
A N A L Y T I C  C O M B I N A T O R I C S

P A R T  T W O 

http://ac.cs.princeton.edu

5. Applications of
Rational and Meromorphic 

Asymptotics



Analytic combinatorics overview

A. SYMBOLIC METHOD

1. OGFs

2. EGFs

3. MGFs

B. COMPLEX ASYMPTOTICS

4. Rational & Meromorphic

5. Applications of R&M

6. Singularity Analysis

7. Applications of SA

8. Saddle point

specification

GF
equation

desired 
 result !

asymptotic
estimate

⬅

2

SYMBOLIC METHOD

COMPLEX ASYMPTOTICS



Analytic transfer for meromorphic GFs: f (z)/g (z) ~ c βN

• Compute the dominant pole α (smallest real with g(z) = 0).

• Compute the residue h−1 = −f (α)/g' (α).

• Constant c is h−1 /α.

• Exponential growth factor β is 1/α

Bottom line from last lecture

3
This lecture: Numerous applications

Symbolic transfer

Analytic transfer

Speci!cation

GF equation

Asymptotics

Not order 1 if g'(α) = 0.
Adjust to (slightly) more 

complicated order M case.
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Warmup: Bitstrings

5

How many bitstrings of length N ?

counting sequence OGF

B2 = 4

B4 = 16

B0 = 1 B1 = 2

B3 = 8

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0
0 1
1 0
1 1

0
1 

�

5��

�5a5 =
�

5��

(�a)5 =
�

�� �a

�
�� �a

)5 = �5



B, the class of all bitstrings
Speci!cation B = E  + (Z0  + Z1 ) × B

Warmup: Bitstrings

6

GF equation

Symbolic transfer

)(a) =
�

�− �a

Analytic transfer

Asymptotics [a5])(a) = �5

Dominant singularity: pole at � = �/�

Coefficient of zN : � O��

�

��
�

�5
= �5

Residue: O�� = � M(a)
N�(a)

=
�
�



Example 1: Bitstrings with restrictions on consecutive 0s

7

T2 = 3

T4 = 8

T0 = 1 T1 = 2

T3 = 5

T5 =13

0 1 1
0 1 0
1 0 1
1 1 0
1 1 1

0 1 0 1
0 1 1 0
0 1 1 1
1 0 1 1
1 0 1 0
1 1 0 1
1 1 1 0
1 1 1 1

0 1
1 0
1 1

0
1 

0 1 0 1 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1  
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 1 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

How many bitstrings of length N have no two consecutive 0s ?



B00, the class of all bitstrings having no 00
Speci!cation B00 = E  + Z0  + (Z0  + Z0 ×Z1 ) × B00

Example 1: Bitstrings with restrictions on consecutive 0s

8

GF equation

Symbolic transfer

)��(a) =
�+ a

�− a− a�

Analytic transfer

Asymptotics
[a5])��(a) =

���
�
�5

� J��5� ^P[O

�
��

.
= �.�����

J�
.
= �.�����

Coefficient of zN : � O��

�̂

��
�̂

�5
=

�+ �̂

�̂+ ��̂�
�5

��̂ = �

�� = �+ �

Residue: O�� = � M(�̂)

N�(�̂)
=

�+ �̂

�+ ��̂

�̂Dominant singularity: pole at

�̂ =

�
�� �
�

� =

�
�+ �
�

�̂



B4, the class of all bitstrings having no 04

Speci!cation B4 = Z<4 (E + Z1B4)

Example 1: Bitstrings with restrictions on consecutive 0s

9

Dominant singularity: pole at �GF equation

Symbolic transfer

)�(a) = (�+ a+ a� + a�)(�+ a)�(a))

=
�+ a+ a� + a�

�− a− a� − a� − a�

Analytic transfer

Asymptotics [a5])�(a) � J��5� ^P[O

�
��

.
= �. ���

J�
.
= �.� ��

Residue: O�� = � M(a)
N�(a)

=
�+ �+ �� + ��

�+ ��+ ��� + ���

  [a5])�(a) �
O��

�

��
�

�5
Coefficient of zN :



Example 1: Bitstrings with restrictions on consecutive 0s

10

�+ a
�− a− a�

�+ a+ a�

�− a− a� − a�

�+ a+ a� + a�

�− a− a� − a� − a�

�+ a+ a� + a� + a�

�− a− a� − a� − a� − a�



Example 1: Bitstrings with restrictions on consecutive 0s

11

�+ a+ a� + a� + a� + a� + a� + a� + a� + a 

�− a− a� − a� − a� − a� − a� − a� − a� − a − a��



Information on consecutive 0s in GFs for strings

12

[from AC Part I Lecture 5]

