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Warmup: 2D absolute value plots

Consider 2D plots of functions: all points (x, |f(x)| ) in a Cartesian plot.
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Welcome to absolute-value-land!

Consider 3D versions of our plots of analytic functions.
A modulus surface is a plot of (x, y, |f(2)| ) where z=x+ yi .

3D version

2D version /
Example: 14472 pole
1 — 4272

ordinary point

saddle point

Zero

Q. Can a modulus surface assume any shape ?
A. No.

A. (A surprise.) Only four types of points.



Modulus surface points type |: zeros

Ex. f(2) =2z =2re®, |f(2)| = 2r

A zero is a point where f(z) =0 and f'(z) + 0.

Key point: All zeros have the same local behavior.

f(z) = f(zo) + ' (z0)(z — 20) + f”gz! 0) (z— 2o ( f'(z0)(z — zo>

same for all ©

~2(z+1) ~=2(z—1)

A zero of order p is a point where f0(z) = 0 for 0<k<p and ¥ (z) + 0.

zero of order 3 zero (order 1) zero of order 2



Modulus surface points type Il: poles

¢ same for all ©

By definition, all poles have the same local behavior.

I 5
&
\\/ /

A pole is a point zo where f(z) ~

A pole of order p is a point zo where f(z) ~

(z —zo)P



Quick in-class exercise

Q. What function is this?

‘I —7 Zero



Modulus surface points type lll: ordinary points

An ordinary point is a point where f(z) = 0 and f'(z) # O.

All ordinary points have the same local behavior.

f2) = flzo) + 2oz~ 20) + ol @z v ( ~e )




Modulus surface points type lll: saddle points

A saddle point is a point where f(z) = 0 and f'(z) = 0.

All saddle points have the same local behavior.

f2) = flzo) + 2o}z — 20) + el — a4 .. (~elz-2)?)

Basic characteristic
Downwards-oriented parabola at one angle
«Upwards-oriented parabola at perpendicular angle

(1-2)2-2)




Modulus surface points: summary

simple zero
zero of order p> 1
saddle point
ordinary point

simple pole

Maximum modulus principle: There are no other possibilities (!)

Example: No local maxima
‘\\ / p

f(z) f'(2 local behavior
0 not0  ~c(z- zo)
0 0 ~ c(z— zo)p
not 0 0 ~ € (z = 20)?
not0 notO0 ~C
~ ¢ /(z— z0)

poles at
O+i/2and 0 —i/2

saddle point at 0 + Qi

simple zeros at
1/2 + 0iand —1/2 + Qi

1—422 /

—8z(1 +47%) — (1 — 42%)8z

(1 +422) B (14 4z2%)?
16z



Quick in-class exercise

Q. Where are the saddle points?
e zeros (=1, —i, +)
e saddle points

1474247

bottom view

A.Where1+274+3722=0, or z_—gii




Modulus surface plots for familiar AC GFs

—z—7%/2—-7*/3—7*/4—2°/5

e

1+z+22+2 +7* i
1—z—-722-23—74-2°
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Saddle-point bound for GFs: basic idea

6

E le: e’
Cauchy coefficient formula xample: €°/z

21600 = 5 [ 6@

Saddle point bound:
*Saddle point at T
*Use circle of radius T

"zeta"

*Integrand is < G(C)/TV*! everywhere on circle

G(2)

. : . /
Note: T is the solution to (ZN‘H ) =0
G'(2) G(2)
P e (N + 1)—ZN+2 =0

(ZC’(Z)/G(Z) — N + 1)<«—— "saddle point equation"




Saddle-point bounds for GFs

Theorem. Saddle point bounds for GFs.
Let G(z), not a polynomial, be analytic at the origin with finite radius of convergence R.

If G has nonnegative coefficients, then @N]G(z) < G(C)/CN where T is the saddle point
closest to the origin, the unique real root of the saddle point equation (G'({)/G(¢) = N+ 1.

