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Analytic combinatorics overview

A. SYMBOLIC METHOD

1. OGFs

2. EGFs

3. MGFs

B. COMPLEX ASYMPTOTICS

4. Rational & Meromorphic

5. Applications of R&M

6. Singularity Analysis

7. Applications of SA

8. Saddle point

specification

GF
equation

desired 
 result !

asymptotic
estimate⬅
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SYMBOLIC METHOD

COMPLEX ASYMPTOTICS



[a5]+(a) � �
L

+(a) =
L�a

�� a

Starting point

The symbolic method supplies generating functions that vary widely in nature.

Next step: Derive asymptotic estimates of coefficients.

Analytic combinatorics approach: Direct approximations.

Classical approach: Develop explicit expressions for coefficients, then approximate
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Starting point

Catalan trees

Construction G = ○ × SEQ( G ) Construction D = SET (CYC>1( Z ))

Derangements

Problem: Explicit forms can be unwieldy (or unavailable).

Opportunity: Relationship between asymptotic result and GF.
5
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Analytic combinatorics overview

1. Use the symbolic method (lectures 1 and 2).

• Define a class of combinatorial objects.

• Define a notion of size (and associated GF)

• Use standard constructions to specify the structure.

• Use a symbolic transfer theorem.

Result: A direct derivation of a GF equation.

To analyze properties of a large combinatorial structure:

6

Speci!cation

GF equation

D = SET (CYC>1( Z ))

+(a) =
L−a

�− a

Analytic transfer
2. Use complex asymptotics (starting with this lecture). 

• Start with GF equation.

• Use an analytic transfer theorem.
Result: Asymptotic estimates of the desired properties.

Asymptotics
+5 ∼ �

L

Symbolic transfer

Ex. Derangements



A shift in point of view

GF

generating functions are treated as formal objects

7

Analytic transfer

Speci!cation

GF equation

Asymptotics

Symbolic transfer

generating functions are treated as analytic objects

analytic
object!

formal
object!



GFs as analytic objects (real)

8

Useful concepts:

A. We can use a series representation (in a certain interval) that allows us to extract coefficients.

Differentiation:
Singularities:

Continuation: 

M(_) =
�

�� �_

[aU]M(_) = �U�
�− �_

= �+ �_+ �_� + �_� + . . . MVY � ≤ _ < �/�

(0, 1)

(1, −1)

Q. What happens when we assign real values to a GF? 

coefficients are positive
so f(x) is positive

M �(_) = �+ �_ + ��_� + . . .Compute derivative term-by-term where series is valid.

singularity

Points at which series ceases to be valid.

M(�) = −�Use functional representation even where series may diverge.

continuation



GFs as analytic objects (complex)

9

A. We can use a series representation (in a certain domain) that allows us to extract coefficients.

Same useful concepts:

Compute derivative term-by-term where series is valid.
Points at which series ceases to be valid. 
Use functional representation even where series may diverge.

Differentiation:
Singularities:

Continuation: 

Q. What happens when we assign complex values to a GF? 

singularity

stay tuned for
interpretation 

of plotM(a) =
L�a

�� a



GFs as analytic objects (complex)

10

A. A surprise!

Q. What happens when we assign complex values to a GF? 

singularity

stay tuned for
interpretation 

of plotM(a) =
L�a

�� a

Singularities provide full information on growth of GF coefficients!

“Singularities provide a royal road to coefficient asymptotics.”

Serendipity
is not

an accident



General form of coefficients of combinatorial GFs

First principle of coefficient asymptotics

The location of a function’s singularities dictates 
the exponential growth of its coefficients.

exponential
growth factor

subexponential
factor

GF GF
type

singularitiessingularities exponential
growth

subexp.
factorGF GF

type location nature
exponential

growth
subexp.
factor

strings with
no 00 rational pole

derangements meromorphic 1 pole 1N

Catalan trees analytic square 
root 4N

Examples (preview):
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[a5]-(a) = (5θ(5)

Second principle of coefficient asymptotics

The nature of a function’s singularities dictates
the subexponential factor of the growth.

)�(a) =
�− a�

�− �a− a�
�/φ, �/φ̂ φ5

�√
�

+(a) =
L�a

�� a
L−�

.(a) =
�+

√
�− �a
�

�/� �

�
�
�5�
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Theory of complex functions

Quintessential example of the power of abstraction.

