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Why Analyze an Algorithm?

2. Predict performance, compare algorithms, tune parameters.
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1. Classify problems and algorithms by difficulty.

3. Better understand and improve implementations and algorithms.

Intellectual challenge: AofA is even more interesting than programming!



Analysis of Algorithms (Babbage, 1860s)
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“As soon as an Analytic Engine exists, it will necessarily guide the future course of the science.  
Whenever any result is sought by its aid, the question will arise—By what course of 
calculation can these results be arrived at by  the machine in the shortest time?”

                                                                                          — Charles Babbage (1864)

Analytic Engine

how many times do you 
have to turn the crank?



Analysis of Algorithms (Turing (!), 1940s)
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“It is convenient to have a measure of the amount of work involved in a computing 
process, even though it be a very crude one. We may count up the number of times 
that various elementary operations are applied in the whole process . . .”
                                                                                                                                    — Alan Turing (1947)

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

{National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY
A number of methods of solving sets of linear equations and inverting matrices

are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known 'Gauss
elimination process', it is found that the errors are normally quite moderate: no
exponential build-up need occur.

Included amongst the methods considered is a generalization of Choleski's method
which appears to have advantages over other known methods both as regards
accuracy and convenience. This method may also be regarded as a rearrangement
of the elimination process.
THIS paper contains descriptions of a number of methods for solving sets
of linear simultaneous equations and for inverting matrices, but its main
concern is with the theoretical limits of accuracy that may be obtained in
the application of these methods, due to rounding-off errors.

The best known method for the solution of linear equations is Gauss's
elimination method. This is the method almost universally taught in
schools. It has, unfortunately, recently come into disrepute on the ground
that rounding off will give rise to very large errors. It has, for instance,
been argued by HoteUing (ref. 5) that in solving a set of n equations we
should keep nlog104 extra or 'guarding' figures. Actually, although
examples can be constructed where as many as «log102 extra figures
would be required, these are exceptional. In the present paper the
magnitude of the error is described in terms of quantities not considered
in HoteUing's analysis; from the inequalities proved here it can imme-
diately be seen that in all normal cases the Hotelling estimate is far too
pessimistic.

The belief that the elimination method and other 'direct' methods of
solution lead to large errors has been responsible for a recent search for
other methods which would be free from this weakness. These were
mainly methods of successive approximation and considerably more
laborious than the direct ones. There now appears to be no real advantage
in the indirect methods, except in connexion with matrices having special
properties, for example, where the vast majority of the coefficients are
very small, but there is at least one large one in each row.

The writer was prompted to cany out this research largely by the
practical work of L. Fox in applying the elimination method (ref. 2). Fox
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Analysis of Algorithms (Knuth, 1960s)
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To analyze an algorithm:

•Develop a good implementation.

• Identify unknown quantities representing the basic operations.

•Determine the cost of each basic operation.

•Develop a realistic model for the input.

•Analyze the frequency of execution of the unknown quantities.

•Calculate the total running time:

DRAWBACKS: 
Model may be unrealistic.
Too much detail in analysis.

BENEFITS:
Scientific foundation for AofA.
Can predict performance and compare algorithms.

�

X

MYLX\LUJ`(X)� JVZ[(X)

D. E. Knuth



To address Knuth drawbacks:

•Analyze worst-case cost

[takes model out of the picture].

•Use O-notation for upper bound

[takes detail out of analysis].

•Classify algorithms by these costs.

Theory of Algorithms (AHU, 1970s; CLR, present day)
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DRAWBACK: Cannot use to predict performance or compare algorithms.
                    (An elementary fact that is often overlooked!)

BENEFIT: Enabled a new Age of Algorithm Design.

Aho, Hopcroft 
and Ullman

Cormen, Leiserson,
Rivest, and Stein



Cannot use O- upper bounds to predict performance or compare algorithms.