. 551,47
Proof (sketch). By Cauchy coefficient formula Example: [Z ]e ez/z6

_ V4

T 2mi Jo T ZNH G'(z) =¢€"

2n Take Cto be a _
— i G(Z) do circle of radius T C 6
2n Jy ZNA+1 and change to

polar coordinates [ N] ; 1 e6
< cN G(2) < GEO/T™ on C 5! 7 6°

= .008333 = .009498



Saddle point GF bound example I: factorial/exponential

1
Goal. Esti — — [/Me?
oal. Estimate NI [Z ]e

G(z) =¢€°
Saddle point equation
e’ G'(2)

i i — = =N+1
Saddle point equation Zez N + 1 z C@) +
Saddle point C=N+1

N 1 eN_H Saddle point bound

. z __ o

Saddle point bound (77 ]e* = NI < —(/\/ T NG (2) < G(¢)/¢N
N
e NN
. . . 1 el
Bound is too high by only a factor of V22N, since —

N~ NNV2aN



Saddle point GF bound example Il: Catalan/central binomial

2N
Goal. Estimate (/\/) — [ZN](1 —|—z)2N

~(1 + 2)10/26

Saddle point equation

G = (1+ 2N
@)= (1+2 L

C =N+1
Saddle point equation 2Nz = (N+1)(1 + 2) (2)
2N(T + z)2N=T
(1+z)2N =N+1
Saddle point (= N
n =
addle poi T
IN (ﬂ)zN ANZ AN Saddle point bound
i N—T _
Saddle point bound (N) <= </\/2 — ) A
(")
— 4N
Bound is too high by only a factor of vaN, since (2/\/) 4N
’ N vVaN
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Saddle-point method for GFs: basic idea

e//z6 (] +Z)‘I()/Z(u

Cauchy coefficient formula

260 = 5 [ G d J

Saddle point bound:
*Saddle point at T

*Use circle of radius T U
*Integrand is < G(C)/CN+! everywhere on circle ~

Saddle point method:
*Focus on path near saddle point
*Bound “tail” contribution
*Use Laplace’s method




Saddle-point susceptibility

susceptibility : Technical conditions that enable us to unify saddle-point approximations.

Definition. Saddle-point susceptible contour integrals.

The contour integ ral/ F(z)dz with F(z) = €@ is susceptible to the saddle point approximation if
C

C passes through a saddle point T, the unique real root of the saddle point equation F'(z) =0

(or f'(z) = 0) and C can be split into two parts T and Q such that

* Tails are negligable: /F(z)dz = o(/ F(z)dz) 1

T C
- A central quadratic approximation holds uniformly along Q: f(z) ~ f(¢) + Ef”(g“)(z —()?
* Tails can be completed back [details omitted]. \

C Q to be expected unless
- B multiple saddle point
y since f'(©)=0
4 y
o T
g’

23



Saddle-point transfer theorem

Theorem. If a contour integral /F(z)dz with F(z) = e'® is susceptible to the
C

saddle point approximation, then — [ F(z)dz ~ F¢)
27 C an/’(C)

1

a general technique for contour integration (not just for asymptotics)

Proof.

24



Saddle-point transfer theorem

Theorem. If a contour integral /F(z)dz with F(z) = e'® is susceptible to the
C

saddle point approximation, then — [ F(z2)dz ~ F(2)
27 C an//(c)

Saddle-point transfer. Given a GF G(z), if the contour integral of G(z)/zN+!
along a path Cis susceptible to the saddle point approximation, then
1 dz e8(d)

ZN Z) = — 7 ~
C[ 166) = g7 | OO ey ~ s

where g(z) =InG(z) — (N + 1)Inzand T is the unique positive real root of
the saddle point equation g'(z) = 0.

Proof. Take F(2) = G(2)/zN*!.