)4(a) =
�

I�)4

a|I| =
�

5��

{# VM�IP[Z[YPUNZ�VM�SLUN[O 5 ^P[O�UV �4}a5

=
�+ a+ a� + . . .+ a4��

�� a� a� � . . . a4
=

�� a4

�� �a+ a4+�

)4(a/�) =
�

5��

�
{# VM�IP[Z[YPUNZ�VM�SLUN[O 5 ^P[O�UV�Y\UZ�VM 4 �Z}/�5

�
a5

)4(�/�) =
�

5��

{# VM�IP[Z[YPUNZ�VM�SLUN[O 5 ^P[O�UV�Y\UZ�VM 4 �Z}/�5

=
�

5��

7Y {�Z[ 5 IP[Z�VM�H�YHUKVT�IP[Z[YPUN�OH]L�UV�Y\UZ�VM 4 �Z}

=
�

5��

7Y {WVZP[PVU�VM�LUK�VM�ÄYZ[ �4 PZ > 5 } = ,_WLJ[LK�WVZP[PVU�VM�LUK�VM�ÄYZ[ �4

Theorem. Probability that an N-bit random bitstring has no 0M : [a5])4(a/�) � J4(�4/�)5

Theorem. Expected wait time for the first 0M in a random bitstring: )4(�/�) = �4+� � �



Autocorrelation

13

The probability that an N-bit random bitstring does not contain 0000 is  ~1.0917 × . 96328N

The expected wait time for the first occurrence of 0000 in a random bitstring is 30.

Q. Do the same results hold for 0001?
A. NO!

10111110100101001100111000100111110110110100000111100001

0001 occurs much 
earlier than 0000

Q. What is the probability that an N-bit random bitstring does not contain 0001?

Q. What is the expected wait time for the first occurrence of 0001 in a random bitstring?

Observation. Consider first occurrence of 000.

•0000 and 0001 equally likely, BUT

•mismatch for 0000 means 0001, so need to wait four more bits

•mismatch for 0001 means 0000, so next bit could give a match.

[from AC Part I Lecture 5]



Constructions for strings without specified patterns

Sp — binary strings that do not contain p

Tp — binary strings that end in p
        and have  no other occurrence of p

10111110101101001100110101001010

10111110101101001100110000011111

Cast of characters:

First construction

• Sp and Tp are disjoint

• the empty string is in Sp

• adding a bit to a string in Sp gives a string in Sp  or Tp

14

p — a pattern 101001010p

Sp

Tp

:W + ;W = ,+ :W � {A� + A�}

[from AC Part I Lecture 5]



Constructions for bitstrings without specified patterns

Every pattern has an autocorrelation polynomial

• slide the pattern to the left over itself.

• for each match of i trailing bits with the leading bits include a term z |p| − i 

15

J���������(a) = �+ a� + a�

a�

a�

a�

autocorrelation 
polynomial

         101001010
         101001010
        101001010  
       101001010 
      101001010 
     101001010 
    101001010 
   101001010 
  101001010
 101001010

[from AC Part I Lecture 5]



Constructions for bitstrings without specified patterns

Second construction

• for each 1 bit in the autocorrelation of any string in Tp add a “tail”

• result is a string in Sp followed by the pattern 

16

:W � {W} = ;W �
�

JP �=�

{[P}

10111110101101001100110101001010a string in Tp

p 101001010

10111110101101001100110101001010

1011111010110100110011010100101001010

101111101011010011001101010010101001010

strings in Sp

first tail 
is null

[from AC Part I Lecture 5]



Constructions :W + ;W = ,+ :W � {A� + A�} :W � {W} = ;W �
�

JP �=�

{[P}

Bitstrings without specified patterns

17

How many N-bit strings do not contain a specified pattern p ?

