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Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
« Thousands of practical applications.
« Hundreds of graph algorithms known.
« Interesting and broadly useful abstraction.

« Challenging branch of computer science and discrete math.
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The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet
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Map of science clickstreams
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10 million Facebook friends

facebook

"Visualizing Friendships" by Paul Butler
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The evolution of FCC lobbying coalitions
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Framingham heart study
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Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange

denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007



Graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

telephone, computer
gate, register, processor

joint

stock, currency

street intersection, airport
class C network
board position
person, actor

neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond



Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex
cycle of edge

length 5 \ l

path of
« length 4

N connected
Components

vertex of

degree 3 ™\




Some graph-processing problems

Path. Is there a path between s and ¢?
Shortest path. What is the shortest path between s and ¢?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once.

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?
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Graph representation

Graph drawing. Provides intuition about the structure of the graph.

»e b

two drawings of the same graph

Caveat. Intuition can be misleading.



Graph representation

Vertex representation.
e This lecture: use integers between 0 and V1.
« Applications: convert between names and integers with symbol table.

symbol table

: arallel
selfJ loop Pe dges

Anomalies.



Graph API

public class Graph

Graph(int V) create an empty graph with V vertices
Graph(In in) create a graph from input stream
void addEdge(int v, int w) add an edge v-w
Iterable<Integer> adj(int v) vertices adjacent to v
int VO number of vertices
int EQ number of edges
String toString() string representation
In in = new In(args[0]); 5 read graph from
Graph G = new Graph(in); ) input stream

for (int v = 0; v < G.VQ); v++) St e Eel
for (Aint w : G.adj(v)) edge (twice)
StdOut.println(v + "-" + w);

A




Graph API: sample client

Graph input format.

tinyG. txt
y
5
05 5
4 3
01 (&) O®
9 12 ©)6
6 4
514 e’a Q\Q
02
11 12 > 1D12)
9 10
06
7 8
9 11
5 3

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.VQ; Vv++)
for (Aint w : G.adj(v))
StdOut.println(v + "-" + w);

A

ava Test tinyG.txt

W w NRERE OO O O X

J
-6
-2
-1
-5
-0
-0
-5
-4

12-11
12-9

read graph from

input stream

print out each

A

edge (twice)




Typical graph-processing code

public static int degree(Graph G, int v)

{
int degree = 0;
compute the degree of v for (int w : G.adj(v)) degree++;
return degree;
ks

public static int maxDegree(Graph G)

{
int max = 0;
) for (int v = 0; v < G.VQO; v++)
compute maximum degree if (degree(G, v) > max)
max = degree(G, v);
return max;
}

public static double averageDegree(Graph G)
compute average degree { return 2.0 * G.EQ) / G.VO: 1}

public static int numberOfSelfLoops(Graph G)
{

int count = 0;
for (int v = 0; v < G.VO; v++)
for (int w : G.adj(v))
if (v == w) count++;
return count/2; // each edge counted twice

count self-loops




Set-of-edges graph representation

Maintain a list of the edges (linked list or array).
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Adjacency-matrix graph representation

Maintain a two-dimensional V-by-V boolean array;

adj[w][v] = true.

for each edge v—w in graph: adj[v][w]

two entries

for each edge

11 12

10

10

11

22



Adjacency-list graph representation

Maintain vertex-indexed array of lists.
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Adjacency-list graph representation: Java implementation

public class Graph

{

private final int V;
private Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v =0; v < V; v++)
adj[v] = new Bag<Integer>();
¥

public void addEdge(int v, int w)
{

adj[v].add(w);

adj[w].add(v);

public Iterable<Integer> adj(int v)
{ return adj[v]; }

A

adjacency lists
( using Bag data type)

create empty graph
with V vertices

add edge v-w
(parallel edges and
self-loops allowed)

iterator for vertices adjacent to v

24



Graph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

sparse (E=200) dense (E =1000)

Two graphs (V = 50)

25



Graph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

: edge between iterate over vertices
representation add edge )
v and w? adjacent to v?
list of edges E 1 E E
adjacency matrix V2 1 * 1 Vv
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges
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Maze exploration

Maze graph.

e Vertex = intersection.

« Edge = passage.

‘D:U:D
=

3

I

]

F =

/T&j

/

intersection

Goal. Explore every intersection in the maze.

passage




Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each visited intersection and each visited passage.
« Retrace steps when no unvisited options.

o —e —

M| (= (A

AN A4

o————— o

30



Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each visited intersection and each visited passage.
« Retrace steps when no unvisited options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur;
Ariadne instructed Theseus to use a ball of string to find his way back out.

