
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

3.5 SYMBOL TABLE APPLICATIONS

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

3

Set API

Mathematical set. A collection of distinct keys.

Q. How to implement?

 public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>>

SET() create an empty set

void add(Key key) add the key to the set

boolean contains(Key key) is the key in the set?

void remove(Key key) remove the key from the set

int size() return the number of keys in the set

Iterator<Key> iterator() iterator through keys in the set

・Read in a list of words from one file.

・Print out all words from standard input that are { in, not in } the list.

4

Exception filter

% more list.txt
was it the of

% java WhiteList list.txt < tinyTale.txt
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of

% java BlackList list.txt < tinyTale.txt
best times worst times
age wisdom age foolishness
epoch belief epoch incredulity
season light season darkness
spring hope winter despair

list of exceptional words

・Read in a list of words from one file.

・Print out all words from standard input that are { in, not in } the list.

5

Exception filter applications

application purpose key in list

spell checker identify misspelled words word dictionary words

browser mark visited pages URL visited pages

parental controls block sites URL bad sites

chess detect draw board positions

spam filter eliminate spam IP address spam addresses

credit cards check for stolen cards number stolen cards

・Read in a list of words from one file.

・Print out all words from standard input that are in the list.

6

Exception filter: Java implementation

public class WhiteList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in whitelist

print words not in list

・Read in a list of words from one file.

・Print out all words from standard input that are not in the list.

7

Exception filter: Java implementation

public class BlackList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (!set.contains(word))
 StdOut.println(word);
 }
 }
}

print words not in list

create empty set of strings

read in whitelist

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

Dictionary lookup

Command-line arguments.

・A comma-separated value (CSV) file.

・Key field.

・Value field.

Ex 1. DNS lookup.

10

% more ip.csv
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
adobe.com,192.150.18.60
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22
...

% java LookupCSV ip.csv 0 1
adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu
Not found

% java LookupCSV ip.csv 1 0
128.112.128.15
www.princeton.edu
999.999.999.99
Not found

domain name is key IP is value

IP is key
domain name

is value

Dictionary lookup

Command-line arguments.

・A comma-separated value (CSV) file.

・Key field.

・Value field.

Ex 2. Amino acids.

11

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
TCA,Ser,S,Serine
TCG,Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop
TAG,Stop,Stop,Stop
TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
TGA,Stop,Stop,Stop
TGG,Trp,W,Tryptophan
CTT,Leu,L,Leucine
CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
CTG,Leu,L,Leucine
CCT,Pro,P,Proline
CCC,Pro,P,Proline
CCA,Pro,P,Proline
CCG,Pro,P,Proline
CAT,His,H,Histidine
CAC,His,H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT,Arg,R,Arginine
CGC,Arg,R,Arginine
...

% java LookupCSV amino.csv 0 3
ACT
Threonine
TAG
Stop
CAT
Histidine

codon is key name is value

Dictionary lookup

Command-line arguments.

・A comma-separated value (CSV) file.

・Key field.

・Value field.

Ex 3. Class list.

12

% more classlist.csv
13,Berl,Ethan Michael,P01,eberl
12,Cao,Phillips Minghua,P01,pcao
11,Chehoud,Christel,P01,cchehoud
10,Douglas,Malia Morioka,P01,malia
12,Haddock,Sara Lynn,P01,shaddock
12,Hantman,Nicole Samantha,P01,nhantman
11,Hesterberg,Adam Classen,P01,ahesterb
13,Hwang,Roland Lee,P01,rhwang
13,Hyde,Gregory Thomas,P01,ghyde
13,Kim,Hyunmoon,P01,hktwo
12,Korac,Damjan,P01,dkorac
11,MacDonald,Graham David,P01,gmacdona
10,Michal,Brian Thomas,P01,bmichal
12,Nam,Seung Hyeon,P01,seungnam
11,Nastasescu,Maria Monica,P01,mnastase
11,Pan,Di,P01,dpan
12,Partridge,Brenton Alan,P01,bpartrid
13,Rilee,Alexander,P01,arilee
13,Roopakalu,Ajay,P01,aroopaka
11,Sheng,Ben C,P01,bsheng
12,Webb,Natalie Sue,P01,nwebb

