t implement? Why analyze?

20

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation
e A scientific approach

ANALYSIS _
ALGORITHMS e Example: Quicksort
= * Resources

http://aofa.cs.princeton.edu

1b.AofA.Scientific

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation
e A scientific approach

ANALYSIS .
ALGORITHMS e Example: Quicksort
= * Resources

http://aofa.cs.princeton.edu

lc.AofA.Quicksort

Example: Quicksort

public class Quick
{
private static int partition(Comparable[] a, int lo, int hi)
{
int i = lo, j = hi+l;
while (true)
{
while (less(a[++i], a[lo])) if (i == hi) break;
while (less(al[lo], al[--j1)) if (j == 10) break;
if (i >= j) break;
exch(a, 1, j);
}
exch(a, lo, j);

return j; WT“MTT“]yMw"
J Algorithms

private static void sort(Comparable[] a, int lo, int hi) S L,
{ .
if (hi <= To) return; S e
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

http://algs4.cs.princeton.edu/23quicksort/Quick.java

Start: Preliminary decisions

Cost model
* running time? -
* better approach: separate algorithm from implementation
e for sorting, associate compares with inner loop.
e Hypothesis: if number of compares is C, running time is ~aC

Input mOdE| counting
« assume input randomly ordered (easy to arrange)
« assume keys all different (not always easy to arrange)

Key question: Are models/assumptions realistic?

Stay tuned.

24

Setup: Relevant questions about quicksort

Assume array of size N with entries distinct and randomly ordered.

Q. How many compares to partition?

A N+'| pubTlic class Quick
) {
private static int partition(Comparable[] a, int 1o, int hi)
{
Q. What is the probability that the partitioning] Sl = G
item is the kth smallest? {

while (less(a[++i], a[lo])) if (i == hi) break;
A.1/N while (less(a[lo]l, a[--j1)) if (j == 10) break;
if (i >= j) break;
exch(a, i, 3);
}
Q. What is the size of the subarrays exch(a, 1o, j);

in that case? : return j;
A. k-1 and N - k

private static void sort(Comparable[] a, int lo, int hi)

{
if (hi <= 10) return;
int j = partition(a, lo, hi);

Q. Are the subarrays randomly SoPtlay 16, J-1)%
ordered after partitioning? : sort(a, j+1, hi);
A. YES. }

Iy !
|||Illl LTI T

25

Main step: Formulate a mathematical problem

Recursive program and input model lead to a recurrence relation.
Assume array of size N with entries distinct and randomly ordered.

Let Cn be the expected number of compares used by quicksort.

CN—/\/—|—1—|— Z Ck_1—|—CN k)

1 gng R
compares for
for partitioning W;:gakrrie;ytshe
partitioning
probability element
k is the
partitioning

element

Simplifying the recurrence

Apply symmetry.

Multiply both sides by N.

Subtract same formula for N—1.

Collect terms.

Cn=N+1+ Z (Cr_1 + Cni)

1ieen N \ /

both sums are
Co+Ci+... + Cna

2
Cn=N+T+ > G
1<k<N

NCy=N(N+1)+2 Y G
1<k<N

NCn — (N = 1)Cn_1 = 2N + 2Cn_1

NCy = (N + 1)Cn_1 + 2N

Co=0

27

Aside

Simplified recurrence gives efficient algorithm for computing result

1
Cv=N+1+ > N(Ck + Cnk_1) QUADRATIC time
0<k<N—1 l
c[0] = 0;
for (int N = 1; N <= maxN; N++)
{
c[N] = N+1;

for (int k = 0; k < N; k++)
c[N] += (c[k] + c[N-1-k])/N;

NCy = (N+1)Cn=1 + 2N LINEAR time

\> c[0] = 0;
for (int N = 1; N <= maxN; N++)

c[N] = (N+1)*c[N-1]/N + 2;

AofA: Finding a fast way to compute the running time of a program

28

Solving the recurrence

NCy = (/\/ + 1)C/\/—1 + 2N

Tricky (but key) step: Cn o CN—1 4 2
divide by N(N+1) N+1 N N + 1
C Cn— 2 Cn— 2 2
/\/N1:7\/1+N =N T TN TN
Telescope. + + N +
S B
2 3 TN N+
e 1
Simplify (ignore small terms). Cn ~ 2N Z i 2N
1>k>N
N