1 + i

14

Continue by exploring natural definitions of basic operations

• Addition
• Multiplication
• Division
• Exponentiation
• Functions
• Differentiation
• Integration

are complex 
numbers

real ?Start by defining i to be the square root of −1 so that i 2 = −1



Standard conventions

15

Correspondence with points in the plane

|z|

(x, y) represents
z = x + iyreal part

imaginary part

absolute value

conjugate ā = _� P`

|a| �
�

_� + `�

�a � _

�a � `

a = _+ P`
x

y

(x, −y) represents
z = x − iyaā = |a|�Quick exercise:



Basic operations

Exponentiation?

16

Addition

(H+ IP) + (J+ KP) = (H+ J) + (I+ K)P

Multiplication

(H+ IP) � (J+ KP) = HJ+ HKP+ IJP+ IKP�

= (HJ� IK) + (IJ+ HK)P

Natural approach: Use algebra, but convert i 
2 to −1 whenever it occurs

Division

�
H+ IP

=
H� IP
H� + I�

�
a
=

ā
|a|



Analytic functions

Examples:

17

�
�� a

= �+ a+ a� + a� + a� + . . . is analytic for |z| < 1 .

La � �+
a
�!

+
a�

�!
+

a�

�!
+

a�

�!
+ . . . is analytic for |z| < ∞ .

Definition. A function f (z ) defined in Ω is analytic at a point z0 in Ω iff for z in an open disc in 

Ω centered at z0 it is representable by a power-series expansion M(a) =
�

5��

J5(a� a�)5



Complex differentiation

Theorem. Basic Equivalence Theorem.
A function is analytic in a region Ω iff it is complex-differentiable in Ω.

For purposes of 
this lecture: 

Axiom 1.

Definition. A function f (z ) defined in a region Ω is holomorphic or complex-differentiable at a 

point z0 in Ω iff the limit                                                   exists, for complex δ.

18

Useful facts:

• If function is analytic (complex-differentiable) in Ω, it admits derivatives of any order in Ω.

• We can differentiate a function via term-by-term differentiation of its series representation.
• Taylor series expansions ala reals are effective.

Note: Notationally the same as for reals, but much stronger—the value is independent of the way that δ approaches 0.

M �(a�) = lim
���

M(a� + �)� M(a�)
�



Taylor's theorem
immediately gives power series expansions for analytic functions.
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La � �+
a
�!

+
a�

�!
+

a�

�!
+

a�

�!
+ . . .

cos a � �� a�

�!
+

a�

�!
� a�

�!
+ . . .

sin a � a
�!

� a�

�!
+

a�

�!
� a�

�!
+ . . .

�
�� a

= �+ a+ a� + a� + a� + . . .



LP� = �+
P�
�!

+
(P�)�

�!
+

(P�)�

�!
+

(P�)�

�!
+ . . .+

(P�)U

U!
+ . . .

Evaluate the exponential function at iθ

Euler's formula

20

= � � ��

�!
� ��

�!
+

��

�!+ P
�

�!
� P

��

�!
+ P

��

�!
� P

��

�!
+ P

� 

 !+
��

�!
+ . . .

i 
2 = −1 i 

3 = −i i 
4 = 1

“Our jewel .  .  . one of the most remarkable, almost 
  astounding, formulas in all of mathematics”

                              — Richard Feynman, 1977Euler's formula

LP� = cos � + P sin �



Polar coordinates

21

Euler's formula gives another correspondence between complex numbers and points in the plane.

YLP� = Y cos � + PY sin �

r sinθ

r cosθ

θ
r

(x, y)

Conversion functions defined for any complex 
number x + iy :

• absolute value (modulus) 

• angle (argument)

Y =
�

_� + `�

� = arctan
`
_
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9(a) =
�

�� La
.(a) =

�+
√
�− �a
�

:Y(a) =
aY

(�� a)(�� �a) . . . (�� Ya)

)7(a) =
�+ a+ a� + . . .+ a7−�

�− a− a� − . . .− a7
+(a) =

L�a

�� a

0(a) = La+a�/�*(a) =
�

�� a
ln

�
�� a

Rational functions
are complex functions that are the ratio of two polynomials.

24

Approach:

• Use partial fractions to expand into terms for which coefficient extraction is easy.

• Focus on the largest term to approximate.

[Same approach as for reals, but takes complex roots into account.] 



Extracting coefficients from rational GFs

Example 1.

(distinct roots) 

Factor the denominator and use partial fractions to expand into sum of simple terms.