Example: Two sorting algorithms
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Quicksort
Worst-case number of compares: O(N 2)
Classification O(N 2)

Mergesort
Worst-case number of compares: N log N
Classification O(N log N)

Quicksort is twice as fast as Mergesort in practice and uses half the space

BUT

How do we know?
By analyzing both algorithms! (stay tuned)



Analytic combinatorics context

Drawbacks of Knuth approach:
• Model may be unrealistic.
• Too much detail in analysis.

Drawbacks of AHU/CLRS approach:
• Worst-case performance may not be relevant.
• Cannot use O- upper bounds to predict or compare.

Analytic combinatorics can provide:
• A calculus for developing models.
• General theorems that avoid detail in analysis.

AC Part I (this course):
• Underlying mathematics.
• Introduction to analytic combinatorics.
• Classical applications in AofA and combinatorics.
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“Big-Oh” notation for upper bounds

“Omega” notation for lower bounds

“Theta” notation for order of growth (“within a constant factor”)

Notation for theory of algorithms

N(5) = 6(M(5)) PMM |N(5)/M(5)| PZ�IV\UKLK�MYVT�HIV]L�HZ 5 � �

N(5) = £(M(5)) PMM |N(5)/M(5)| PZ�IV\UKLK�MYVT�ILSV^�HZ 5 � �
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N(5) = �(M(5)) PMM N(5) = 6(M(5)) HUK N(5) = £(M(5))



O-notation considered dangerous

Not the scientific method: O-notation

O-notation is useful for many reasons, BUT
Common error: Thinking that O-notation is useful for predicting performance

13

Theorem: Running time is O(Nc) ✘

not at all useful for predicting performance

Hypothesis: Running time is ~aNc

Scientific method calls for tilde-notation.

✓
an effective path to predicting performance

How to predict performance (and to compare algorithms)?



Surely, we can do better

O-notation considered dangerous. 
Cannot use it to predict performance.

RS (in a talk):

?? O(N log N) surely beats O(N2)Q:

Not by the definition. O expresses upper bound. RS:

So, use Theta.Q:

A typical exchange in Q&A

Still (typically) bounding the worst case. 
Is the input a worst case?

RS:

(whispers to colleague) I’d use the Θ(N log N) 
algorithm, wouldn’t you?

Q:

14



Galactic algorithms

R.J. Lipton: A galactic algorithm is one that will never be used.

Why? Any effect would never be noticed in this galaxy.

Ex. Chazelle’s linear-time triangulation algorithm

• theoretical tour-de-force

• too complicated to implement

• cost of implementing would exceed savings in this galaxy, anyway

One blogger’s conservative estimate: 
      75% SODA, 95% STOC/FOCS are galactic

OK for basic research to drive agenda, BUT 
Common error: Thinking that a galactic algorithm is useful in practice.

15



Surely, we can do better

Algorithm A is bad. 
Google should be interested in my new Algorithm B.

TCS (in a talk):

What’s the matter with Algorithm A?RS:

It is not optimal. It has an extra O(log log N) factor.TCS:

But Algorithm B is very complicated, lg lg N is less 
than 6 in this universe, and that is just an upper 
bound. Algorithm A is certainly going to run 10 to 
100 times faster in any conceivable real-world 
situation. Why should Google care about Algorithm B?

RS:

Well, I like Algorithm B. I don’t care about Google.TCS:

An actual exchange with a theoretical computer scientist:

16



Analysis of Algorithms (scientific approach)

Start with complete implementation suitable for application testing.

Analyze the algorithm by

• Identifying an abstract operation in the inner loop.

• Develop a realistic model for the input to the program.

• Analyze the frequency of execution CN of the op for input size N.

Hypothesize that the cost is ~aCN where a is a constant.

Validate the hypothesis by

• Developing generator for input according to model.

• Calculate a by running the program for large input.

• Run the program for larger inputs to check the analysis.

Validate the model by testing in application contexts.