!
Approximate with an Cn ~ 2/\/(/ —dx+vy) — 2N
integral (stay tuned) 1 X
=2NInN —2(1 —)N Euler's constant = 57721

29

Bob Sedgewick
N

Finish: Validation (mathematical)

It is always worthwhile to check your math with your computer.

public class QuickCheck

{

public static void main(String[] args)

{

int maxN = Integer.parseInt(args[0]);
double[] ¢ = new double[maxN+1];
c[0] = O; NCNy = (N4 1)Cn_1 + 2N
for (int N = 1; N <= maxN; N++) k///// ()

c[N] = (N+1)*c[N-1]/N + 2;

for (int N = 10; N <= maxN; N *= 10) k/,,/f*,,,//”'2ﬁJh1ﬁJ—-2(1 —)N
{

double approx = 2*N*Math.log(N) - 2%(1-.577215665)*N;
StdOut.printf("%10d %15.2f %15.2f\n", N, c[N], approx);

}
% java QuickCheck 1000000

10 44 .44 37.60

100 847.85 836.48
1000 12985.91 12969.94
10000 175771.70 175751.12
100000 2218053.41 2218028.23

1000000 26785482.23 26785452 .45

30

Finish: Validation (checking the model)

It is always worthwhile to use your computer to check your model.

Example: Mean number of compares used by Quicksort for randomly ordered
distinct keys is 2NInN — 2(1 —~)N

Experiment: Run code for randomly ordered distinct keys, count compares

2NInN = 2(1 —~v)N
1000 trials for each N

one grey dot for each trial
red dot: average for each N

N

Observation: May be interested in distribution of costs

31

Quicksort compares: limiting distribution is not “normal”

see “Approximating the Limiting Quicksort Distribution.” by Fill and Janson (RSA 2001).

exact distribution

05 - (from recurrence)

M
"Qy’
‘)ﬁ“""’»"«"‘

~ VG f I N
o0, or sma
100 200 300 400
AT
empirical
validation
" N =1000
1T — |
11000 12000 13000 14000 15000 16000
Bottom line:

A great deal is known about the performance of Quicksort.
 AofA leads to intriguing new research problems.

centered
on mean

32

Easy method to predict (approximate) performance

Hypothesis: Running time of Quicksort is ~aN In N.

Experiment.
* Run for input size N. Observe running time. 10
e [Could solve for a.
l[D 0:' tio vefor]aO]Nt i by a factor of LU IUION) ;0 10
redict time for o increase by a factor o NN = TN
Example: 1 g

*Run quicksort 100 times for N = 100,000: Elapsed time: 4 seconds.
Predict running time of 4 x 10.2 = 40.8 seconds for N = 1M.
*Observe running time of 41 seconds forN=1M

10

10
i logyo N

« Confidently predict runring time of 41 x 1000.5 = 11.4 hours for N = 1B.

48

Note: Best to also have accurate mathematical model. Why? 48 x (70/6) x (80/7) x (90/8)

= 20 hours

33

Bob Sedgewick
10

Bob Sedgewick
10

Bob Sedgewick
12

Bob Sedgewick
48

Bob Sedgewick
48

Bob Sedgewick
48 x (70/6) x (80/7) x (90/8) = 20 hours

Validate-refine-analyze cycle

It is always worthwhile to validate your model in applications.

Quicksort: Validation ongoing for 50 years!

- .
Example 1 (late 1970s): Sorting on the CRAY-1. T ———
as many times 2101002102010191100001 110101030
. 1010011010010101 101010001001
as POSSIbIe! 0103102010401040100001101021
010010011101001101010001 100
i 2011011110001 1010101001103 1
01001 -J100L0011101020101100010111
1000010101 10010010101010101001 1119101
« ” . 0101010000101003011101040111101000110
[] N d t t th] M d - d 64-b t d 0110101010101002011101020100010012120
ee O Ssor e memaor seudo-random IT WOords. 10010101001006116110101 1010101061103 1
0100101001010010011101080101100018101
1000010101 10010018101010101001 1110020

* Application: cryptography.

* Bottom line: analysis could predict running time to within 10-6 seconds.

Example 2 (1990s): UNIX system sort.

* Application: general-purpose.
«User app involving files with only a few distinct values performed poorly.

* Refinements: 3-way partitioning, 3-way string quicksort (see Algs4).