Classes Sp — the class of binary strings with no p

Tp — the class of binary strings that end in p
         and have no other occurence

OGFs :W(a) =
�

Z�:W

a|Z|

;W(a) =
�

Z�;W

a|Z|

Solution :W(a) =
JW(a)

a7 + (�� �a)JW(a)

OGF equations :W(a) + ;W(a) = �+ �a:W(a) :W(a)a7 = ;W(a)JW(a)

Extract cofficients [a5]:W(a) � JW�5W ^OLYL

�
�W PZ�[OL�KVTPUHU[�YVV[�VM a7 + (�� �a)JW(a)
JW = BL_WSPJP[�MVYT\SH�H]HPSHISLD

[from AC Part I Lecture 5]



Bitstrings without specified patterns

18

Symbolic transfer

Analytic transfer

Speci!cation

GF equation

Asymptotics
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Example 2: Derangements

21

D1 = 0

D2 = 1

D3 = 2
D4 = 9

How many permutations of size N have no singleton cycles ?



Example 2: Derangements

22

D, the class of all permutations
with no singleton cycles

Speci!cation
D = SET(CYC>1(Z )

GF equation

Symbolic transfer

+(a) =
L−a

�− a Residue: O�� = � M(�)
N�(�)

= L��

  [a5]+(a) =
O��

�
�5 =

�
LAnalytic transfer

Asymptotics 5![a5]+(a) � 5!
L

N N !/e DN

2 .7357... 1

3 2.2072... 2

4 8.8291... 9

5 44.1455... 44
estimates are extremely accurate 

even for small N

Dominant singularity: pole at 1



Example 2: Derangements

23

DM, the class of all permutations
with no cycles of length ≤ MSpeci!cation

DM = SET(CYC>M(Z )

GF equation

Symbolic transfer

+4(a) =
L−a−

a�
� − a�

� −... a4
4

�− a
Dominant singularity: pole at 1

Residue: O�� = � M(�)
N�(�)

= L�/4

Analytic transfer

Asymptotics 5![a5]+(a) � 5!
L/4

  [a5]+(a) =
O��

�
�5 =

�
L/4



Example 2: Derangements

24

L−a

�− a

L−a−a�/�

�− a

L−a−a�/�−a�/�

�− a

L−a−a�/�−a�/�−a�/�

�− a



Example 2: Derangements

25

L−a−a�/�−a�/�−a�/�−a�/�−a�/�−a�/�−a�/�−a / −a��/��

�− a



Example 3: Surjections

1 1 1
1 2
2 1

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

1 1 1 1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1

1 2 3 4
1 3 2 4
2 1 3 4
2 3 1 4
3 1 2 4
3 2 1 4
1 2 4 3
1 3 4 2
2 1 4 3
2 3 4 1
3 1 4 2
3 2 4 1
1 4 2 3
1 4 3 2
2 4 1 3
2 4 3 1
3 4 1 2
3 4 2 1
4 1 2 3
4 1 3 2
4 2 1 3
4 2 3 1
4 3 1 2
4 3 2 1

1 2 3 3
1 3 2 3
2 1 3 3
2 3 1 3
3 1 2 3
3 2 1 3
1 3 3 2
2 3 3 1
3 1 3 2
3 2 3 1
3 3 1 2
3 3 2 1
1 2 3 2
1 3 2 2
2 1 3 2
2 3 1 2
3 1 2 2
3 2 1 2
1 2 2 3
2 1 2 3
2 3 2 1
3 2 2 1
2 2 1 3
2 2 3 1

1 2 3 1
1 3 2 1
2 1 3 1
2 3 1 1
3 1 2 1
3 2 1 1
1 2 1 3
1 3 1 2
2 1 1 3
3 1 1 2
1 1 2 3
1 1 3 2

1 1 1 1

1 1 1 2
1 1 2 1
1 2 1 1
2 1 1 1
1 1 2 2
1 2 1 2
2 1 1 2
2 1 2 1
2 2 1 1
1 2 2 1
1 2 2 2
2 1 2 2
2 2 1 2
2 2 2 1

26

How many words of length N are M-surjections for some M ?

R1 = 1

R2 = 3

R3 = 13

R4 = 75

"coupon collector sequences"

For some M, each of the first M letters appears at least once.



Example 3: Surjections

27

R, the class of all surjections
Speci!cation

R = SEQ(SET>0(Z ))

Dominant singularity: pole at z = ln 2

GF equation

Symbolic transfer

9(a) =
�

�� (La � �)

=
�

�� La

Residue: O�� = � �
N�(ln �)

=
�
�Analytic transfer

Asymptotics [a5]9(a) =
�

�(ln �)5+�

estimates are extremely accurate 
even for small N

N N !/2(ln 2)N+1 RN

2 3.0027... 3

3 12.9962... 13

4 74.9987... 75



Example 3: Surjections

1 1 1 1 1 1 1 2 2 2
1 2 2 1 2
2 1 2 2 1
2 2 1 1 2
1 2 2 2 1
2 2 2 1 1
2 1 2 1 2
1 2 1 2 2
2 1 1 2 2
2 2 1 2 1

1 1 1 2 2
1 1 2 1 2
1 1 2 2 1
1 2 1 1 2
1 2 1 2 1
1 2 2 1 1
2 1 1 1 2
2 1 1 2 1
2 1 2 1 1
2 2 1 1 1

1 1 1 1 1

28

How many words of length N are double surjections for some M ?