Equivalent forms

SP equation
G'(z) N+1
G(lz)  z

SP approximation

G(¢)
N/ 2mg " (C)

25



Saddle point transfer example I: factorial/exponential

1
|. Esti — — [/Ne?
Goal. Estimate NI [z ]e

f(z) =InG(z) = (N+1)Inz

G(Z) =€ — 4T (/\/7 +11 ) lmz Saddle point equation
flz)=1— j f(z) =0
Saddle point (=N+1 NI
f//(Z) — Zz
Saddle point approx
G(¢)
N G ~
Saddle pOint [ZN]eZ o 1_ -~ eN+1 [Z ] (Z) CN_H an//(C)
approximation N (N + 1)/\/+1 \/275/(/\/ +1)
N 1T \N
e _
v (1+ /\/) —e

= NNV22N

Important note: Need to check susceptibility, or use bound and sacrifice v2xnN factor.
N

tails are negligible, a central approximation holds, and tails can be completed back

26



Saddle point method example | (susceptibility to saddle point)

Contour integral % = [N]e? = 21—7“ . eZZgJZH = 21m, /CN e?~(N+1)Inz Y

: : el 2 N(e® —1—i0) <
Switch to polar coordinates = (N) ﬂfo e do S~ N
Split into central and tail contours = ;_n(%)N(QN + Tn)

+6o

oN :/ eN(e’9—1—i0)d9
—90 90
27‘[—90 . \CN
Tn :/ NEC=1-i) g Ty—
0o

1 1 eN \

~ ——Qy exponentially small for
N! 27 NN B0 = N* with o > —1/2 [see text]

Neglect tails

Note: Slightly shifting saddle point (from N+1 to N) simplifies calculations.

27



Saddle point method example | (susceptibility to saddle point)

+6o 0 .
GN — / eN(e —1—/9)d6)
—0o

400 ,
Approximate integrand = / e N/2do(1 + O(NG})) (e —1—i0) = —62/2 + O(6%)
— 6

+69 5
Restrict 8o to drop O-term ~ / e N2dh for By = N® with

—0o

. 1 +60v'N e 0 — t/\/N
Change of variable ~ N /_00\/N e " /dt 0 = dt/v/N
Restrict 6o to complete tails ~ % _:O e /2dt  for y = N® with
Collect restrictions ~\/2n/N for 6y = N*>/° /OO e=C/2gt = O(e=N' )
N1/2=a
Finish % ~ ;—n(%)NcN - (%)N\/;n_/\/ v



Saddle-point asymptotics

Q. N'/2-2/5 — N1/10_ Aren’t we touching on N needing to be in the “galactic” range?

T

not relevant in this galaxy

A. Those estimates are in the exponent.
_N1/10 _
Ex. e N — e 8- 000335 when Nis 230 (about 1 billion).

A. Methods extend to derive full asymptotic series to any desired precision.
A. Results are easy to validate numerically.

A. Towards goal of general schema cover whole families of combinatorial classes.

29



Saddle point transfer example Il: Catalan/central binomial

Goal. Estimate (2/5) = [ZN](1 + z)2N
f(z) =InG(z) — (N+ 1) Inz

C(Z)—(1_|-Z)2N =2NIn(1+2z)— (N+1)Ilnz

poy_ 2N N+
(2) = 142z  z Saddle point equation
IN N+ f'(z) =0
f// — _
Saddle poi ¢ N+ 1 D=yt 2
addle point = —
N —1
Saddle poi?t)approx
G(¢
2N 2N [ZN]G(2) ~
(7=7) ¢MHy/2mf"(C)

Saddle point 1 Nyoq | 2N (ZN) ~ (

approximation N

N1
N famf ()

Note: Slight shift of saddle point often simplifies calcuations (see next slide).

30



Saddle point transfer example Il: Catalan/central binomial

Goal. Estimate (2/5) = [ZN](1 + z)2N
f(z) =InG(z) — (N+ 1) Inz

C(Z)—(1_|-Z)2N =2NIn(1+2z)— (N+1)Ilnz

fr 2N N+ 1
(2) = 1z = Saddle point equation
Moo 2N N+ 1 f’(Z)ZO
| CZ_N“@ P&=—trp ™ 2
Saddle point N — 1
Saddle point appro
Saddle point [ZN](1 i Z)2N _ 2N ~ 4N [ZN]C(Z) ~ GIFC) )
approximation N VN N/ 2mf"(€)

/(1) ~ N/2

Important note: Need to check susceptibility, or use bound and sacrifice vVaN factor.
AN

tails are negligible, a central approximation holds, and tails can be completed back