« Refined models (not simple): research ongoing. «—— see “The number of symbol comparisons in QuickSort and QuickSelect.”
by Vallee, Clement, Fill, and Flajolet (ICALP 2009).

Example 3 (2010s): Sorting for networking.
» Application: sort ~1B records ~1K characters each.
* Need to beat the competition or go out of business.
« Refinement: adapt to long stretches of equal chars (avoid excessive caching)

34

Double happiness

“People who analyze algorithms have double happiness. First of all
they experience the sheer beauty of elegant mathematical patterns
that surround elegant computational procedures. Then they
receive a practical payoff when their theories make it possible to
get other jobs done more quickly and more economically.”

— D. E. Knuth (1995)

35

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation
e A scientific approach

ANALYSIS .
ALGORITHMS e Example: Quicksort
= * Resources

http://aofa.cs.princeton.edu

lc.AofA.Quicksort

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation
e A scientific approach

ANALYSIS _
ALGORITHMS e Example: Quicksort
= e Resources

http://aofa.cs.princeton.edu

1d.AofA.Resources

Books

are the prime resources associated with this

i First edition
I\t/lea)l? (1995)
(2 0] 3) AN;;“MM"% Mﬂwsmmomus
ALGORITHMS
Text
for
Part Il Analytic

Combinatorics

course.

Reference
for

Algorithms l
Algorithms

Reference
for Pi"o'é'ramlming

Java mEAD

Reading the books is the best way to develop understanding.

38

Booksites

are web resources associated with the books.

A NALYSIS
ALGORITHMS

AnaLysis or ALGorimimes

http://aofa.cs.princeton.edu

Intraduction to thet Analysis of Algorithms by Robert Sedgawick and Philippe Flajolet

THE ANALYSIS OF ALGO|

People who analyze algorithms have double happiness. First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational
procedures. Then they receive a practical payoff when thelr thearies make it possible to get other jobs done more quickly and more economically. D. E. Knuth

This booksite is undar developmant (Spring 2012). No promises.

Textbook. The texthook An Introduction to the Analysis of Aigorithms by Robert Sedgewlck and Philippe Flajolet [Amazon - Inform IT] overviews the primary tachniques used in
the mathematical analysis of algorithms. The material covered draws from cassical mathematical topics, Including discrete mathematics, elementary real analysis, and
combinatorics, as well as from dlassicsl computer science topics, including algorithms and data structures.

* Chapter 1: Analysis of Algorithms considers the general motivations for algorithmic analysis and relationships among various approaches to studying performance
characteristics of algorithms.

* Chapter 2: Recurrance on properties of various types of recurrence refations which arise frequently whan analyzing an
algorithm trough a direct mapping from a recursive representation of a program to 3 recursive representation of a function describing its properties,
« Chapter 3: Generating Functions introcduces 3 cantral concept in the g analysis of i gencrating ~ a necessary and natural link between the

algorithms that ara our abjects of study and analytic methods that are necessary to discover thair propertias.

Chapter 4: Asymptatic Appr methods of deriving approximate solutions to problems or of approximating exact salutions, which allow us to develop
cancise and pracise astimates of quantities of interast when analyzing algorithms.

Chapter 5: Trees investigates properties of many different types of [rees, fundamental structures that erise implicitly and explicitly in many practical algarithms. Our goal is to
provide access w results from an an the analysis of trees, while ot the same time providing the groundwork for a hast of algorithmic

+ Chapter 6: E surveys o 18l properties of per (orderings of the numbers | through K) and shows how they relate in a natural way to fundamental
and widely-used sorting algorithms.,

Chapter 7: String and Tries studies basic combinatorial properties of strings, sequences of characters or letters drawn from a fixed alphabet, and introduces algorithms that
process strings ranging from fundamental metnods at the heart of the theory of computation to practical text-processing methods with a host of Important applications
Chapter B: Words and Maps covers global properties of words (N-latver strings from an M-letter alphabet), which are well-studied in classical combinatorics (because they
model sequences of independent Barnoulli trials) and In classical applied algorithmics (because they modal input sequences for hashing algarithms). The chaptar also covars
random maps (¥-lotter words from an K-letter alphabat) and discusses relationships with traes and parmutations.