R2 = 1 R3 = 1

R5 = 21
"double coupon collector sequences"

For some M, each of the first M letters appears at least twice.

1 1 2 2
1 2 1 2
2 1 1 2
2 1 2 1
2 2 1 1
1 2 2 1

1 1 1 1

R4 = 7



Example 3: Surjections

29

R, the class of all double surjections
Speci!cation

R = SEQ(SET>1(Z )

GF equation

Symbolic transfer

9(a) =
�

�� (La � a� �)

=
�

�+ a� La

Residue: O�� = � �
N�(�)

=
�

L� � �
=

�
�+ �

Analytic transfer

Asymptotics
95 � �

�+ �
5!

�5+�

Dominant singularity: pole at �
.
= �.���� 

Singularities where La = a+ �



Example 3: Surjections

30

�
�� La

�
�+ a� La

�
�+ a+ a�/�� La

�
�+ a+ a�/�+ a�/�� La



Example 3: Surjections

31

�
�+ a+ a�/�+ a�/�! + a�/�! + a�/�! + a�/�! + a�/�! + a�/�! + a / !� La



Example 4: Alignments

32

O1 = 1

O2 = 3

O3 = 14

O4 = 88

How many sequences of labelled cycles of size N ?

x 24

x 4

x 4

x 12

x 6



Example 3: Alignments

33

O, the class of all alignments
Speci!cation

O = SEQ(CYC(Z )

GF equation

Symbolic transfer

6(a) =
�

�� ln �
�� a

Singularities where ln
�

�� a
= �

Dominant singularity: pole at a = �� �
L

Analytic transfer

Asymptotics 65 � 5!
L(�� �/L)5+�

Residue: O−� = − �
N′(�− �/L)

=
�
L

estimates are extremely accurate 
even for small N

N N !/e(1−1/e)N+1 ON

2 2.9129... 3

3 13.8247... 14

4 87.4816... 88



S33 = 1

S43 = 6

S53 = 25

Example 4: Set partitions

34

Q. How many ways to partition an N-element set into r subsets ?

TWO roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could
To where it bent in the undergrowth;

Application: rhyming schemes 

There was a small boy of Quebec
Who was buried in snow to his neck

When they said, "Are you friz?"
He replied, " Yes, I is —

But we don't call this cold in Quebec!

A
A
B
B
A

A
B
A
A
B

A B C A B C C
A B C B
A B B C
A B C A
A A B C
A B A C

A B C A A
A B C A B
A B C A C
A B C B A
A B C B B
A B C B C
A B C C A
A B C C B
A B C C C

A B A C A
A B A C B
A B A C C
A B B C A
A B B C B
A B B C C

A B B B C
A B A B C
A A B C C
A A B C B
A A B B C
A A B C A
A A A B C
A A B A C

SN2 = 2N −1

only B B B... B
disallowed

see Lecture 3



Example 4: Set partitions

35

Sr, the class of all poems with r rhymes
Speci!cation

Sr  = ZA × SEQ ( ZA ) × ZB × SEQ ( ZA + ZB ) × 
                              ZC × SEQ ( ZA + ZB + ZC ) × ... 

GF equation

Symbolic transfer

:Y(a) =
aY

(�� a)(�� �a) . . . (�� Ya)

Analytic transfer

Asymptotics [a5]:Y(a) � Y 5

Y!

