A 1 g() I 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED GRAPHS

» introduction
» digraph API
» digraph search

Algorithms

» topological sort

» sfrong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» infroduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

vertex of
outdegree 4
and indegree 2

0

directed path
from 0 to 2 \
(9
\ 4 <«— directed cycle
v

Road network

Vertex = intersection; edge = one-way Sstreet.

t
= Vestry sy
1
-aight St
@
c
S
2
£ J
@
bert 5t = —
@
k)
H
o
L
o
(0]
}
[Moore gy
|
@«
k3
=
[~
L3
@
amson gy o

TTves or

Greenwich s

-

Laight st

—

Hubert g

Collister St

Beach St

Franklin gy

Hamison s

Sfaple St

Hudson ¢

A

)

©

Hudson g;

'

—

EﬂcsSo" L —

Franklin s

dg
Q,
Oel_d

S

I ~ e
- 3 e
OQ 3(0% o/b&
& S Sy
‘ & SE S &
£ Gn &
Canal 5t 3/ @ ey
Station [1] © /¢ \S'[
C. A N
Y |t /
O
7) nal St
S \J Station [A.C €] Fa s
3]
I 7
s A
g G,
N
U,
. 7 g,
~* Laight St —
P
=] @ 7 9
%] = (;0
/ £ > g
/ s z P
K] ® A0 /
& Y\ / 2
F? 0‘9/ @
~ York 5y & S S
s) e &
ti& S
} A Ky /
't
. = 7 l/s'oe”e, N
@ 8‘90/, 98, 7 Q”e/
g Sy S
l
~ ,
> ‘/spe
f ’76,-0
N Moore St ;g S S
/ L ~
S,
I & -
Franklin'St § = S bl,e/*
Station [1] éb ™ > ;(,Q e"s’
— S N
(7] NN/ § .
S f %
@ A~ »
& g o5
1/ s, 7 X
V) 4
X TME=T of Use
o) ©2008 Google - Map data ©20Q3 Sanborit, NAVTEQ erms

%

Political blogosphere graph

political blog; edge = link.

Vertex

Divided They Blog, Adamic and Glance, 2005

The Political Blogosphere and the 2004 U.S. Election

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

if x5 is true,
then xO0 is true

Combinational circuit

Vertex = logical gate; edge = wire.

T >

ue

WordNet graph

Vertex = synset; edge = hypernym relationship.

event
happeningoccurrence occurrent natural_event
miracle
act human_action human_activity
change alteration modification miracle \
/ \ \ group_action
damage harm impairment transition increase forfeitforfeiture sacrlﬁce action
/ T resistance opposmon transgressmn
leap jump saltation jumpleap
change
demotlon /]\ variation

motion movement move

TS~

A~ locomotion travel descent
Y= 1 \
‘h 4 runrunning jump parachuting

i

http:/ /wordnet.princeton.edu dash sprint

The McChrystal Afghanistan PowerPoint slide

Crime and Narcotics
Coalition Forces & Actions
Physical Environment

Afghanistan Stability / COIN Dynamics S S | savies
W | Afghanistan Security Forces
.
u

ANSF & 4—
Coalition -
Damages/

Casyalties
/Aﬁ S’TF ;iﬁ,’?g Dp‘s:*i;;w:;:’; = " =

OUTSIDE SUPPORT
TOINSURGENT ™ —ums

" orce Jps
-l Ins Damage® FACT'ONS 5
—a f
% TACT'C A L > Focu ye & Casualtios (,wffﬂ\ﬂ SE \\ 3 g \
ANSF Unit 7 Coalition w > \
/ Coalition K Lnad shu ascﬁ Policing &]Repercusston 14 N
) e
Knowledaé e oiifion /-' &l adry Puonhes e (Hold) >(T \ Havegs / Abiliy o \
v 0l Social SCOIN‘_t (K Effectiveness N\ . . of I:s.
Structures Slruagg;y # &, Coordination
7 Unity Coul hlng & \F'Aanlw e \ nmms.vm & Among Ins. \ Insurgent
4 Adj umnem ‘\‘_/_,_ Skill, Discipline T""""gﬂﬁ"?‘ a—sP 2 Factions Ins T Terrain
Coalltion 7 ! Llna. p. I nm \ d Advantage
of fpproach Tl - ade S%III Recrufting, X
gﬂ’mg;‘ 3 to it Atghan &rE:p:r ence

\ /'?"“'"“°"*(g(‘““‘°""“ INSTITUTIONAL \ N Do bl ,K INSURGENTS A
Coaliti / l()::v'mm" opachy’ V_‘/ > Perceived = RovioAR p(,w”m;s B 11es o
Avi MC‘C‘IYI‘I‘ Coalition N OIF‘ K_/_, Ins. Strategic Damages & Effectivenass Narcotics

Experience E“W"“"\ Ael'\’izary R.O.L.Poll Communi! Use of Force Ths. Targefad 0 2.;"C(Ill?;nn
by lns. Attacks an

Tribal
Skill \.' ﬂgmy 5 & Aid E’;‘S:".,‘:S & Affiliation wi

Fome
/

5h‘ppmi lo

po = Progress v
e P (: :
Coalif G {' elative nsurgents | 006 0!
OALI | ION VI;’IM'II&" Adeqy "/ orce b G _\%" ”'a'v‘n/" N e Spaer
~ > olfs

tive g 4 ., A
CAPAC ITY & Coalition \P ik N\ ¢ g W " :':‘;?:33-“ ot / / hs;m“n:‘ ‘:\ e p""'"“’"'