Booksite. Reading = book and surfing the web are two different activities: This booksite |s intended far your use while online {for example, while programming and while browsing
the web); the textbaok is for your use when initially learning new material and whan reinforcing your understanding of that material (for example, when reviewing for an axam).
The booksite consists of the following elemants:

* Excerpts. A condansed version of the text narrative, for referance while online.

* Exercise solutions. Solutions to selected exercises.

* Java, Sage, and Python code. Validation of analytic results.
The book was first publishad in 1995, This booksite aims to supplamant the material in the text while still respacting the integrity of the original.
Other resources. To fully engage with this material, you will eventually want to download and use at least the following tools:

+ Stdlava code. The basic programming model that we developed for our books Introduction to Programeming (in Java) end Algorithms, 4th Edition. Available at the Algsd
booksite.

T5X. Classical math typsatting software, Get started at the X user's group websia

Mathjax, Machanism for embedding math in web pages. No need to downlcad, Just link to their site. Saa the Mathlax home page, Mathlax test: When a # 0, there are two

wnlutinna tn axd 4 by b o = () and thay are

Surf the booksite to search for information, code, and data.

39

Extensive original research

is the basis for the material in this course.

Knuth's e e e
collected " [HE. | . |
works
Flajolet's collected works
collected . to appear 2014
works Cambridge U. Press

research papers
and books
by hundreds
of others

A prime goal of this course: make this work accessible to you. ~
20,000+ pages of material () 4

More resources

Math typesetting T@(W '\Tf(ﬂ Mat h.’ax

TeXShop LaTeXiT

Symbolic math

The Essental Teal

0 13627
1 NIST HANDBOOK
Web references ; 28 of MATHEMATICAL
23 1 2 the web’s most extensive mathen;atics resource FUNCTIONS
1022 11 21

41

Introduce, read, discuss

1. We introduce topics in lecture.

2. You read the book and do assignments before the next lecture.

Exercise 1.14 Follow through the steps above to solve the recurrence

2
AN=1+N Z Aj_q for N > 0.
1<j<N

3. We discuss reading and exercises online. [No assessments.]

The main resource in this class is YOU!

Goal: For you to learn quite a few things that you do not now know.

ANALYTIC COMBINATORICS

PART ONE
Analysis
AN of
ALGORITHMS .
e Algorithms

42

Exercises 1.14 and 1.15

How many recursive calls in Quicksort?
How many exchanges?

Exercise 1.14 Follow through the steps above to solve the recurrence

: 2
yeron | A_N f—]_ + N Z Aj—l fOI' N > 0

INV T -
ALGORITHMS 1SI<N

Exercise 1.15 Show that the average number of exchanges used during the first par-
titioning stage (before the pointers cross) is (N — 2)/6. (Thus, by linearity of the
recurrences, By = %C’ N — %A N-)

43

Exercises 1.17 and 1.18

Switch to insertion sort for small subarrays.
What choice of the threshold minimizes the number of compares?

Exercise 1.17 If we change the first line in the quicksort implementation above to
if r-1<=M then insertionsort(l,r) else

(see §7.6) then the total number of compares to sort IV elements is described by the

AN INTRODUCTIGN] recurrence
ANALYSIS| .
ALGORITHMS N+l+o 3 (Ca+Cny) forN>M;
Cn = 1<G<N
IN(N —1) for N <M

Solve this exactly as in the proof of Theorem 1.3.

Exercise 1.18 Ignoring small terms (those significantly less than V) in the answer
to the previous exercise, find a function f(M) so that the number of compares is
approximately

2NInN + f(M)N.
Plot the function f(M), and find the value of M that minimizes the function.

44

Assignments for next lecture

1. Surf booksites

e http://aofa.cs.princeton.edu
e http://algs4.cs.princeton.edu

2. Start learning to use software.
« StdJava (from Algs4 booksite)
« TeX (optional: .html/Mathjax)

3. Download Quicksort and predict performance

4. Read pages 1-39 in text.

ann

Ietroduction 1o the Asalysis of Algasithms by Rabest Sesigewick st Pielisoe Flajudse

An INTRODUCTION TO THE ANALYSIS OF ALGORITHME

Propie wha analyze algarithms fave double happiness. First of al they
GxpOInce the shesr haduty of elsgant mathamatica! partars that
SUmoung slegant COmpUtaticnl Drocedurss. TheN they FECeve 3 AYaCT
Payoff when Ui theonies mae i possible o Get other obs doe move
Quickly and more economicay. D, E. Kauth