Refine and repeat as necessary
17

Sedgewick and Wayne
Algorithms, 4th edition

Section 1.4



“Big-Oh” notation for upper bounds

“Omega” notation for lower bounds

“Theta” notation for order of growth (“within a constant factor”)

Notation (revisited)

N(5) = 6(M(5)) PMM |N(5)/M(5)| PZ�IV\UKLK�MYVT�HIV]L�HZ 5 � �

N(5) = £(M(5)) PMM |N(5)/M(5)| PZ�IV\UKLK�MYVT�ILSV^�HZ 5 � �
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N(5) = �(M(5)) PMM N(5) = 6(M(5)) HUK N(5) = £(M(5))

for theory of algorithms

for analysis to predict performance
and to compare algorithms

“Tilde” notation for asymptotic equivalence

N(5) � M(5) PMM |N(5)/M(5)| � � HZ 5 � �



Components of algorithm analysis

*5 = 5+ �+
�

��R�5

�
5
(*R + *5�R��)

Mathematical

•Develop mathematical model.

•Analyze algorithm within model.

Challenge: need good model, need to do the math

% java QuickCheck 1000000
        10           44.44           26.05
       100          847.85          721.03
      1000        12985.91        11815.51
     10000       175771.70       164206.81
    100000      2218053.41      2102585.09

Scientific

•Run algorithm to solve real problem.

•Check for agreement with model.

Challenge: need all of the above

% java SortTest 1000000
        10           44.44
       100          847.85
      1000        12985.91
     10000       175771.70
    100000      2218053.41

Empirical

•Run algorithm to solve real problem.

•Measure running time and/or
count operations.

Challenge: need good implementation

19



Potential drawbacks to the scientific approach

1. Model may not be realistic.

• A challenge in any scientific discipline.

• Advantage in CS: we can randomize to make the model apply.

➛

20

2. Math may be too difficult.

•A challenge in any scientific discipline (cf. statistical physics).

•A “calculus” for AofA is the motivation for this course!

3. Experiments may be too difficult.

•Not compared to other scientific disciplines.

•Can’t implement? Why analyze?
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Example: Quicksort

public class Quick
{
   private static int partition(Comparable[] a, int lo, int hi)
   {
      int i = lo, j = hi+1;
      while (true)
      {
         while (less(a[++i], a[lo])) if (i == hi) break;
         while (less(a[lo], a[--j])) if (j == lo) break;
         if (i >= j) break;
         exch(a, i, j);
      }
      exch(a, lo, j);
      return j;
   }

   private static void sort(Comparable[] a, int lo, int hi)
   {
      if (hi <= lo) return;
      int j = partition(a, lo, hi);
      sort(a, lo, j-1);
      sort(a, j+1, hi);
   }
} 

23

Section 2.3

http://algs4.cs.princeton.edu/23quicksort/Quick.java



Start: Preliminary decisions

Cost model

• running time? 

• better approach: separate algorithm from implementation

• for sorting, associate compares with inner loop.

• Hypothesis: if number of compares is C, running time is ~aC 

Input model

• assume input randomly ordered (easy to arrange)

• assume keys all different (not always easy to arrange)

Key question: Are models/assumptions realistic? 

Stay tuned.

timing 

counting 

24



Setup: Relevant questions about quicksort

Assume array of size N with entries distinct and randomly ordered.

Q. How many compares to partition?

A. N+1

Q. What is the probability that the partitioning
     item is the kth smallest?

A. 1/N

Q. What is the size of the subarrays
     in that case?

A. k −1 and N − k

Q.  Are the subarrays randomly
      ordered after partitioning?

A.  YES.

25



Main step: Formulate a mathematical problem

Recursive program and input model lead to a recurrence relation.

Assume array of size N with entries distinct and randomly ordered.

Let CN be the expected number of compares used by quicksort.