Claude Shannon (with Theseus mouse)

31



Maze exploration

32



Maze exploration

33



Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.
« Find all vertices connected to a given source vertex.
« Find a path between two vertices.

Design challenge. How to implement?



Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.
« Create a Graph object.
« Pass the Graph to a graph-processing routine.
e Query the graph-processing routine for information.

public class Paths

Paths(Graph G, int s) find paths in G from source s
boolean hasPathTo(int v) is there a path from s to v?
Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Paths paths = new Paths(G, s);
for (int v = 0; v < G.VQ; v++)
if (paths.hasPathTo(v)) . .

] print all vertices
StdOut.printin(v); < connected to s

35



Depth-first search demo

To visit a vertex v:

e Mark vertex v as visited. @

« Recursively visit all unmarked vertices adjacent to v.

a ° tinyG. txt
0 ‘—‘ 14
13

13 <
05
4 3
01
(6)  (O—9 912
6 4
5 4
0 2
11 12
(3 ——+) (——2, 5 10
06
7 8
9 11
> 5 3

graph G

36



Depth-first search demo

To visit a vertex v:
e Mark vertex v as visited.

« Recursively visit all unmarked vertices adjacent to v.

vertices reachable from O

v marked[] edgeTolv]
0 T -
1 T 0
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
/ F =
8 F -
9 F -
10 F -
11 F -
12 F -

37



Depth-first search

Goal. Find all vertices connected to s (and a corresponding path).

Idea. Mimic maze exploration.

Algorithm.
e Use recursion (ball of string).
« Mark each visited vertex (and keep track of edge taken to visit it).

e Return (retrace steps) when no unvisited options.

Data structures.
e boolean[] marked to mark visited vertices.
« 1int[] edgeTo to keep tree of paths.
(edgeTo[w] == v) means that edge v-w taken to visit w for first time



Depth-first search

public class DepthFirstPaths
{

private boolean[] marked;
private int[] edgeTo;
private int s;

public DepthFirstPaths(Graph G, int s)

{
dfs(G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w])
{
dfs(G, w);
edgeTo[w] = v;
}
}

A

A

A

A

A

marked[v] = true
if vconnected to s

edgeTo[v] = previous
vertex on path from s to v

initialize data structures

find vertices connected to s

recursive DFS does the work

39



Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to

the sum of their degrees.

Pf. [correctnhess]
e If w marked, then w connected to s (why?)
e If w connected to s, then w marked.
(if w unmarked, then consider last edge
on a path from s to w that goes from a
marked vertex to an unmarked one).

Pf. [running time]
Each vertex connected to s is visited once.

source set of marked
vertices

no such edge

set of «— can exist

unmarked

vertices "\

40



Depth-first search properties

Proposition. After DFS, can find vertices connected to s in constant time

and can find a path to s (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at s.

public boolean hasPathTo(int v)

{

return marked[v]; }

public Iterable<Integer> pathTo(int v)

{

if ('hasPathTo(v)) return null;

Stack<Integer> path = new Stack<Integer>();

for (int x = v; x l=s; x = edgeTo[x])
path.push(x);

path.push(s);

return path;

edgeTo[]

0

un A W IN R

w W iNODN

41



Depth-first search application: preparing for a date

PREPARING FOR A DATE: W"‘"""’V""ﬂ A~
OKAY, WHAT KINDS OF HM. WHICH SNAKES ARE
M\éhuﬂr“? WMO;: EMERGENCIES CANHAPPEN?  DANGEROUS? LETS SEE... ;:&&REESHARCH épr'ﬂqﬂlNG
FREPARE RR? 1) A) SNAKEBITE DA DANGER VENOMS SCA‘”EM)
YMEDGLIERENY | 6 LOINGTRIE ) e 7 PeD WOOMISTENT. TLL PR
2) DANCING ©) FALLFRM CHAR © COPPERHEAD A SPREADSHEET T ORGANIZE IT.
M. DF0D TOBPENSIVE FAAANA D AAA
O O
E T ‘O
)
TMHERETOPKK.  BY LDy, THE INAND
YOUUP. YOURE  TAIPAN HAS THE DEADUEST
NOT DRESSED?  VENOM OF BNY SNAKE
\ )
xkcd ki

http://xkcd.com/761/

T REAUY NEED ToSToP

USING DEPTH-FIRST SEARCHES.



Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

Solution. Build a grid graph.
« Vertex: pixel.
« Edge: between two adjacent gray pixels.