25

((a) =
a

�� �a+ �a�

Use partial fractions:
      Expansion must be of the form

((a) =
J�

�� �a
+

J�
�� �a

Cross multiply
      and solve for coefficients.

J� + J� = �

�J� + �J� = ��

Solution is c0 = 1 and c1=−1 ((a) =
�

�� �a
� �

�� �a

Rational GF

=
a

(�� �a)(�� �a)
Factor denominator

Extract coefficients. H5 = [a5]((a) = �5 � �5

((a) �
�

5��

H5a5



Extracting coefficients from rational GFs

Example 2.

(multiple roots) 

Factor the denominator and use partial fractions to expand into sum of simple terms.

26

Rational GF

Use partial fractions:
      Expansion must be of the form ((a) =

J�
�+ a

+
J�

�� �a
+

J�
(�� �a)�

((a) =
a�

�� �a+ �a�

Factor denominator =
a

(�+ a)(�� �a)�

Cross multiply
      and solve for coefficients.

J� + J� + J� = �

��J� � J� + J� = �

�J� � �J� = �

Solution is 
       c0 = −2/9,  c1 = −1/9,  and c2= 3/9 ((a) =

�
 

�
� �
�+ a

� �
�� �a

+
�

(�� �a)�
�

Extract coefficients. H5 = [a5]((a) =
�
 
(�(��)5 + �5 + �5�5)



Approximating coefficients from rational GFs

27

When roots are real, only one term matters.

H5 =
�
 
(�(��)5 + �5 + �5�5)

H5 � �
�
5�5

multiplicity 3 gives terms
of the form n2βn, etc.

((a) =
�
 

�
� �
�+ a

� �
�� �a

+
�

(�� �a)�
�

smaller roots give
exponentially smaller termsH5 � �

 
(�5 + �5�5)



Extracting coefficients from rational GFs

Example 3.

(complex roots) 

Factor the denominator and use partial fractions to expand into sum of simple terms.

28

Rational GF ((a) =
�� �a

�� �a+ a� � �a�

Factor denominator =
�� �a

(�� �a)(�+ a�)
=

�
(�+ a�)

Use partial fractions:
      Expansion must be of the form

((a) =
J�

�� Pa
+

J�
�+ Pa

Cross multiply
      and solve for coefficients.

J� + J� = �

PJ� � PJ� = �

Solution is 
       c0 =  c1 = 1/2

((a) =
�
�

� �
�� Pa

+
�

�+ Pa

�

Extract coefficients. [a5]((a) =
�
�
(P 5 + (�P)5) = �

�
P 5(�+ (��)5)

  1, 0, -1, 0, 1, 0, -1, 0, 1...



Theorem. Suppose that g(z) is a polynomial of degree t with roots β1, β2,..., βr and let mi 

denote the multiplicity of βi  for i from 1 to r. If f (z) is another polynomial with no roots in 

common with g(z), and g(0)≠0 then  

Extracting coefficients form rational GFs (summary)

T� +T� + . . .+TY = [

29

[a5]
M(a)
N(a)

=
∑

�≤Q<T�

J�QU QβU
� +

∑

�≤Q<T�

J�QU QβU
� + . . .+

∑

�≤Q<TY

JYQU QβU
Y

Notes:

• There are t terms, because m1 + m2 + ... + mr = t.

• The t constants cij depend upon f.

• Complex roots introduce periodic behavior.



Theorem. Assume that a rational GF f (z)/g(z) with f (z) and g(z) relatively prime and g(0)≠0 

has a unique pole of smallest modulus 1/β and that the multiplicity of β is ν.

AC transfer theorem for rational GFs (leading term)

30

A(z) = f (z)/g(z) 1/β ν C [zN ]A(z)

1/2 2

φ 1

1.9276... 1 1.09166...

�
(��)�(�/�)

��
=

�
�

a
�� �a+ �a� � �

�
5�5

�
�� a� a�

(��/�)
��� (�/�)

=
��
�

� ��
�
�5

�+ a+ a� + a�

�� a� a� � a� � a� � *�5

Examples. 

typical case

[aU]
M(a)
N(a)

� *�UU��� ^OLYL * = �
(��)� M(�/�)
N(�)(�/�)

Then



Computer algebra solution

Transfer theorem amounts to an algorithm that is embodied in many computer algebra systems.