⋮

% java LookupCSV classlist.csv 4 1
eberl
Ethan
nwebb
Natalie

% java LookupCSV classlist.csv 4 3
dpan
P01

login is key
first name
is value

login is key
section
is value

public class LookupCSV
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int keyField = Integer.parseInt(args[1]);
 int valField = Integer.parseInt(args[2]);

 ST<String, String> st = new ST<String, String>();
 while (!in.isEmpty())
 {
 String line = in.readLine();
 String[] tokens = line.split(",");
 String key = tokens[keyField];
 String val = tokens[valField];
 st.put(key, val);
 }

 while (!StdIn.isEmpty())
 {
 String s = StdIn.readString();
 if (!st.contains(s)) StdOut.println("Not found");
 else StdOut.println(st.get(s));
 }
 }
}

13

Dictionary lookup: Java implementation

process input file

build symbol table

process lookups
with standard I/O

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

Goal. Index a PC (or the web).

File indexing

16

Goal. Given a list of files specified, create an index so that you can

efficiently find all files containing a given query string.

Solution. Key = query string; value = set of files containing that string.
17

File indexing

% ls *.txt
aesop.txt magna.txt moby.txt
sawyer.txt tale.txt

% java FileIndex *.txt

freedom
magna.txt moby.txt tale.txt

whale
moby.txt

lamb
sawyer.txt aesop.txt

% ls *.java
BlackList.java Concordance.java
DeDup.java FileIndex.java ST.java
SET.java WhiteList.java

% java FileIndex *.java

import
FileIndex.java SET.java ST.java

Comparator
null

import java.io.File;
public class FileIndex
{
 public static void main(String[] args)
 {
 ST<String, SET<File>> st = new ST<String, SET<File>>();

 for (String filename : args) {
 File file = new File(filename);
 In in = new In(file);
 while (!in.isEmpty())
 {
 String key = in.readString();
 if (!st.contains(key))
 st.put(key, new SET<File>());
 SET<File> set = st.get(key);
 set.add(file);
 }
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 StdOut.println(st.get(query));
 }
 }
}

File indexing

18

for each word in file,
add file to
corresponding set

list of file names
from command line

process queries

symbol table

Book index

Goal. Index for an e-book.

19

Concordance

Goal. Preprocess a text corpus to support concordance queries: given a

word, find all occurrences with their immediate contexts.

20

% java Concordance tale.txt
cities
tongues of the two *cities* that were blended in

majesty
their turnkeys and the *majesty* of the law fired
me treason against the *majesty* of the people in
of his most gracious *majesty* king george the third

princeton
no matches

public class Concordance
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 String[] words = in.readAllStrings();
 ST<String, SET<Integer>> st = new ST<String, SET<Integer>>();
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<Integer>());
 SET<Integer> set = st.get(s);
 set.add(i);
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 SET<Integer> set = st.get(query);
 for (int k : set)
 // print words[k-4] to words[k+4]
 }
 }
}

Concordance

21

read text and
build index

process queries
and print

concordances

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

Matrix-vector multiplication (standard implementation)

24

...
double[][] a = new double[N][N];
double[] x = new double[N];
double[] b = new double[N];
...
// initialize a[][] and x[]
...
for (int i = 0; i < N; i++)
{
 sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j]*x[j];
 b[i] = sum;
}

nested loops
(N2 running time)

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

Problem. Sparse matrix-vector multiplication.

Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

Sparse matrix-vector multiplication

25

 A * x = b

1d array (standard) representation.

・Constant time access to elements.

・Space proportional to N.

Symbol table representation.

・Key = index, value = entry.