This Goaksite fs wiosr develpment (SN 2612) o cramsas,

TEXDOOK. Th bextiook Al INSGEKLH 10 L6 ANMIyS O AIparis oy

v lansical computer ackce 1G9, ncuing sigorithra end dete

* Crapter) Anmysis of AfDCrTYTS Cormiders S grlenl mosvaTan
1o ig S0NY3is D (SOUOEAIPS BNON YIS SOMOSIES [
Sudying Defarmante (haractenisics of Mgt

o Chapter 2: Racuronce ROlMAIN COrCOnTratas on fadamanl
matsarratical properties of varkus fypes of recaTrence reletions whick

Iraquently when sasiy3ing an Bgacithm thrcugh n demct mApsing

eseatation of o wa

a recwrsive e,
reprasaration of »

WrOra0N-ase Indlysia Of ANV O
PecEaery and netorst ik Detween

opertes.

o
Qevirop cocHe and Arecive BSUMISES o G
o Interest when analyzing sigerithma.

* Chapter 5: Traes Investigatos prepertias of many dfferent types of
trmws, funcamental siructures that arise =ikt and exoicitly i
B! Slgorithees, Our gual 5 10 9ravids Dico:
9 [Reraniee on the »
weile o the aeme tims providieg the groundwark
aigorithmic agpcatione

s ermutations surveys combiratorial propertiss of
PErTAtILONE (orderings of the ruMbers 1 trough X) a0 shows Fow
they relatx in & catural wey to Andamestal e widely uied acrting
wgoithms,

5. Write up solutions to Exercises 1.14, 1.15, 1.17, and 1.18.

on your computetr.

ano Abpocaors, 4th 55100t Fohen Seymick and Kavin Waywe
Avcormms, 4ru Eorrion

wssen () Information that
Every SEROUS DGrammer
néwds to knew atout
algovithms and data strectures

5, 4eh EStion by Rudert Sedjewick and
TafeemiT | 5
3 Sata SrUCLINEs in L6 Wday. Tre Texthook & 0rpanized o

Textbook. The textbook Ak
evin Wayne | Amazon

0TS
«ix thaghace:

or

Nt 10 FUnSImontals intreducas @ aclensfic an
for camparing algorithma and making pradicrione
pregramming meodal

MBtr L SEeig COMGIETS Savenal CASEC SAITNG AGONTIAY,

4 Doghs. ncludng insetion sort, mergesort, ond auickzort, It aiso ircudes o
3 g
& Conext

Bindey hasg imglemintascn of 3 orionity Guaue.
* Chapter 3: Seavching descrites amvarst clzasic 3yl table
implemestations, ncding Binecy sesrch trees, red-Dlack trees, and
ReLaten Boowsmes Dah LblE.
o Chaptnr 4: Graphe sirveys the most IMoDA: Grach proosssi
aroiams, Incuding SeptTirst s0ach, braadih. st search, sisimum
panriag trame, and erartmet patre

o Chapter 5: Strings Invesgotes speciallz
Inciudng racix sarting, subs
;, #7 dotn comprassion
 Chaptor 61 Content Nghlignt:
aciertitc computing, cammercist a3
and Inracxotility.

0 igartnms for string
G Sadrch, UGS, requar

Apsfications 5 sciance, engineadng, and industry ars 3 key fsaturs of the
T6RT, We momvate £nch DIgeritim Tt we DIrEss by expviaing RS ir
o0 apcitic

Boaksite. Randeg n hook and wirfing the
200ksHa i MIeNGSd fov your 1o whis enling

whes initla®y f0rng new motera SIMOron) 1Our Widerstoves
f trat rratesial (for sxample, when reviewing for & exerr). The boakts
conssts o tre falowing slemens

o Excerpes, A condenaad virson of the et
wrile ovine.

bve, for

 Jows code, Tre ol

AN INTRODUCTION
TO THE

ANALYSIS|
ALGOBITHMS

OND EDITION

ROBERT SEDGEWICK
PHILIPPE FLAJOLET

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation
e A scientific approach

ANALYSIS _
ALGORITHMS e Example: Quicksort
= e Resources

http://aofa.cs.princeton.edu

1d.AofA.Resources

ANALYTIC COMBINATORICS
PART ONE

1. Analysis

AT of
LGORITHMS -
A|gor||'hm3

http://aofa.cs.princeton.edu