« Blob: all pixels connected to given pixel.

43
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Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue. @

« Add to queue all unmarked vertices adjacent to v and mark them.

() (2)

T

graph G

tinyCG. txt

C;f
kgj

O W wWwORrNNO O
NOU B BRERENWRUV

46



Breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.

« Add to queue all unmarked vertices adjacent to v and mark them.

0 v edgeTo[] distTol]

0 - 0

1 0 ]

2 0 1

3 2 2

4 2 2

G o

done

47



Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

~

g

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

~

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

1

and mark them as visited.

M

Intuition. BFS examines vertices in increasing distance from s.

48



Breadth-first search properties

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a graph in time proportional to £+ V.

Pf. [correctness] Queue always consists of zero or more vertices of
distance k from s, followed by zero or more vertices of distance &k + 1.

Pf. [running time] Each vertex connected to s is visited once.

graph dist=0 dist =1 dist = 2

49



Breadth-first search

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;

private void bfs(Graph G, int s)
{
Queue<Integer> g = new Queue<Integer>();
g.enqueue(s);
marked[s] = true;
while (!q.isEmpty())

{
int v = g.dequeue();
for (int w : G.adj(v))
{
if (!marked[w])
{
g.enqueue(w);
marked[w] = true;
edgeTo[w] = v;
}
3
¥




Breadth-first search application: routing

Fewest number of hops in a communication network.

5'“ MO xERox Al Gwe
SY‘NFm - TYMSHARE -

.. umm
-1 J““" o

MITRE '

oA .
PENTAGON U
LONDON

v SATELLITE CIRCUIT
O MP

O Tw

A& PLURIBUS 1mp
(NOTE THIS MAP DOES NOT SHOW ARPAS EXPERIMENTAL
SATELLITE CONNECTIONS )

NAMES SHOWN ARE IMP NAMCS, NOT (NECESSARILY) HOST NAMES

ARPANET, July 1977




Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

AaAND The Oracle of Bacon
| <i» | -E__IIL..Q.I Lij | _t‘ lgt‘ '. *-'j? -ww u.'nh‘u'-!f:::n o5/ 9 4::~‘m:“wl ﬂnl;c'«l-_:Aﬂv\lm'—c»u. selico O & C

THE ORACLE
OF BACON

Buzz Mauro

Tavana Ramirez

Interior de un silencio, €1 (2005) |
Smmmwi. Andres Suarez
Carlita's Secret (2004) |
Paula L-emes i
Kevm. Bacon

Fina foi More opmons >> |

http://oracleofbacon.org

¥ jo s0@.390 XIS
! <
2o=
23

]

Uma Thurman

cted In

Be Cool (2005)
with
Scott Adsit
who acted in

The Informant! (2009)

with

Matt Damon

Q

b
Lookup

SixDegrees iPhone App

52



Kevin Bacon graph

e Include one vertex for each performer and one for each movie.

« Connect a movie to all performers that appear in that movie.

« Compute shortest path from s = Kevin Bacon.

Caligola

Glenn
Close

Patrick Dial M Grace
Allen for Murder Kelly
\ / I /
The Stepford High
Wives —To Catch 0 = N:xg)n

John
Gielgud

of a Lady

Portrait

/

/

The Eagle
Has Landed

/ \

Nicole
Kidman

—] Murder on the P~ \
Orient Express Cold Donald
~“ \ “IMountain Sutherland
7\
\ /
An American John Animal
Hamlet |— Haunting Belushi House
/7
/ | Vernon / \ \N | ~»
Dobtcheff
obtche _| The
Woodsman
7 T N
movie l S .‘w
vertex ~ — i
] g Things The River
Jude 7T~ wild [
| 7T\ [N
L~ Meryl
= Enigma Streep
7 W_Kat1et
insle . R -
Titanic
LN Y4 4__1;,__r_<:-

Eternal Sunshine
of the Spotless

Mind
T7 1T 1\

a Thief

/\

Kathleen
Quinlan

\

~the Volc

Joe Versus

anoj

7\

performer
vertex

The Da
Vinci Code

Serretta
Wilson




Breadth-first search application: Erdés numbers
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Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form is v connected to w?
in constant time.

public class CC

CC(Graph G) find connected components in G
boolean connected(int v, int w) are v and w connected?
int count() number of connected components
int 1d(int v) component identifier for v

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]
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Connected components

The relation "is connected to" is an equivalence relation:
» Reflexive: vis connected to v.
 Symmetric: if vis connected to w, then w is connected to v.
e Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

Vv id[]

0 0

1 o
2 0

3 0

4 0

(5@ T
3) 0

N\ 7
() i
9 2

10 2

3 connected components 11 2
12 2

Remark. Given connected components, can answer queries in constant time.
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Connected components

Def. A connected component is a maximal set of connected vertices.
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Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all tinyG. txt
vertices discovered as part of the same component. V13 E
13 <

0
4
01
9 12
> 6 4
5 4
@20, 0 2
11 12
09006 y
© Cr®@ 0
’e @\@ ;il
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Connected components demo

To visit a vertex v : @
e Mark vertex v as visited.