・Efficient iterator.

・Space proportional to number of nonzeros.

26

Vector representations

 0 .36 0 0 0 .36 0 0 0 0 0 0 0 0 .18 0 0 0 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 1 .36 5 .36 14 .18

key value

st

27

Sparse vector data type

public class SparseVector
{
 private HashST<Integer, Double> v;

 public SparseVector()
 { v = new HashST<Integer, Double>(); }

 public void put(int i, double x)
 { v.put(i, x); }

 public double get(int i)
 {
 if (!v.contains(i)) return 0.0;
 else return v.get(i);
 }

 public Iterable<Integer> indices()
 { return v.keys(); }

 public double dot(double[] that)
 {
 double sum = 0.0;
 for (int i : indices())
 sum += that[i]*this.get(i);
 return sum;
 }
}

empty ST represents all 0s vector

a[i] = value

return a[i]

dot product is constant
time for sparse vectors

HashST because order not important

2D array (standard) matrix representation: Each row of matrix is an array.

・Constant time access to elements.

・Space proportional to N2.

Sparse matrix representation: Each row of matrix is a sparse vector.

・Efficient access to elements.

・Space proportional to number of nonzeros (plus N).

28

Matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

Sparse matrix-vector multiplication

29

 ..
 SparseVector[] a = new SparseVector[N];
 double[] x = new double[N];
 double[] b = new double[N];
 ...
 // Initialize a[] and x[]
 ...
 for (int i = 0; i < N; i++)
 b[i] = a[i].dot(x);

linear running time
for sparse matrix

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

3.5 SYMBOL TABLE APPLICATIONS

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

GEOMETRIC APPLICATIONS OF BSTS

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

This lecture. Intersections among geometric objects.

Applications. CAD, games, movies, virtual reality, databases, GIS, .…

Efficient solutions. Binary search trees (and extensions).
2

Overview

2d orthogonal range search orthogonal rectangle intersection

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

4

1d range search

Extension of ordered symbol table.

・Insert key-value pair.

・Search for key k.

・Delete key k.

・Range search: find all keys between k1 and k2.

・Range count: number of keys between k1 and k2.

Application. Database queries.

Geometric interpretation.

・Keys are point on a line.

・Find/count points in a given 1d interval.

insert B B

insert D B D

insert A A B D

insert I A B D I

insert H A B D H I

insert F A B D F H I

insert P A B D F H I P

count G to K 2

search G to K H I

5

1d range search: elementary implementations

Unordered list. Fast insert, slow range search.

Ordered array. Slow insert, binary search for k1 and k2 to do range search.

data structure insert range count range search

unordered list 1 N N

ordered array N log N R + log N

goal log N log N R + log N

order of growth of running time for 1d range search

N = number of keys
R = number of keys that match

6

1d range count: BST implementation

1d range count. How many keys between lo and hi ?

Proposition. Running time proportional to log N.

Pf. Nodes examined = search path to lo + search path to hi.

public int size(Key lo, Key hi)
{
 if (contains(hi)) return rank(hi) - rank(lo) + 1;
 else return rank(hi) - rank(lo);
} number of keys < hi

A
C

E

H
M

R

S
X0

2

6

7

4

1

5

3

rank

1d range search. Find all keys between lo and hi.

・Recursively find all keys in left subtree (if any could fall in range).

・Check key in current node.

・Recursively find all keys in right subtree (if any could fall in range).

Proposition. Running time proportional to R + log N.

Pf. Nodes examined = search path to lo + search path to hi + matches.
7

1d range search: BST implementation

black keys are
in the range

red keys are used in compares
but are not in the range

A
C

E

H

L
M

P

R

S
X

searching in the range [F..T]

Range search in a BST

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

10

Orthogonal line segment intersection

Given N horizontal and vertical line segments, find all intersections.

Quadratic algorithm. Check all pairs of line segments for intersection.