31



Classic example: Algorithm for solving linear recurrences

32

pp. 157–158



AC example with rational GFs: Patterns in strings

33

Speci!cation B4 = Z<4 (E + Z1B4)

B4, the class of all binary strings with no 04

GF equation

Symbolic transfer

)�(a) = (�+ a+ a� + a�)(�+ a)�(a))

=
�+ a+ a� + a�

�− a− a� − a� − a�

Analytic transfer

Asymptotics )�5 ∼ *β5 ^P[O * .
= �.� �� HUK β

.
= �. ���

see Lecture 1

Many more examples to follow (next lecture)
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Analytic functions

Definition. A function f (z ) defined in Ω is analytic at a point z0 in Ω iff for z in an open disc in 

Ω centered at z0 it is representable by a power-series expansion

Example: analytic at 0

Definition. A singularity is a point where a function ceases to be analytic.

36

�
�� a

=
�

5��

a5

�
�� a

=
�

�� a� � (a� a�)
=

�
�� a�

�
�� a�a�

��a�

=
�

5��

� �
�� a�

�5+�
(a� a�)5 analytic everywhere but z = 1

M(a) =
�

5��

J5(a� a�)5



Analytic functions

37

Definition. A function f (z ) defined in 

Ω is analytic at a point z0 in Ω iff for 

z in an open disc in Ω centered at z0 

it is representable by a power-series 
expansion

function region of meromorphicity

everywhere

everywhere but z = 0

everywhere but z = 1

everywhere but z = ±i

everywhere

everywhere but z = 1, 1/2, 1/3, ...

everywhere but z = 1/4

everywhere but z = ln2 ± 2πki

everywhere but z = 1

�+ a+ a�

�
a

+(a) =
L�a

�� a
�

�+ a�

0(a) = La+a�/�

:Y(a) =
aY

(�� a)(�� �a) . . . (�� Ya)

.(a) =
�+

√
�− �a
�

9(a) =
�

�� La

*(a) =
�

�� a
ln

�
�� a

M(a) =
�

5��

J5(a� a�)5



Aside: computing with complex functions
is an easy exercise in object-oriented programming.

38

public class Complex
{
    private final double re;   // real part
    private final double im;   // imaginary part

    public Complex(double real, double imag)
    {
        re = real;
        im = imag;
    }

    public Complex plus(Complex b)
    {
        Complex a = this;
        double real = a.re + b.re;
        double imag = a.im + b.im;
        return new Complex(real, imag);
    }

    public Complex times(Complex b)
    {
        Complex a = this;
        double real = a.re * b.re - a.im * b.im;
        double imag = a.re * b.im + a.im * b.re;
        return new Complex(real, imag);
    }

    ...
}

public class Example implements ComplexFunction
{
    public Complex eval(Complex z)
    {  // {1 \over 1+z^3}
        Complex one = new Complex(1, 0);
        Complex d = one.plus(z.times(z.times(z)));
        return d.reciprocal();
    }
}

public interface ComplexFunction
{
   public Complex eval(Complex z);
}

Design choice: complex numbers are immutable

• create a new object for every computed value

• object value never changes

[Same approach as for Java strings.] 



�
�+ a�

Aside (continued): plotting complex functions
is also an easy (and instructive!) programming exercise.

39

public class Plot2Dez
{ 
  public static void show(ComplexFunction f, int sz)
  {
   StdDraw.setCanvasSize(sz, sz);
   StdDraw.setXscale(0, sz);
   StdDraw.setYscale(0, sz);
   double scale = 2.5;
   for (int i = 0; i < sz; i++)
      for (int j = 0; j < sz; j++)
      {
         double x = ((1.0*i)/sz - .5)*scale;
         double y = ((1.0*j)/sz - .5)*scale;
         Complex z = new Complex(x, y);
         double val = f.eval(z).abs()*10;
         int t;
         if  (val <   0) t = 255;
         else if (val > 255) t = 0;
         else t = 255 - (int) val;
         Color c = new Color(t, t, t);
         StdDraw.setPenColor(c);
         StdDraw.pixel(i, j);
      }
   Color c = new Color(0, 0, 0);
   StdDraw.setPenColor(c);
   StdDraw.line(sz/2, 0, sz/2, sz);
   StdDraw.line(0, sz/2, sz, sz/2);
   StdDraw.show();
  }
}

public class Example implements ComplexFunction
{
    public Complex eval(Complex z)
    {  // {1 \over 1+z^3}
        Complex one = new Complex(1, 0);
        Complex d = one.plus(z.times(z.times(z)));
        return d.reciprocal();
    }
   public static void main(String[] args)
   {  Plot2D.show(new Example(), 512);  }
}

arbitrary  factor
to emphasize growth

darkness of pixel at (x, y)
is proportional to |f (x + iy )|

our convention:
plots are in the 2.5 by 2.5 square

centered at the origin

singularities
(where |f | → ∞)