Singularities at 1, 1/2, 1/3, ... 1/r

Dominant singularity: pole at 1/r

Residue: O−� = − M(�/Y)
N′(�/Y)

=
�

Y · Y!
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Example 5: Compositions

1
1 + 1
2

I2 = 2I1 = 1

1 + 1 + 1
1 + 2
2 + 1
3

I3 = 4

A. IN = 2 N−1 

1 + 1 + 1 + 1
1 + 1 + 2
1 + 2 + 1
1 + 3

2 + 1 + 1
2 + 2
3 + 1
4

I4 = 8

1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 2
1 + 1 + 2 + 1
1 + 1 + 3

1 + 2 + 1 + 1
1 + 2 + 2
1 + 3 + 1
1 + 4

2 + 1 + 1 + 1
2 + 1 + 2
2 + 2 + 1
2 + 3

3 + 1 + 1
3 + 2
4 + 1
5

I5 = 16

38

Q. How many ways to express N as a sum of positive integers? 



Example 5: Compositions

39

I, the class of all positive integers
Speci!cation

I = SEQ>0(Z )

GF equation

Symbolic transfer

0(a) =
a

�� a

Analytic transfer

Asymptotics 05 = � MVY 5 > �
Residue: O−� = − M(�)

N′(�)
= �

Singularity: pole at 1



Example 5: Compositions

40

C, the class of all compositions
Speci!cation

Singularity: pole at 1/2

C = SEQ(I )

GF equation

Symbolic transfer

*(a) =
�

�� 0(a)

=
�

�� a
��a

=
�� a
�� �a

Analytic transfer

Asymptotics *5 = �5�� MVY 5 > �
Residue: O−� = − M(�/�)

N′(�/�)
= �/�



Example 5: Compositions

1 1 + 1
2

1 + 1 + 1
1 + 2
2 + 1

F2 = 2
F1 = 1

F3 = 3

1 + 1 + 1 + 1
1 + 1 + 2
1 + 2 + 1
2 + 1 + 1
2 + 2

A. Fibonacci numbers

F4 = 5

1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 2
1 + 1 + 2 + 1
1 + 2 + 1 + 1
1 + 2 + 2

2 + 1 + 1 + 1
2 + 1 + 2
2 + 2 + 1

F5 = 8

41

Q. How many ways to express N as a sum of 1s and 2s ? 



Example 5: Compositions

42

F, the class of all compositions 
composed of 1s and 2sSpeci!cation

F = SEQ(Z + Z 
2

 )

GF equation

Symbolic transfer

-(a) =
�

�� a� a�

Residue: O�� = � M(�̂)

N�(�̂)
=

�

�+ ��̂

Coefficient of zN :

��̂ = �

�� = �+ �

� O��

�̂

��
�̂

�5+�
=

�

�+ ��̂
�5

�+ ��̂ =
�
�

Analytic transfer

Asymptotics

-5 � �5�
�

��
�

.
= .���� HUK �

.
= �.���

Dominant singularity: pole at �̂

�̂ =

�
�� �
�

� =

�
�+ �
�



Example 5: Compositions

2 3

P2 = 1

P3 = 12 + 2

P4 = 1

2 + 3
3 + 2
5

P5 = 3

2 + 2 + 2
3 + 3

P6 = 2

2 + 2 + 3
2 + 3 + 2
3 + 2 + 2
5 + 2
2 + 5
7

P7 = 6

2 + 2 + 2 + 2
2 + 3 + 3
3 + 3 + 2
3 + 2 + 3
5 + 3
3 + 5

P8 = 6

2 + 2 + 2 + 3
2 + 2 + 3 + 2
2 + 3 + 2 + 2
3 + 2 + 2 + 2
2 + 2 + 5
2 + 5 + 2
5 + 2 + 2
3 + 3 + 3
2 + 7
7 + 2

P9 = 10

43

Q. How many ways to express N as a sum of primes ? 

P3 = 1



Example 5: Compositions

44

P, the class of all compositions 
composed of primesSpeci!cation

P = SEQ(Z 
2 + Z 

3 + Z 
5 + Z 

7 + . . .)

GF equation

Symbolic transfer

7(a) =
�

�� a� � a� � a� � a� � a�� � . . .

Dominant singularity: pole at �/�
.
= .����

Analytic transfer

Asymptotics

[a5]7(a) � ��5 ^P[O

�
�

.
= �.����

�
.
= .����

Note: periodic oscillations are present in the next term pp. 298–299

interesting 
calculations

omitted
(see text)



Example 6: Denumerants (partitions from a  fixed set)

Q14 = 4

45

Q. How many ways to make change for N cents? 

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

5 + 5+ 1 + 1 + 1 + 1 
10 + 1 + 1 + 1 + 1

Q15 = 6

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

5 + 5+ 1 + 1 + 1 + 1 + 1 
5 + 5 + 5

10 + 1 + 1 + 1 + 1 + 1
10 + 5



Example 6: Denumerants (partitions from a  fixed set)