Nondegeneracy assumption. All x- and y-coordinates are distinct.

Sweep vertical line from left to right.

・x-coordinates define events.

・h-segment (left endpoint): insert y-coordinate into BST.

11

Orthogonal line segment intersection: sweep-line algorithm

y-coordinates

0

1

2

3

0

1

3

2

4

Sweep vertical line from left to right.

・x-coordinates define events.

・h-segment (left endpoint): insert y-coordinate into BST.

・h-segment (right endpoint): remove y-coordinate from BST.

12

Orthogonal line segment intersection: sweep-line algorithm

y-coordinates

0

1

2

3

4

0

1

3

Sweep vertical line from left to right.

・x-coordinates define events.

・h-segment (left endpoint): insert y-coordinate into BST.

・h-segment (right endpoint): remove y-coordinate from BST.

・v-segment: range search for interval of y-endpoints.

13

Orthogonal line segment intersection: sweep-line algorithm

1d range
search

y-coordinates

0

1

2

3

4

0

1

3

14

Orthogonal line segment intersection: sweep-line analysis

Proposition. The sweep-line algorithm takes time proportional to N log N + R

to find all R intersections among N orthogonal line segments.

Pf.

・Put x-coordinates on a PQ (or sort).

・Insert y-coordinates into BST.

・Delete y-coordinates from BST.

・Range searches in BST.

Bottom line. Sweep line reduces 2d orthogonal line segment intersection

search to 1d range search.

N log N

N log N

N log N

N log N + R

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

17

2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.

・Insert a 2d key.

・Delete a 2d key.

・Search for a 2d key.

・Range search: find all keys that lie in a 2d range.

・Range count: number of keys that lie in a 2d range.

Applications. Networking, circuit design, databases, ...

Geometric interpretation.

・Keys are point in the plane.

・Find/count points in a given h-v rectangle

rectangle is axis-aligned

18

2d orthogonal range search: grid implementation

Grid implementation.

・Divide space into M-by-M grid of squares.

・Create list of points contained in each square.

・Use 2d array to directly index relevant square.

・Insert: add (x, y) to list for corresponding square.

・Range search: examine only squares that intersect 2d range query.

LB

RT

19

2d orthogonal range search: grid implementation analysis

Space-time tradeoff.

・Space: M 2 + N.

・Time: 1 + N / M 2 per square examined, on average.

Choose grid square size to tune performance.

・Too small: wastes space.

・Too large: too many points per square.

・Rule of thumb: √N-by-√N grid.

Running time. [if points are evenly distributed]

・Initialize data structure: N.

・Insert point: 1.

・Range search: 1 per point in range.

LB

RT

choose M ~ √N

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

・Lists are too long, even though average length is short.

・Need data structure that adapts gracefully to data.

20

Clustering

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

21

Clustering

half the squares are empty half the points are
in 10% of the squares

13,000 points, 1000 grid squares

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

2d tree. Recursively divide space into two halfplanes.

Quadtree. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.

22

Space-partitioning trees

Grid 2d tree BSP treeQuadtree

Applications.

・Ray tracing.

・2d range search.

・Flight simulators.

・N-body simulation.

・Collision detection.

・Astronomical databases.

・Nearest neighbor search.

・Adaptive mesh generation.

・Accelerate rendering in Doom.

・Hidden surface removal and shadow casting.

23

Space-partitioning trees: applications

Grid 2d tree BSP treeQuadtree

Recursively partition plane into two halfplanes.

24

2d tree construction

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Data structure. BST, but alternate using x- and y-coordinates as key.

・Search gives rectangle containing point.

・Insert further subdivides the plane.

25

2d tree implementation

even levels

p

points

left of p
points

right of p

p

q

points

below q

points

above q

odd levels

q

1

2

87

10 9

3

4 6

5

1 2

3

4

6

7

8

9

10

5

Goal. Find all points in a query axis-aligned rectangle.

・Check if point in node lies in given rectangle.