Entire functions (analytic everywhere)

40

�+ a+ a�

La+a�/�

our convention:
highlight the 2.5 by 2.5 square

centered at the origin
when plotting a bigger square



Plots of various rational functions

41

a�

(�� a)(�� �a)(�� �a)(�� �a)

�
�� a

�
�+ a�

�
�� a�

�+ a+ a� + a�

�− a− a� − a� − a�



Complex integration

42

Augustin-Louis Cauchy
1789-1857

(2, 3)

(2, −1)

L

= �P − `�

�

∣∣∣
−�

�
= �P + �

∫

3
aKa =

∫ −�

�
(�+ P`)PK` a = _+ P` Ka = PK`

Analytic combinatorics context: Immediately gives exponential growth for meromorphic GFs

Starting point: 

Change variables to 

convert to real 

integrals.

Amazing facts:

• The integral of an analytic function around a loop is 0. 

• The coefficients of an analytic function can be extracted via complex integration



Integration examples

L1

∫

3�
aKa =

∫ �

−�
_K_+ �P =

_�

�

∣∣∣
�

−�
+�P = −�+ �P

L3

∫

3�
aKa =

∫ −�

�
_K_− P =

_�

�

∣∣∣
−�

�
−P = �− PL4

∫

3�
aKa =

∫ �

−�
(−�+ P`)PK` = −�P− `�

�

∣∣∣
�

−�
= −�P− �
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(−4, 3)

(−4, −1)

(2, 3)

(2, −1)

L2

∫

3�
aKa =

∫ −�

�
(�+ P`)PK` = �P− `�

�

∣∣∣
−�

�
= �P+ � a = _+ P` Ka = PK`

Ex 1. Integrate f (z) = z on a rectangle

∫

9
aKa =

∫

3�+3�+3�+3�
aKa = −�+ �P + �P + �+ �− P − �P − � = � (!)

R

Ex 2. Integrate f (z) = z on a circle centered at 0
C

a = YLP� Ka = PYLP�K�

∫

*
aKa = PY�

∫ ��

�
L�PθKθ =

L�Pθ

�P

∣∣∣
��

�
=

�
�P
(�− �) = �

Ex 3. Integrate f (z) = 1/z on a circle centered at 0
∫

*

Ka
a

= P
∫ ��

�
Kθ = ��P



Integration examples

=

{
�� P PM 4 = −�
� PM 4 "= −�
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Ex 5. Integrate f (z) = (z−s)M on a circle centered at s

=

{
�� P PM 4 = −�
� PM 4 "= −�

∫ ��

�
Kθ = ��

Ex 4. Integrate f (z) = zM on a circle centered at 0

C

∫

*
a4Ka

Cs

s

∫

*Z
(a− Z)4Ka = PY4+�

∫ ��

�
LP(4+�)θKθ a� Z = YLP� Ka = PYLP�K�

= PY4+�
∫ ��

�
LP(4+�)θKθ a = YLP� Ka = PYLP�K�

∫ ��

�
L(4+�)PθKθ =

L(4+�)Pθ

(4+ �)P

∣∣∣
��

�
=

�
(4+ �)P

(�− �) = �



Null integral property

For purposes of 
this lecture: 

Axiom 2.

Homotopic: Paths that can 
be continuously deformed 

into one another.

45

Theorem. (Null integral property).

       If f (z) is analytic in Ω then                         for any closed loop λ in Ω.

�

�
M(a)Ka = �

Ex. f (z) = z
∫

9
a Ka = �

∫

*
a Ka = �

Equivalent fact:                                     for any homotopic paths α and β in Ω.
�

�
M(a)Ka =

�

�
M(a)Ka

α
β

�

�+�
M(a)Ka = �

α
β

�

�
M(a)Ka =

�

�
M(a)Ka



Deep theorems of complex analysis

46

Analyticity

Complex
Differentiability

Null Integral
Property

Appendix C 
pp. 741-743



Cauchy’s coefficient formula

47

Theorem. If f (z) is analytic and λ is a closed +loop in a region Ω that contains 0, then

MU � [ aU ] M( a ) =
�
��P

�

�
M( a )

Ka
aU+�

Proof. 

• Expand f :

• Deform λ to a circle centered at 0

• Integrate:

0

M(a) = M� + M�a + M�a� + M�a� + . . .