*5 = 5+ �+
�

��R�5

�
5
(*R�� + *5�R)

for partitioning

probability 
k is the 

partitioning 
element

compares for 
subarrays 

when k is the 
partitioning 

element

26



Simplifying the recurrence

Collect terms. 5*5 = (5+ �)*5�� + �5

Subtract same formula for N−1. 5*5 � (5� �)*5�� = �5+ �*5��

*5 = 5+ �+
�

��R�5

�
5
(*R�� + *5�R)

Multiply both sides by N. 5*5 = 5(5+ �) + �
�

��R�5

*R��

both sums are
C0 + C1 + ... + CN-1

Apply symmetry. *5 = 5+ �+
�
5

�

��R�5

*R��

27

*� = �



Aside

Simplified recurrence gives efficient algorithm for computing result

*5 = 5+ �+
�

��R�5��

�
5
(*R + *5�R��)

AofA: Finding a fast way to compute the running time of a program

QUADRATIC time

c[0] = 0;
for (int N = 1; N <= maxN; N++)
{         
   c[N] = N+1;
   for (int k = 0; k < N;  k++)
      c[N] += (c[k] + c[N-1-k])/N;
}

⤷

5*5 = (5+ �)*5�� + �5

c[0] = 0;
for (int N = 1; N <= maxN; N++)
   c[N] = (N+1)*c[N-1]/N + 2;

LINEAR time

⤷
28



Solving the recurrence

5*5 = (5+ �)*5�� + �5

Tricky (but key) step:
divide by N(N+1)

*5

5+ �
=

*5��

5
+

�
5+ �

Telescope.

*5

5+ �
=

*5��

5
+

�
5+ �

=
*5��

5� �
+

�
5

+
�

5+ �

=
*�

�
+

�
�
+ . . .+

�
5

+
�

5+ �

*5 � �5
�

��R�5

�
R
� �5Simplify (ignore small terms).

Approximate with an 
integral (stay tuned)

*5 � �5(

� �

�

�
_
K_+ �)� �5

= �5 ln5� �(�� �)5 Euler’s constant ≐ .57721

29

Bob Sedgewick
N



Finish: Validation (mathematical)

It is always worthwhile to check your math with your computer.

public class QuickCheck
{
   public static void main(String[] args)
   {
      int maxN = Integer.parseInt(args[0]);
      double[] c = new double[maxN+1];
      c[0] = 0;
      for (int N = 1; N <= maxN; N++)
         c[N] = (N+1)*c[N-1]/N + 2;

      for (int N = 10; N <= maxN; N *= 10)
      {
         double approx = 2*N*Math.log(N) - 2*(1-.577215665)*N;
         StdOut.printf("%10d %15.2f %15.2f\n", N, c[N], approx);
      }
   }
}

% java QuickCheck 1000000
        10           44.44           37.60
       100          847.85          836.48
      1000        12985.91        12969.94
     10000       175771.70       175751.12
    100000      2218053.41      2218028.23
   1000000     26785482.23     26785452.45

30

�5 ln5� �(�� �)5

5*5 = (5+ �)*5�� + �5



Finish: Validation (checking the model)

It is always worthwhile to use your computer to check your model. 

Example: Mean number of compares used by Quicksort for randomly ordered
distinct keys is 

Experiment: Run code for randomly ordered distinct keys, count compares

Observation: May be interested in distribution of costs

1000 trials for each N
one grey dot for each trial
red dot: average for each N

31

�5 ln5� �(�� �)5

✓

�5 ln5� �(�� �)5



Quicksort compares: limiting distribution is not “normal”

32

Bottom line: 

• A great deal is known about the performance of Quicksort.

• AofA leads to intriguing new research problems.

exact distribution
(from recurrence)

for small N

centered 
on mean

empirical 
validation
N = 1000

see  “Approximating the Limiting Quicksort Distribution.”  by Fill and Janson (RSA 2001).