・Recursively search left/bottom (if any could fall in rectangle).

・Recursively search right/top (if any could fall in rectangle).

26

Range search in a 2d tree demo

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Goal. Find all points in a query axis-aligned rectangle.

・Check if point in node lies in given rectangle.

・Recursively search left/bottom (if any could fall in rectangle).

・Recursively search right/top (if any could fall in rectangle).

27

Range search in a 2d tree demo

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

done

Typical case. R + log N.
Worst case (assuming tree is balanced). R + √N.

28

Range search in a 2d tree analysis

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

Goal. Find closest point to query point.

29

Nearest neighbor search in a 2d tree demo

2

3

4

7

8

9

10

5

1

2

87

10 9

3

4 6

5

query point

1

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

30

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

3

6

nearest neighbor = 5

31

Nearest neighbor search in a 2d tree analysis

Typical case. log N.
Worst case (even if tree is balanced). N.

30

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

3

6

nearest neighbor = 5

32

Flocking birds

Q. What "natural algorithm" do starlings, migrating geese, starlings,

cranes, bait balls of fish, and flashing fireflies use to flock?

http://www.youtube.com/watch?v=XH-groCeKbE

33

Flocking boids [Craig Reynolds, 1986]

Boids. Three simple rules lead to complex emergent flocking behavior:

・Collision avoidance: point away from k nearest boids.

・Flock centering: point towards the center of mass of k nearest boids.

・Velocity matching: update velocity to the average of k nearest boids.

34

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

・Widely used.

・Adapts well to high-dimensional and clustered data.

・Discovered by an undergrad in an algorithms class!

level ≡ i (mod k)

points

whose ith

coordinate

is less than p’s

points

whose ith

coordinate

is greater than p’s

p

Jon Bentley

Goal. Simulate the motion of N particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force:

Running time. Time per step is N 2.

35

N-body simulation

F =
G m1 m2

r2

http://www.youtube.com/watch?v=ua7YlN4eL_w

36

Appel's algorithm for N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.

・Treat cluster of particles as a single aggregate particle.

・Compute force between particle and center of mass of aggregate.

37

Appel's algorithm for N-body simulation

・Build 3d-tree with N particles as nodes.

・Store center-of-mass of subtree in each node.

・To compute total force acting on a particle, traverse tree, but stop

as soon as distance from particle to subdivision is sufficiently large.

Impact. Running time per step is N log N ⇒ enables new research.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
O08

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*
ANDREW W. APPEL

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N’) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

1. Introduction. Isaac Newton calculated the behavior of two particles interacting
through the force of gravity, but he was unable to solve the equations for three particles.
In this he was not alone [7, p. 634], and systems of three or more particles can be
solved only numerically. Iterative methods are usually used, computing at each discrete
time interval the force on each particle, and then computing the new velocities and
positions for each particle.

A naive implementation of an iterative many-body simulator is computationally
very expensive for large numbers of particles, where "expensive" means days of Cray-1
time or a year of VAX time. This paper describes the development of an efficient
program in which several aspects of the computation were made faster. The initial
step was the use of a new algorithm with lower asymptotic time complexity; the use
of a better algorithm is often the way to achieve the greatest gains in speed [2].

Since every particle attracts each of the others by the force of gravity, there are
O(N2) interactions to compute for every iteration. Furthermore, for the same reasons
that the closed form integral diverges for small distances (since the force is proportional
to the inverse square of the distance between two bodies), the discrete time interval
must be made extremely small in the case that two particles pass very close to each
other. These are the two problems on which the algorithmic attack concentrated. By
the use of an appropriate data structure, each iteration can be done in time believed
to be O(N log N), and the time intervals may be made much larger, thus reducing
the number of iterations required. The algorithm is applicable to N-body problems in
any force field with no dipole moments; it is particularly useful when there is a severe
nonuniformity in the particle distribution or when a large dynamic range is required
(that is, when several distance scales in the simulation are of interest).