�

*Z

M(a)
Ka
aU+� =

�

*Z

� M�
aU+� + . . .+

MU
a
+ MU+� + MU+�a+ . . .

�
Ka

See integration example 4= �� P MU

AC context: provides transfer theorems for broader class of complex functions: meromorphic functions (next).
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9(a) =
�

�� La
.(a) =

�+
√
�− �a
�

:Y(a) =
aY

(�� a)(�� �a) . . . (�� Ya)

)7(a) =
�+ a+ a� + . . .+ a7−�

�− a− a� − . . .− a7
+(a) =

L�a

�� a

0(a) = La+a�/�*(a) =
�

�� a
ln

�
�� a

Meromorphic functions

are complex functions that can be expressed as the ratio of two analytic functions.

50

Approach:

• Use contour integration to expand into terms for which coefficient extraction is easy.

• Focus on the largest term to approximate.

[Same approach as for rationals, resulting in a more general transfer theorem.] 

Note: All rational functions are meromorphic.



Useful facts: 

• A function h(z) that is meromorphic at z0 admits an expansion of the form

and is said to have a pole of order M at z0.

• The coefficient h−1 is called the residue of h(z) at z0, written                  .

• If h(z) has a pole of order M at z0, the function (z − z0)M h(z) is analytic at z0.

Meromorphic functions

51

Definition. A function h(z ) defined in Ω is meromorphic at z0 in Ω iff for z in a neighborhood 

of z0 with z ≠ z0 it can be represented as f (z)/g(z), where f (z) and g(z) are analytic at z0.

9LZ
a=a�

O(a)

O(a) =
O�4

(a� a�)4
+ . . .+

O��

(a� a�)�
+

O��

(a� a�)
+ O� + O�(a� a�) + O�(a� a�)� + . . .

A function is meromorphic in Ω iff it is analytic in Ω except for a set of isolated singularities, its poles. 

Proof sketch: If z0 is a zero of g(z) then g(z) = (z − z0)M G(z).

                     Expand the analytic function f (z)/G(z) at z0.



Meromorphic functions

function region of meromorphicity

everywhere

everywhere but z = 0

everywhere but z = 1

everywhere but z = ±i

everywhere but z = 1, 1/2, 1/3, ...

everywhere but z = ln2 ± 2πki
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Definition. A function h(z ) defined in 

Ω is meromorphic at z0 in Ω iff for z 

in a neighborhood of z0 with z ≠ z0 it 

can be represented as f (z)/g(z), 
where f (z) and g(z) are analytic at z0.

�+ a+ a�

�
a

+(a) =
L�a

�� a

�
�+ a�

:Y(a) =
aY

(�� a)(�� �a) . . . (�� Ya)

9(a) =
�

�� La



Plots of various meromorphic functions
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�
�� a�

�+ a+ a� + a�

�− a− a� − a� − a�

a�

(�� a)(�� �a)(�� �a)(�� �a)

L�a

�� a

�
�� La



Proof. 

• Expand h:

• Deform λ to a circle centered at s that contains no other poles

• Integrate:

Integrating around a pole

54

Significance: Connects local properties of a function (residue at a point)
                               to global properties elsewhere (integral along a distant curve).

�

*Z
O(a)Ka =

�

*Z

� O�4

(a� Z)4
+ . . .+

O��

(a� Z)
+ O� + O�(a� Z) + O�(a� Z)� + . . .

�
Ka

O(a) =
O�4

(a� Z)4
+ . . .+

O��

(a� Z)
+ O� + O�(a� Z) + O�(a� Z)� + . . .

∫

*

�
a
Ka = ��PEx. f (z) = 1/z, pole at 0 with residue 1.

C

s

= �� P O�� See integration example 5

Lemma. If h(z) is meromorphic and λ is a closed +loop with 

a single pole s of h inside, then

s�

�
O(a)Ka = ��P 9LZ

a=Z
O(a)



Proof (sketch). 

• Consider small circles Cs centered at each pole.

• Define a path λ* that follows λ but travels in, around, and out each Cs.

• Poles are all outside λ* so integral around λ* is 0.