« Recursively visit all unmarked vertices adjacent to v.

0

graph G

v marked[] id[]
0 F -
1 F -
2 F -
3 F -
4 F -
5 F -
6 F -
7/ F -
8 F -
9 F -
10 F -
11 F -
12 F -
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Connected components demo

To visit a vertex v:
e Mark vertex v as visited.

« Recursively visit all unmarked vertices adjacent to v.

done

v marked[] id[]
0 T 0
1 T 0
2 T 0
3 T 0
4 T 0
5 T 0
6 T 0
7/ T 1
8 T |
9 T 2
10 T 2
11 T 2
12 T 2
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Finding connected components with DFS

public class CC

{

private boolean[] marked;

private int[] id;

A A

private int count;

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.VO];
for (int v = 0; v < G.VQ; v++)
{
if (!marked[v])
{

A

dfs(G, v);
count++;

}

public int count()

A

public int id(int v)
private void dfs(Graph G, int v)

id[v] = id of component containing v

number of components

run DFS from one vertex in
each component

see next slide
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Finding connected components with DFS (continued)

public int count()
{ return count; }

public int id(int v)
{ return id[v]; }

private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);

number of components

id of component containing v

all vertices discovered in
same call of dfs have same id
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Connected components application: study spread of STDs
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Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of

adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.
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Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
« Vertex: pixel.
« Edge: between two adjacent pixels with grayscale value = 70.
e Blob: connected component of 20-30 pixels. N

black =0
white = 255

il

Particle tracking. Track moving particles over time.
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Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult?

« Any programmer could do it.
v

« Typical diligent algorithms student could do it.
e Hire an expert. \
e Intractable. simple DFS-based solution

(see textbook)

No one knows.

Impossible.
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Bipartiteness application: is dating graph bipartite?

Image created by Mark Newman.
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Graph-processing challenge 2

Problem. Find a cycle.

0 0-1
0-2
O D ® o
0-6
ee o 1-3
How difficult: a e s
« Any programmer could do it. 2-4
. - . . 5 4-5
V' « Typical diligent algorithms student could do it. Ac
e Hire an expert. \ 0-5-4-6-0
e Intractable. simple DFS-based solution

(see textbook)

No one knows.

Impossible.
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Bridges of Kénigsberg

The Seven Bridges of Kénigsberg. [Leonhard Euler 1736]

“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.”

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. A connected graph is Eulerian iff all vertices have even degree.
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Graph-processing challenge 3

Problem. Find a (general) cycle that uses every edge exactly once.

0-1
0-2
0-5
0-6
How difficult? ;g
« Any programmer could do it. 2-4
: . : . 3-4
V' « Typical diligent algorithms student could do it. Aos
e Hire an expert. 4-6
P \ OEIEDER SRR (EGE4S5 8
e Intractable. Eulerian tour

(classic graph-processing problem)
« No one knows.

« Impossible.
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Graph-processing challenge 4

Problem. Find a cycle that visits every vertex exactly once.

How difficult?

« Any programmer could do it.

« Typical diligent algorithms student could do it.
e Hire an expert.

V'« Intractable.
\ Hamiltonian cycle

e No one knows. (classical NP-complete problem)

0-5-3-4-6-2-1-0

« Impossible.
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Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

« Any programmer could do it. /
5

« Typical diligent algorithms student could do it.

A b WWOOOOo
I
SO vl O TN

e Hire an expert.
e Intractable.

v « No one knows.

« Impossible.
graph isomorphism is
longstanding open problem

Ui W INPRPRP PR OOO
[
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0«4, 1«3, 2<2, 3<6, 4<5, 5«0, 6<1



Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?
« Any programmer could do it.

« Typical diligent algorithms student could do it.
e Hire an expert.
o Intractable.

linear-time DFS-based planarity algorithm
discovered by Tarjan in 1970s
° Impossible. (too complicated for most practitioners)

e No one knows.
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