46

Q, the class of all partitions 
composed of 1s, 5s, 10s, 25sSpeci!cation

Q = MSET(Z + Z 
5 + Z 

10 + Z 
25 )

Dominant singularity: pole of order 5 at 1

Residue: O�� = lim
a��

(�� a)�8(a)

=
�

� · � · �� · ��

lim
a��

�� a
�� a[ = lim

a��

�
�+ a + a� + . . .+ a[�� =

�
[

Analytic transfer

Asymptotics [a5]8(a) � 5�

� · � · �� · �� · �! =
5�

����

GF equation

Symbolic transfer

8(a) =
�

(�� a)(�� a�)(�� a��)(�� a��)



A N A L Y T I C  C O M B I N A T O R I C S

P A R T  T W O 

OF

http://ac.cs.princeton.edu

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

CAMBRIDGE

5. Applications of 
Rational and Meromorphic Asymptotics

•Bitstrings
•Other familiar examples
•Compositions
•Supercritical sequence schema

II.5c.RMapps.Compositions



A N A L Y T I C  C O M B I N A T O R I C S

P A R T  T W O 

OF

http://ac.cs.princeton.edu

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

CAMBRIDGE

5. Applications of 
Rational and Meromorphic Asymptotics

•Bitstrings
•Other familiar examples
•Restricted compositions
•Supercritical sequence schema

II.5d.RMapps.SeqSchema



Sequence schema

Definition. A class that admits a construction of the form F = SEQ(G), where G is any class 
(labelled or unlabelled) is said to be a sequence class, which falls within the sequence schema.

Terminology. A schema is a treatment that unifies the analysis of a family of classes.

49

F = SEQ(G)

unlabelled case: number of structures is fN

labelled case: number of structures is N ! fN

Enumeration:
-(a) =

�
��.(a)

M5 = [a5]-(a)
N5 = [a5].(a)

F = SEQ(u G)

mark number of G components with uParameters:

-(a, \) =
�

�� \.(a)

F = SEQ(u Gk +  G\ Gk) -R(a, \) =
�

�� (.(a) + (\� �)NRaR)

mark number of Gk components with u



Supercritical sequence classes

Definition. Supercritical sequence classes.
A sequence class F = SEQ(G) is said to be supercritical if G(ρ) > 1 where G(z) is the 
generating function associated with G and ρ>0 is the radius of convergence of G(z).

Supercriticality : A technical condition that enables us to unify the analysis of sequence classes.

Definition. Strong aperidoicity. A GF G(z) is said to be strongly aperiodic when
there does not exist an integer d >1 such that G(z) = h(zd ) for some h(z) analytic at 0.

Note: For simplicity, we ignore periodicities in GFs in this lecture:

50

Example: GF for integers: 0(a) =
a

�� a

Therefore, the class of compositions C = SEQ(I) is supercritical.

supercriticality test: 0(�� �) =
�
�
� � > � MVY � < �/�

� = �� � MVY�HU` � > �radius of convergence:



Proof sketch:

• G(z) increases from G(0) = 0 to G(ρ)>1, so λ is well defined.

• At λ, G(z) admits the series expansion

• Therefore, F(z) = 1/(1−G(z)) has a simple pole at λ, and

.(a) = �+.�(�)(a� �) +.��(�)(a� �)�/�! + · · ·

-(a) � � �
.�(�)(a� �)

=
�

�.�(�)

�
�� a/�

Transfer theorem for supercritical sequence classes

51

Theorem. Asymptotics of supercritical sequences. If F = SEQ(G) is a strongly aperiodic 

supercritical sequence class, then                                  where λ is the root of G( λ) = 1 in (0, ρ). [a5]-(a) � �
.�(�)

�
�5+�

radius of 
convergence of G(z)



Transfer theorem for supercritical sequence classes

construction F(z) G(z) λ coefficient
asymptotics

surjections R = SEQ (SET>0( Z ))

alignments O = SEQ (CYC( Z ))

compositions C = SEQ( I )

52

Theorem. Asymptotics of supercritical sequences. If F = SEQ(G) is a strongly aperiodic 

supercritical sequence class, then                                  where λ is the root of G( λ) = 1 in (0, ρ). [a5]-(a) � �
.�(�)

�
�5+�

�
�� a

��a

a
�� a

�
�

�5��

�
�− La La � � ln �

5!
�(ln �)5+�

�

�� ln �
�� a

ln
�

�� a
5!