• Paths in and out cancel, so

• By the single-pole lemma     

Residue theorem

55

Theorem. If h(z) is meromorphic and λ is a closed +loop in Ω, then

 

where S is the set of poles of h(z) inside Ω

�
��P

�

�
O(a)Ka =

�

Z�:

9LZ
a=Z

O(a)

�

��
O(a)Ka =

�

�
O(a)Ka�

�

Z�:

�

*Z

O(a)Ka = �
�

*Z

O(a)Ka = ��P 9LZ
a=Z

O(a)

λ

λ*



Proof sketch:

• Consider the integral 

• By the residue theorem

• By direct bound

Ex. If αi is order 1

Theorem. Suppose that h (z ) is meromorphic in the closed disc |z | ≤ R; analytic 

at z = 0 and all points |z | = R; and that α1, ... αm are the poles of h (z ) in R. Then  

where p1, ..., pm are polynomials with degree α1−1, ..., αm −1, respectively.

Extracting coefficients from meromorphic GFs 
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=
W�(5)
�5�

+ . . .+
WT(5)
�5T

R

α2

α1

α3

αm

=
J

�5+�
P

O5 � [a5]O(a) =
W�(5)
�5�

+
W�(5)
�5�

+ . . .+
WT(5)
�5T

+6
� �
95

�

095 =
�
��P

�

|a|=9
O(a)

Ka
a5+�

095 =
�

��P�T

9LZ
a=�P

O(a)
a5+�

Constant. May depend on R, but not N.

095 <
(
95

^OLYL |O(a)| < ( MVY |a| = 9

O(a) � J
(a� �P)

HZ a � �P

9LZ
a=�P

O(a)
a5+� = 9LZ

a=�P

J
a5+�(a� �P)



Complex roots

57

A.  YES: all poles closest to the origin contribute to the leading term.

Q.  Do complex roots introduce complications in deriving asymptotic estimates of coefficients?

�
�� a�

YR5 = exp(
��PR
5

) = cos(
��PR
5

) + P sin(
��PR
5

) MVY � � R < 5Prime example: Nth roots of unity

(YR5)5 = �all are distance 1 from origin with 

�
�� a�� �

�+ a�

[a5]
�

�+ a�
= �, �, � �, �, �, �, � �, . . .

Rational GF example earlier in this lecture.



Complex roots
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Q.  Do complex roots introduce complications in deriving asymptotic estimates of coefficients?

A.  NO, for combinatorial GFs, if only one root is closest to the origin.

Implication: Only the smallest positive real root matters if no others have the same magnitude.

If some do have the same magnitude,
complicated periodicities can be present.

See "Daffodil Lemma" on page 266.

Pringsheim’s Theorem. If h (z) can be represented as a series 
expansion in powers of z with non-negative coefficients and radius 
of convergence R, then the point z = R is a singularity of h (z).

smallest positive real root

�+ a+ a� + a�

�− a− a� − a� − a�



AC transfer theorem for meromorphic GFs (leading term)
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Theorem. Suppose that h (z )= f (z)/g(z) is meromorphic in |z | ≤ R and analytic both at z = 0 

and at all points |z | = R. If α is a unique closest pole to the origin of h (z ) in R, then α is real 

and                                 where M is the order of α,                                     and β = 1/α.              

Proof sketch for M = 1:

• Series expansion (valid near α): 

• One way to calculate constant:

• Approximation at α: =
O��

�

�

5��

a5

�5
O(a) � O��

�� a

O�� = lim
a��

(�� a)O(a)

O(a) =
O��

�� a
+ O� + O�(�� a) + O�(�� a)� + . . .

=
�
�

O��

�� a/�

J = (��)4 4M(�)
�4N(4)(�)

See next slide for calculation of c and M > 1.

Notes:

• Error is exponentially small (and next term may involve periodicities due to complex roots).

• Result is the same as for rational functions.

elementary from Pringsheim’s and 

coefficient extraction theorems

[a5]
M(a)
N(a)

� J�554��



To calculate h−1:     

Computing coefficients for a meromorphic function h(z) = f(z)/g(z) at a pole α

60

If α is of order 1 then

Series expansion (valid near α): 

Approximation at α:

O(a) =
O��

(�� a)�
+

O��

�� a
+ O� + O�(�� a) + O�(�� a)� + . . .