The use of an algorithm with a better asymptotic time complexity yielded a
significant improvement in running time. Four additional attacks on the problem were
also undertaken, each of which yielded at least a factor of two improvement in speed.
These attacks ranged from insights into the physics down to hand-coding a routine in
assembly language. By finding savings at many design levels, the execution time of a
large simulation was reduced from (an estimated) 8,000 hours to 20 (actual) hours.
The program was used to investigate open problems in cosmology, giving evidence to
support a model of the universe with random initial mass distribution and high mass
density.

* Received by the editors March 24, 1983, and in revised form October 1, 1983.r Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. This
research was supported by a National Science Foundation Graduate Student Fellowship and by the office
of Naval Research under grant N00014-76-C-0370.

85

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

40

1d interval search. Data structure to hold set of (overlapping) intervals.

・Insert an interval (lo, hi).

・Search for an interval (lo, hi).

・Delete an interval (lo, hi).

・Interval intersection query: given an interval (lo, hi), find all intervals

(or one interval) in data structure that intersects (lo, hi).

Q. Which intervals intersect (9, 16) ?
A. (7, 10) and (15, 18).

1d interval search

(7, 10)

(5, 8)

(4, 8) (15, 18)

(17, 19)

(21, 24)

41

Nondegeneracy assumption. No two intervals have the same left endpoint.

1d interval search API

 public class IntervalST<Key extends Comparable<Key>, Value> public class IntervalST<Key extends Comparable<Key>, Value> public class IntervalST<Key extends Comparable<Key>, Value>

IntervalST() create interval search tree

void put(Key lo, Key hi, Value val) put interval-value pair into ST

Value get(Key lo, Key hi) value paired with given interval

void delete(Key lo, Key hi) delete the given interval

Iterable<Value> intersects(Key lo, Key hi)
all intervals that intersect

the given interval

Create BST, where each node stores an interval (lo, hi).

・Use left endpoint as BST key.

・Store max endpoint in subtree rooted at node.

42

Interval search trees

binary search tree
(left endpoint is key)

(17, 19)

(5, 8) (21, 24)

(4, 8) (15, 18)

(7, 10)

24

18

8 18

10

24

max endpoint in
subtree rooted at node

To insert an interval (lo, hi) :

・Insert into BST, using lo as the key.

・Update max in each node on search path.

43

Interval search tree demo

(17, 19)

(5, 8) (21, 24)

(4, 8) (15, 18)

(7, 10)

insert interval (16, 22)

24

18

8 18

10

24

44

Interval search tree demo

To search for any one interval that intersects query interval (lo, hi) :

・If interval in node intersects query interval, return it.

・Else if left subtree is null, go right.

・Else if max endpoint in left subtree is less than lo, go right.

・Else go left.

interval intersection
search for (21, 23)

(17, 19)

(5, 8) (21, 24)

(4, 8) (15, 18)

(7, 10)

24

22

8 22

10

24

22 (21, 23)

compare (21, 23) to (16, 22)
(intersection!)

(16, 22)

45

Search for an intersecting interval implementation

To search for any one interval that intersects query interval (lo, hi) :

・If interval in node intersects query interval, return it.

・Else if left subtree is null, go right.

・Else if max endpoint in left subtree is less than lo, go right.

・Else go left.

 Node x = root;

 while (x != null)

 {

 if (x.interval.intersects(lo, hi)) return x.interval;

 else if (x.left == null) x = x.right;

 else if (x.left.max < lo) x = x.right;

 else x = x.left;

 }

 return null;

46

Search for an intersecting interval analysis

To search for any one interval that intersects query interval (lo, hi) :

・If interval in node intersects query interval, return it.

・Else if left subtree is null, go right.

・Else if max endpoint in left subtree is less than lo, go right.

・Else go left.

Case 1. If search goes right, then no intersection in left.

Pf. Suppose search goes right and left subtree is non empty.