31
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Involutions

Q. How many different permutations of size N with no cycle lengths >2 ?

0000 s
000 @
©
OO &)
@@ O ele
9 B% 08
@@ oo
€0 @@ ®
© =
LH =1 @ ®® i
o
=2 @@
@@@
@@@

i

Il
N

Ia=10



AC example with saddle-point asymptotics: Involutions

Saddle-point transfer. Given a GF G(z), if the contour integral )1—,” / G(z)
is susceptible to the saddle point approximation, then o

— S — L8(C)
[ZNG(z) = — / ('(z’%l - 76—-—
2ni J, Z V278" (C)

2 2 where g(z) = InG(z) — (N + 1)In zand T is the unique positive real root of the
eZ+Z / saddle point equation g'(z) = 0 (equivalently, G'(z)/G(z) = (N+1)/z ).

I, the class of involutions

I = SET(CYCh,2(2))

dz

ZNH

gz)=z+7/2 - (N+1)lnz

g’(z):1+z—N;H GHC-(N+1)=0

wo o N1 1 1
N eN/2+VN=1/4 g2 =1+— (==t VI+4N+T)
Z'|(z o VN —

1 N Important note: Need to check susceptibility.
N! [ZN]/(Z) ~ (_) N/2e\/ﬁ * generally more difficult than for other transfer thms.
\4/46’ e * option: use bound (sacrifice vV2nN factor.



Set partitions

{1} {23 {3} {4}

{1} {2 3 4}

{2} {1 3 4}

3} {12 4

{4} {1 2 3}

1} 23 3} (12} {3} {4}

1 42} {1} 2 3} {13} {2} {4}
12 {2} {13} {14} {2} {3}

> S ) 13} {1 2} {2 3} {1} {4}
2 {1} {23} {3} {2 4} {1} {3}

S$3=5 {3 4} {1} {2}

{1 2} {3 4}

{1 3} {2 4}

{14} {2 3}

{1234}
S4=15

Q. How many ways to partition a set of size of N?

36



AC example with saddle-point asymptotics: Set partitions

S, the class of set partitions

S = SET(SET>0(2))

[complex expression: use bound]

Sy < /\/leN—_1 ~ (A)N, /21N /e
~— (InN)N In N

eez—1 /Z6 i

{2 3} {57 9} {4} {1 8} =

.dz

Saddle-point transfer. Given a GF G(z), if the contour integral ,~ / 2) —Rr

is susceptible to the saddle point approximation, then

: dz z'u)
NG(z) = -—/(() N ———
'2ng (<)

where g(z) = InG(z) — (N + 1)In zand T is the unique positive real root of the
saddle point equation g'(z) = 0 (equivalently, G'(2)/G(z) = (N+1)/z ).

gz)=e*—1—(N+1)Inz

N+1 CeS =N+1
/ a7 e
A ¢ ~InN—InlnN
S N+‘| ~ n — 1nin
g//(z):e_|_ 2
SP bound

37



Saddle point: summary of combinatorial applications

urns

central binomial

involutions

set partitions

fragmented
permutations

integer partitions

construction

U=SET(Z)

| =SET(CYCi 2Z))

S = SET(SET>0(Z))

F =SET(SEQ-0(Z))

P = MSET(SEQ-0(Z))

GF

[Z"](1 +2)*"

2
ez—|—z /2

o2/ (1-2)

ez/(1 —2)+22/2(1=22)+...

saddle point bound

eN/2+VN=-1/4
-

~ N

coefficient
asymptotics

1 eN

N NNV2aN

4N

~ v N

eN/2+VN-1/4
|
2NN2\ /7N

e2VN=1/2

< NI not for
- 2\/%/\/3/4

amateurs

e™/2N/3
4ANV3

38
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Analytic combinatorics overview

specification

A. SYMBOLIC METHOD
1. OGFs
2. EGFs
3. MGFs

B. COMPLEX ASYMPTOTICS

asymptotic

4. Rational & Meromorphic estimate
5. Applications of R&M \,
COMPLEX ASYMPTOTICS
6. Singularity Analysis -
Analytic -
Combinatorics desired
result!