O(a) � O��

(�� a)�
=

�
��

O��

(�� a/�)�
=
O��

��

�

5��

(5+ �)a5

�5

lim
a��

(�� a)O(a) = lim
a��

(�� a)M(a)
N(a)

= lim
a��

(�� a)M �(a)� M(a)
N�(a)

= � M(�)
N�(�)

If α is of order M then                                                                         O5 � [a5]O(a) � (��)4 4M(�)
N(4)(�)�4

54����
�

�5

To calculate h−2:     lim
a��

(�� a)�O(a) = lim
a��

(�� a)�M(a)
N(a)

= lim
a��

(�� a)�M �(a)� �(�� a)M(a)
N�(a)

= lim
a��

(�� a)�M ��(a)� �(�� a)M �(a) + �M(a)
N��(a)

=
�M(�)
N��(�)

O5 � [a5]O(a) � O��

�5+� ^OLYL O�� = lim
a��

(�� a)O(a)

If α is of order 2 then O5 � [a5]O(a) � O��
5

�5+� ^OLYL O�� = lim
a��

(�� a)�O(a)



Analytic transfer for meromorphic GFs: f (z)/g (z) ~ c βN

• Compute the dominant pole α (smallest real with g(z) = 0).

• (Check that no others have the same magnitude.)

• Compute the residue h−1 = −f (α)/g' (α).

• Constant c is h−1 /α.

• Exponential growth factor β is 1/α

Bottom line

61

Not order 1 if g'(α) = 0.
Adjust to (slightly) more 

complicated order M case.

Symbolic transfer

Analytic transfer

Speci!cation

GF equation

Asymptotics



AC transfer for meromorphic GFs
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h(z) = f (z)/g(z) α h−1 [zN ]h(z)

1

1

Examples. 

�
L

�
L

L�a

�� a

L�a�a�/��a�/�

�� a

�
L/�

�
L/�

Analytic transfer for meromorphic GFs: f (z)/g (z) ~ c βN

• Compute the dominant pole α (smallest real with g(z) = 0).

• (Check that no others have the same magnitude.)

• Compute the residue h−1 = −f (α)/g' (α).

• Constant c is h−1 /α.

• Exponential growth factor β is 1/α

� ��
�
�5�̂ =

�
�

a
�� a� a�

�̂

(�+ ��̂)
=

�̂�
�

�̂ =

�
�� �
�

� =

�
�+ �
�



AC example with meromorphic GFs: Generalized derangements

63

DM, the class of all permutations
with no cycles of length ≤ M

see Lecture 2
Speci!cation

DM = SET(CYC>M(Z )

GF equation

Symbolic transfer

+4(a) =
L−a−

a�
� − a�

� −... a4
4

�− a

Analytic transfer

Asymptotics [a5]+4(a) � L�/4

Many, many more examples to follow (next lecture)



General form of coefficients of combinatorial GFs (revisited)

First principle of coefficient asymptotics

The location of a function’s singularities dictates 
the exponential growth of its coefficients.

exponential
growth factor

subexponential
factor

64

[a5]-(a) = (5θ(5)

Second principle of coefficient asymptotics

The nature of a function’s singularities dictates
the subexponential factor of the growth.

When F(z) is a meromorphic function f (z)/g (z)

• If the smallest real root of g (z) is α then the exponential growth factor is 1/α.

• If α is a pole of order M, then the subexponential factor is cNM−1.



Parting thoughts

“Combinatorialists use recurrences, generating functions, and such transformations as the Vandermonde convolution;   
  Others, to my horror, use contour integrals, differential equations, and other resources of mathematical analysis”

                                                                                                                                                                             — John Riordan, 1968

“Despite all appearances, generating functions belong to algebra, not analysis”

                                                                                                                          — John Riordan, 1958

65

?

[a5]
L�a

�� a
= [a5]

�

R���

aR�
�

R���

(�a)R�
R�!

=
�

��R�5

(��)R

R!
� �

L

[a5]
L�a�a�/��a�/�

�� a
= [a5]

�

R���

aR�
�

R���

(�a)R�
R�!

�

R���

(�a)R�
�R�R�!

�

R���

(�a)R�
�R�R�!

= . . .

???
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Note IV.28

.

.

Supernecklaces

68

Warmup: A "supernecklace" of the 3rd type is a labelled cycle of cycles.

              Draw all the supernecklaces of the 3rd type of size N for N = 1, 2, 3, and 4.



Assignments

Program IV.1. Compute the percentage of permutations 
having no singelton or doubleton cycles and compare with 
the AC asymptotic estimate, for N = 10 and N = 20. .

1. Read pages 223-288 (Complex Analysis, Rational, and Meromorphic Functions) in text.
    Usual caveat: Try to get a feeling for what's there, not understand every detail.

3. Programming exercises.

2. Write up solution to Note IV.28.

69

Program IV.2. Plot the derivative of the supernecklace GF (see Note IV.28)
in the style of the plots in this lecture (see booksite for Java code).
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