L(�� �/L)5+��� �
L

Analytic transferGF equationSpeci!cation Symbolic 
transfer Asymptotics



Parts in compositions

1
1 + 1
2

1 + 1 + 1
1 + 2
2 + 1
3

1 + 1 + 1 + 1
1 + 1 + 2
1 + 2 + 1
1 + 3

2 + 1 + 1
2 + 2
3 + 1
4

1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 2
1 + 1 + 2 + 1
1 + 1 + 3

1 + 2 + 1 + 1
1 + 2 + 2
1 + 3 + 1
1 + 4

2 + 1 + 1 + 1
2 + 1 + 2
2 + 2 + 1
2 + 3

3 + 1 + 1
3 + 2
4 + 1
5

53

Q. How many parts in a random composition of size N ? 

1.5
2

2.5

3

1



Components in surjections

1 1 1
1 2
2 1

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

1 1 1 1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1

1 2 3 4
1 3 2 4
2 1 3 4
2 3 1 4
3 1 2 4
3 2 1 4
1 2 4 3
1 3 4 2
2 1 4 3
2 3 4 1
3 1 4 2
3 2 4 1
1 4 2 3
1 4 3 2
2 4 1 3
2 4 3 1
3 4 1 2
3 4 2 1
4 1 2 3
4 1 3 2
4 2 1 3
4 2 3 1
4 3 1 2
4 3 2 1

1 2 3 3
1 3 2 3
2 1 3 3
2 3 1 3
3 1 2 3
3 2 1 3
1 3 3 2
2 3 3 1
3 1 3 2
3 2 3 1
3 3 1 2
3 3 2 1
1 2 3 2
1 3 2 2
2 1 3 2
2 3 1 2
3 1 2 2
3 2 1 2
1 2 2 3
2 1 2 3
2 3 2 1
3 2 2 1
2 2 1 3
2 2 3 1

1 2 3 1
1 3 2 1
2 1 3 1
2 3 1 1
3 1 2 1
3 2 1 1
1 2 1 3
1 3 1 2
2 1 1 3
3 1 1 2
1 1 2 3
1 1 3 2

1 1 1 1

1 1 1 2
1 1 2 1
1 2 1 1
2 1 1 1
1 1 2 2
1 2 1 2
2 1 1 2
2 1 2 1
2 2 1 1
1 2 2 1
1 2 2 2
2 1 2 2
2 2 1 2
2 2 2 1

54

What is the expected value of M in a random surjection of size N ?

1

(1 + 2･2)/3 ≐ 1.666

(1 + 2･6 + 3･6)/13 ≐ 2.384

(1 + 2･14 + 3･36 + 4･24)/75 ≐ 3.106

"coupon collector sequences"

For some M, each of the first M letters appears at least once.



Components in alignments

55

How many cycles in a random alignment of size N ?

x 24

x 4

x 4

x 12

x 6

1

(1 + 2･2)/3 ≐ 1.666

(1･2 + 2･6 + 3･6)/14 ≐ 2.286

(1･12 + 2･16 + 3･36 + 4･24)/88 ≐ 2.818



A poster child for analytic combinatorics

56
Such questions can be answered immediately via general transfer theorems



Number of components in supercritical sequence classes

Corollary. Number of components in supercritical sequence classes.  If F = SEQ(G) is a strongly aperiodic 

supercritical sequence class, then the expected number of G-components in a random F-component of 

size N is                                             with variance                                                    .

57

µ5 ∼ 5+ �
λ.′(λ)

+
.′′(λ)

.′(λ)�
− � σ�5 ∼ λ.′′(λ) +.′(λ)−.′(λ)�

λ�.′(λ)�
5

Proof idea:

µ5 =
�
M5
[a5]

∂

∂\
�

�− \.(a)

∣∣∣
\=�

=
�
M5
[a5]

.(a)
(�−.(a))�

[further details omitted]

λ is the root of 
G( λ) = 1 in (0, ρ)



Number of components in supercritical sequence classes

construction F(z) G(z) λ expected number 
of components

compositions C = SEQ( I )

surjections R = SEQ (SET>0( Z ))

alignments O = SEQ (CYC( Z ))

58
Same idea extends to give profile of component sizes.

Corollary. Number of components in supercritical sequence classes.  If F = SEQ(G) is a strongly aperiodic 

supercritical sequence class, then the expected number of G-components in a random F-component of 

size N is                                             with variance                                                    .µ5 ∼ 5+ �
λ.′(λ)