7. Applications of SA

Philippe Flajolet and
Robert Sedgewick

8. Saddle point




Basic ideas of analytic combinatorics (summary)

1. Combinatorial specifications provide succinct definitions of a wide range of discrete structures.

2. The symbolic method transforms specifications to equations that define generating functions.

3. Complexification treats generating functions as analytic objects, giving estimates of coefficients.

Cauchy’s coefficient formula gives coefficient asymptotics when singularities are poles.

Singularity analysis provides a general approach to analyzing GFs with essential singularities.

Saddle-point asymptotics is effective for functions with no singularities.

4. Combinatorial classes fall into general schema that are governed by universal asymptotic laws.

42



Constructions and symbolic transfers

The symbolic method for unlabeled objects (summary)

operation notation semantics OCF
disjoint disjoint copies of objects A7 )
union AvB from Aand B Alz) + B(2)
Cartesian 5 . p  ordered pairs of copies of objects, A(2)B(z)
product one from A and one from B
1
sequence  SEQ(A) sequences of objects from A

The symbolic method for labelled classes (transfer theorem)

powerset PSET(A) fiite S(Ztos ;fp:?t?;:\ss; Yo A [To+~2

frér Theorem. Let A and B be combinatorial classes of labelled objects with ECFs A(z) and B(z). Then
multiset  MSET(A) finite sets of objects from A H . construction notation semantics EGF
(with repetitions) 5 (1
= disjoint union A+B disjoint copies of objects from Aand 8 A(z) + B(z)
s ¢ > 7 < ordered pairs of copies of objects,
Additional constructs are available (and still being invented)—one exa labelled product Ax B Sina o A 2nd sne o B A(z)B(z)
| SEQ«(A) or Ak k- sequences of objects from A Alz)"
sequence 1
SEQ(A) sequences of objects from A
1—-A(z)
SETk(A) k-sets of objects from A A(z)*/k!
set
SET(A) sets of objects from A eA(Z)
CYCk(A) k-cycles of objects from A A(z)*/k
cycle 1
CYC(A) cycles of objects from A 1

"T2AR)




Explicit analytic transfers

meromorphic? s 1
Y standard N
scale? ¥
Y square root?

Meromorphic Transfer

(see Lecture 4) logarithmic?

Standard Scale Transfer Y

(see Lecture 6)

Singularity Analysis
(see Lecture 6)

no singularities?

Saddle Point

44



Schemas

Combinatorial problems can be organized into broad schemas, covering infinitely
many combinatorial types and governed by simple asymptotic laws.

Theorem. Asymptotics of exp-log labelled sets.
Suppose that a labelled set class F = SET«(G) is exp-log(c, B, p)

1 7 3 1 o
—+ 8. Fz) ~ e’ (——
=2/ | Then F(z) ~ e (] — z/’))

nd 2 e 1N
(l [z l‘((l)([)) ko >

with G(z) ~ alog

Theorem. If Cis an irreducible context-free class, then its generating function ((2) has a

square-root singularity at its radius of convergence p. If ((2) is aperiodic, then the dominant

1 1N P

singularity is unique and @N[F(z) ~ -\-/n,-;—, ( -»)NN‘ ‘there o is a computable real.
an’p

Theorem. Asymptotics of supercritical sequences. If F = SEQ(G) is a strongly aperiodic

1

supercritical sequence class, then [[2¥]F(z) ~ - where A is the root of G(A) = 1 in (0, p).

G'(A) ANF

radius of
convergence of G(2)

The discovery of such schemas and of the
associated universality properties constitues

the very essence of analytic combinatorics.

Theorem. If a simple variety of trees with GF F(z) = z¢(F(z)) is
A-invertible (where \ is the positive real root of @(u) = u¢'(u) )

then A 1 I Ny
G ‘ (Z) \/27[(}')"(/\)/(3)(/\)(‘ (/\)) )

Theorem. Asymptotics of implicit tree-like classes.
Suppose that F is an implicit tree-like class with associated GF F(2) = ®(z, F(2)) that
is aperiodic and smooth-implicit(r, s), so that G(r, s) = s and Cy(r, s) = 1. Then

F(z) converges at z = r where it has a square-root singularity with

F(z) ~s— a1 -2z/r and@pm 25 l)n/;(l?)“',\r there a=/ (P’ /((rf ;))
“y wuwily

45



“If you can specify it, you can analyze it”