・Max endpoint max in left subtree is less than lo.

・For any interval (a, b) in left subtree of x,
we have b ≤ max < lo.

definition of max reason for going right

(a, b)

left subtree of x

(lo, hi)

max

right subtree of x

(c, max)

47

Search for an intersecting interval analysis

To search for any one interval that intersects query interval (lo, hi) :

・If interval in node intersects query interval, return it.

・Else if left subtree is null, go right.

・Else if max endpoint in left subtree is less than lo, go right.

・Else go left.

Case 2. If search goes left, then there is either an intersection in left

subtree or no intersections in either.

Pf. Suppose no intersection in left.

・Since went left, we have lo ≤ max.

・Then for any interval (a, b) in right subtree of x,
hi < c ≤ a ⇒ no intersection in right.

no intersections
in left subtree

intervals sorted
by left endpoint

(a, b)

left subtree of x right subtree of x

(c, max)

(lo, hi)

max

48

Interval search tree: analysis

Implementation. Use a red-black BST to guarantee performance.

easy to maintain auxiliary information
using log N extra work per op

operation brute
interval

search tree
best

in theory

insert interval 1 log N log N

find interval N log N log N

delete interval N log N log N

find any one interval
that intersects (lo, hi)

N log N log N

find all intervals
that intersects (lo, hi)

N R log N R + log N

order of growth of running time for N intervals

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

51

Orthogonal rectangle intersection

Goal. Find all intersections among a set of N orthogonal rectangles.

Quadratic algorithm. Check all pairs of rectangles for intersection.

Non-degeneracy assumption. All x- and y-coordinates are distinct.

0

1

2

3

52

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.

・Very Large Scale Integration (VLSI).

・Computer-Aided Design (CAD).

Design-rule checking.

・Certain wires cannot intersect.

・Certain spacing needed between different types of wires.

・Debugging = orthogonal rectangle intersection search.

53

Algorithms and Moore's law

"Moore’s law." Processing power doubles every 18 months.

・197x: check N rectangles.

・197(x+1.5): check 2 N rectangles on a 2x-faster computer.

Bootstrapping. We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:

・197x: takes M days.

・197(x+1.5): takes (4 M) / 2 = 2 M days. (!)

Bottom line. Linearithmic algorithm is necessary to sustain Moore’s Law.

2x-faster
computer

quadratic
algorithm

Gordon Moore

Sweep vertical line from left to right.

・x-coordinates of left and right endpoints define events.

・Maintain set of rectangles that intersect the sweep line in an interval

search tree (using y-intervals of rectangle).

・Left endpoint: interval search for y-interval of rectangle; insert y-interval.

・Right endpoint: remove y-interval.

54

Orthogonal rectangle intersection: sweep-line algorithm

y-coordinates

0

1

2

3

0

1

23

55

Orthogonal rectangle intersection: sweep-line analysis

Proposition. Sweep line algorithm takes time proportional to N log N + R log N
to find R intersections among a set of N rectangles.

Pf.

・Put x-coordinates on a PQ (or sort).

・Insert y-intervals into ST.

・Delete y-intervals from ST.

・Interval searches for y-intervals.

Bottom line. Sweep line reduces 2d orthogonal rectangle intersection

search to 1d interval search.

N log N

N log N

N log N

N log N + R log N

Geometric applications of BSTs

56

problem example solution

1d range search BST

2d orthogonal line
segment intersection

sweep line reduces to
1d range search

kd range search kd tree

1d interval search interval search tree

2d orthogonal
rectangle intersection

sweep line reduces to
1d interval search

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

GEOMETRIC APPLICATIONS OF BSTS

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

GEOMETRIC APPLICATIONS OF BSTS

‣ 1d range search

‣ line segment intersection

‣ kd trees

‣ interval search trees

‣ rectangle intersection

	Algs10-SearchingApplications
	Algs10-GeometricSearch