Easy method to predict (approximate) performance

Hypothesis: Running time of Quicksort is ~aN ln N.

Experiment.

• Run for input size N. Observe running time.

• [Could solve for a.]

• Predict time for 10N to increase by a factor of 

Note: Best to also have accurate mathematical model. Why?

Example: 

•Run quicksort 100 times for N = 100,000: Elapsed time: 4 seconds. 

•Predict running time of 4 x 10.2 = 40.8 seconds for N = 1M.

•Observe running time of 41 seconds for N = 1M

•Confidently predict running time of 41 x 1000.5 = 11.4 hours for N = 1B.

a(10N) ln(10N)

aN lnN
= 10 +

ln 10

lnN
= 10 +

1

log10 N

33

Bob Sedgewick
10

Bob Sedgewick
10

Bob Sedgewick
12

Bob Sedgewick
48

Bob Sedgewick
48

Bob Sedgewick
48 x (70/6) x (80/7) x (90/8) = 20 hours



Validate-refine-analyze cycle

It is always worthwhile to validate your model in applications.

Quicksort: Validation ongoing for 50 years! 

Example 3 (2010s): Sorting for networking.

• Application: sort ~1B records ~1K characters each.

• Need to beat the competition or go out of business.

• Refinement: adapt to long stretches of equal chars (avoid excessive caching)

Example 1 (late 1970s): Sorting on the CRAY-1.

•Application: cryptography.

•Need to “sort the memory” 1M pseudo-random 64-bit words.

• Bottom line: analysis could predict running time to within 10−6 seconds.

as many times 
as possible!

Example 2 (1990s): UNIX system sort.

•Application: general-purpose.

•User app involving files with only a few distinct values performed poorly.

•Refinements: 3-way partitioning, 3-way string quicksort (see Algs4).

•Refined models (not simple): research ongoing. see “The number of symbol comparisons in QuickSort and QuickSelect.” 
by Vallee, Clement, Fill, and Flajolet (ICALP 2009).

34



Double happiness

35

“People who analyze algorithms have double happiness.  First of all
they experience the sheer beauty of elegant mathematical patterns 
that surround elegant computational procedures.  Then they 
receive a practical payoff when their theories make it possible to 
get other jobs done more quickly and more economically.”

                                                                                          — D. E. Knuth (1995)
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Books
are the prime resources associated with this course.

38

Main
text

(2013)

Text
for

Part II

Reference
for

Algorithms

First edition
(1995)

Reference
for
Java

Reading the books is the best way to develop understanding.



Booksites
are web resources associated with the books.

39

Surf the booksite to search for information, code, and data.

http://aofa.cs.princeton.edu



Extensive original research
is the basis for the material in this course.

40

A prime goal of this course: make this work accessible to you.

research papers
and books

by hundreds
of others

20,000+ pages of material (!)

Flajolet's
collected

works

collected works
to appear 2014

Cambridge U. Press

Knuth's
collected

works



More resources

41

Symbolic math

Web references

Math typesetting



Introduce, read, discuss

1. We introduce topics in lecture.

2. You read the book and do assignments before the next lecture.

3. We discuss reading and exercises online.  [No assessments.]

The main resource in this class is YOU!

Goal: For you to learn quite a few things that you do not now know.

42



Exercises 1.14 and 1.15

How many recursive calls in Quicksort?
How many exchanges?

43



Exercises 1.17 and 1.18

Switch to insertion sort for small subarrays.
What choice of the threshold minimizes the number of compares?

44



Assignments for next lecture

1. Surf booksites

• http://aofa.cs.princeton.edu

• http://algs4.cs.princeton.edu

2. Start learning to use software.

• StdJava (from Algs4 booksite)

• TeX (optional: .html/MathJax)

3. Download Quicksort and predict performance on your computer.

4. Read pages 1-39 in text.

5. Write up solutions to Exercises 1.14, 1.15, 1.17, and 1.18.

45
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