. . ' ) n nt 1] 1
Specification ‘
v 1 D, the class of all derangements N N P, the class of all permutations
| Q5 &
Bt AL
. D = SET(CYC -AZ) P = SET(CYC(Z)
Throrwm. Asymptatics of exp dog fabeled sers
d Mappings I Suppose that a labalted vet class ¥ = SETG) i expiogls, B, &
e with Giz) X «Than Flzy~e’( T i
M, the class of all mappings the class of 2-regular graphs ! nd s
1 7o A B \
S b I- t f ; M= SET{Y) R = SET(UCYC .ol
ym oliC transrer v AC example with saddle-point asymptotics: Involutions
from peeviaus slide
Y 1, the class of involutions - -
v ~
o) ey S ol lifele] S
=exp(z I —— = : 2
4 £ ” Yz) ~ L i — I3 Suppose thi 3 labilled ses dass F = SETUG) s exploga, B, §) LAY Tk I 1 = SETICYCy 2(2))
| AC example with saddle-point asymptotics: Set partitions f R S - T R ap——
'} ' I+ a5 e dbe ot epprzs e, then
N f v { i 2 o
S, the class of set partitions L z F A Viw
212 e g1 =G 1N+ Ve vk 12 the vz vt real vt o the
. * 1N o Nz) = 711 S O BN 21 = 0 (rautnalertln GAZH/GA = (e IN2 |
GF e uat’on o Mz 231157 9) {4 (1 8
] S = SEV(SET-0l2)) i o
' | @2 = 24 £12 - (N finx
Example 9. Labaelled hierarchi of | . Sy m e N PR,
. Mg) =1 N+ |:
L, the class of | . Gaen & CF G i the contoat wespinl - mn N/ A M =14=5 - N
wadche peint appeadation, then * M
- Z) ~————— )
Ll i 2 oo @ [z°1z NN VR
S(z) =€ Wil 27 vl
I shese 9(£) = InGiz) - (N 148 £ Cinthe ik peative rel ot sl ye |F i 3 Important note: Need to check sisceptibility
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What is "Analytic combinatorics"?

[ In case someone asks... ]

Analytic combinatorics aims to enable precise quantitative predictions of the properties
of large combinatorial structures. The theory has emerged over recent decades as
essential both for the analysis of algorithms and for the study of scientific models in other

discliplines, including statistical physics, computational biology, and information theory.
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What’s nexte

Suggestions for further study in Analytic Combinatorics

Additional constructions and associated symbolic transfers
Applications to paths in lattices and many other types
Details of SA proofs

Periodicity, irreducibility, algebraic functions

Additional schema

Drmota-Llaley-Woods theorem

Technical conditions for SP approximations

Multivariate asymptotics and limit laws

Applications, applications, applications, applications

Available as "postscript”

/ to this course
For an overview of Flajolet's work and current research in AC, watch the lecture

"If you can specify it you can analyze it": the lasting legacy of Philippe Flajolet
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Shameless plugs

Books Booksites Online courses

Princeton University
Algorithms, Part |
with Kevin Wayne & Robert Sedgewick

Princeton University
Analytic Combinatorics, Part |
with Robert Sedgewick

S ———— Freca 20

Princeton University
Algorithms, Part Il
with Kevin Wayne & Robert Sedgewick

A‘\lgor.f thms

Princeton University
Analytic Combinatorics, Part ||
with Robert Sedgewick

ANALYSIS
ALGORITHMS

=Y

- And, especially for students in this course . . .
Corllbiﬁ;ll‘foiitgg ";:: _ ,_b /// . »_._\
:.= = f .”\, see AC booksite
B B - = for details
— eSO “\
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Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning. ”

— Winston Churchill, 1942




ANALYTIC COMBINATORICS

PART TWO

Analytic
Combinatorics

“Saddle point bounds
Philippe Flajolet and —Saaale poini’ CIS)’mpi'OHCS

Robert Sedgewick

Applications
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ANALYTIC COMBINATORICS

PART TWO

Analytic
Combinatorics

8. Saddle-Point Asymptotics

Philippe Flajolet and
Robert Sedgewick

http://ac.cs.princeton.edu