+
.′′(λ)

.′(λ)�
− � σ�5 ∼ λ.′′(λ) +.′(λ)−.′(λ)�

λ�.′(λ)�
5 λ is the root of 

G( λ) = 1 in (0, ρ)

�
�� a

��a

a
�� a

�
�

∼ 5
�

�
�− La

La � � ln � ∼ 5
� ln �

�

�� ln �
�� a

ln
�

�� a �� �
L

∼ 5
L− �
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AC via meromophic asymptotics: summary of classic applications 

61

class specification generating function coefficient asymptotics

bitstrings B = E  + (Z0  + Z1 ) × B

derangements D = SET(CYC>0( Z ))

surjections R = SEQ(SET>0(Z))

alignments O = SEQ (CYC( Z ))

set partitions Sr= Z×SEQ(Z)×Z×SEQ(Z+Z)×...

integers I = SEQ>0( Z ))

compositions C = SEQ(I)

�
a

�� a

�5��
�

�� a
��a

L−a

�− a � 5!
L

�
�� La

� �
�(ln �)5+�

�

�� ln �
�� a

� 5!
L(�� �/L)5+�

aY

(�� a) . . . (�� Ya) � Y 5

Y!

�
�− �a

�5



AC via meromophic asymptotics: summary of classic applications (variants)

62

class specification generating function coefficient 
asymptotics

bitstrings
with no 0000 B4 = Z<4 (E + Z1B4)

generalized
derangements D = SET(CYC>M( Z ))

double
surjections R = SEQ(SET>1(Z))

compositions 
of 1s and 2s F = SEQ(Z + Z2)

compositions 
of primes P = SEQ(Z2 + Z3 + Z5 + . . .)

denumerants Q = MSET(Z + Z5 + Z10 + Z25)

�+ a+ a� + a�

�− a− a� − a� − a�
�.� �(�. ��)5

L−a−
a�
� − a�

� −... a4
4

�− a

5!
L/4

.����
5!

(�.���)5
�

�+ a� La

�
�� a� a�

.����(�.���)5

.����(�.���)5
�

�� a� � a� � a� � a� � . . .

�
(�� a)(�� a�)(�� a��)(�� a��)

5�

����



"If you can specify it, you can analyze it"

63

3. The supercritical sequence schema unifies the analysis for 
an entire family of classes, including analysis of parameters.

1. The transfer theorem for 
    meromorphic GFs enables
    immediate analysis of a 
    variety of classes.

2. Variations are handled   
    just as easily.

Next: GFs that are not meromorphic (singularities are not poles).

Symbolic transfer

Analytic transfer

Speci!cation

GF equation

Asymptotics Note: Several other schemas have been developed (see text).
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Web Exercise V.1

.

.

Patterns in strings.

66

Web Exercise V.1. Give an asymptotic expression for the number of 
strings that do not contain the pattern 0000000001. Do the same for 
0101010101.

Web Exercise V.1. Give an asymptotic expression for the number of 
strings that do not contain the pattern 0000000001. Do the same for 
0101010101.

Web Exercise V.1. Give an asymptotic expression for the number of 
strings that do not contain the pattern 0000000001. Do the same for 
0101010101.

Web Exercise V.1. Give an asymptotic expression for the number of 
strings that do not contain the pattern 0000000001. Do the same for 
0101010101.

Web Exercise V.1. Give an asymptotic expression for the number of 
strings that do not contain the pattern 0000000001. Do the same for 
0101010101.

Web Exercise V.1. Give an asymptotic expression for the number of 
strings that do not contain the pattern 0000000001. Do the same for 
0101010101.



Web Exercise V.2

.

.

Variants of supercritical sequence classes.

67

Web Exercise V.2. Give asymptotic expressions for the number of 
objects of size N and the number of parts in a random object of size 
N for the following classes: compositions of 1s, 2s, and 3s, triple 
surjections, and alignments with no singleton cycles.



Assignments

Program V.1. In the style of the plots in the lectures slides, plot the 
GFs for the set of bitstrings having no occurrence of the pattern 
000000000. Do the same for 0101010101. (See Web Exercise V.1).

1. Read pages 289-300 (Applications of R&M Asymptotics) in text. Skim pages 301-375.
    Usual caveat: Try to get a feeling for what's there, not understand every detail.

3. Programming exercise.

2. Write up solutions to Web exercises V.1 and V.2.

68
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