O s- Coalition/Homelan g > v S \ Stength &

‘PRIORITI ES Advx:;ry i ainods._ 0y 7 7 POPU LATION"
b Loveio
/ CONDITIONS ¢ i P\ gonsmen RN [st
& BELIEFS \\ Supportng R Lol «wylnsmgenrs9 Supporting
-~ I’em of Ins,

Insurgene:
US Gov't s

S:pponlor G O V T /

Amp"ﬁm“o" Reﬂrlulxﬂoux \
Pot
iy N , GVt s POPU LAR S
e W > of Govitvs Harshness
Affilistion \ IJuA‘eponn aE S U PPO RT ’/vlnsurgeul Path < mﬂd{h/
> —~— Cnéshu'm intent P(lemnon/_/\

y
e

F—mr(iun of
Workforce

n L
cel 4
fi @ ' v . Backlash
rt W 40 2 Sk \val #\ ommitment
US Domestici tansparency # x

_w Stength And Agric.

ImlSlnhIzlc 4 v Strength of 7 Rintent Legitvs
1St IIIM{!
¥ Satisfaction s /
Ability to wi Gains in
Reconcile Saruntyl Services

ployment Visible Gains
In bm,unlz

'SUPPORT 4.__,>GOVERNANCE EopiT— S [t

Jov. Ops twemnmm
. Ops-
Infrastructure: Peth / for Securi
Servicesy verage / Services,
nes

L‘mploymen\

Parcatvod

3
)
of Population N e

WORKING DRAFT - V3

Consulting
Group
@ PA Knowledge Limited 2008 Page 22

http:/ /www.guardian.co.uk /news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide

Digraph applications

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

street intersection

web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

directed edge
one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

jump

Some digraph problems

Path. Is there a directed path from s to ¢?

Shortest path. What is the shortest directed path from sto ¢?

Topological sort. Can you draw a digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from vto w?

PageRank. What is the importance of a web page?

4.2 DIRECTED GRAPHS

» infroduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» digraph API

Algorithms

http://algs4.cs.princeton.edu

Digraph API

public class Digraph

Digraph(int V) create an empty digraph with V vertices
Digraph(In 1in) create a digraph from input stream
void addEdge(int v, int w) add a directed edge v—w
Iterable<Integer> adj(int v) vertices pointing from v
int VO number of vertices
int EQ number of edges
Digraph reverse() reverse of this digraph
String toString() string representation
In in = new In(args[0]);) read digraph from
Digraph G = new Digraph(in); h input stream

for (1nt.v =0; v < Q.V(); V++)) Sl GUG cEdk
for (int w : G.adj(v)) = edge (once)
StdOut.printlin(v + "->" + w);

Digraph API

% java Digraph tinyDG.txt

tinyDG. txt
V\lg E 0->5

2R =5 0->1
4 2 2->0
S 5 2->3
6 0 Q 3->5
0 1 O 0SS, 3->2
1i 12 4->3
12 9 (2 O 4->2
9 10 554
0 T ~ow :
7 9 -
10 12 11->4
o 11->12
3 5 12-9
6 8
8 6

In in = new In(args[0]);) read digraph from

Digraph G = new Digraph(in); h input stream

for (int v = 0; v < G.VO; v+e) print out each
for (int w : G.adj(v)) = edge (once)
StdOut.printlin(v + "->" + w);

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

adj[

]

;/(O)
© 00 N O Ui A W N KB O

(?:
©

&)

o

=
=

=
N

77T TN

5 1
0 3
5 2
3 2
4

9 4
6 9
6
11—{10
12

4 12

Adjacency-lists graph representation (review): Java implementation

public class Graph

{

private final int V;

private final Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;

adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; Vv++)
adj[v] = new Bag<Integer>();

public void addEdge(int v, int w)

}
{
adj[v].add(w);
adj[w].add(v);
}

public Iterable<Integer> adj(int v)

{ return adj[v];

}

adjacency lists

create empty graph
with V vertices

add edge v—-w

iterator for vertices
adjacent to v

Adjacency-lists digraph representation: Java implementation

public class Digraph
{

private final int V;

private final Bag<Integer>[] adj;

public Digraph(int V)

adj = (Bag<Integer>[]) new Bag[V];
for (int v =0; v < V; v++)
adj[v] = new Bag<Integer>();

public void addEdge(int v, int w)

{
this.V = V;
}
{
adj[v].add(w);
}

public Iterable<Integer> adj(int v)

{ return adj[v];

}

adjacency lists

create empty digraph
with V vertices

add edge v—w

iterator for vertices
pointing from v

Digraph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices pointing from v.
« Real-world digraphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

insert edge edge from iterate over vertices

representation o
fromvtow v to w? pointing from v?

list of edges E 1 E E
adjacency matrix V2 It 1 Vv
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

4.2 DIRECTED GRAPHS

» digraph API

Algorithms

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

Algori thms » digraph search

http://algs4.cs.princeton.edu

Reachability

Problem. Find all vertices reachable from s along a directed path.

S

o
Y
®
A
Y
A
Y
- »>@®
A A
-9
A
-9
Y
- @

Y
o >@ ’4 r)
Y Y Y
* -5 -« Q=< @<« >@
A A A A
Y Y Y
14 <@ >’ >’ »>0—>0—>@
Y Y Y
L +< o< @ >¢<—’—>‘

o >@ <« @<=

Depth-first search in digraphs

Same method as for undirected graphs.
« Every undirected graph is a digraph (with edges in both directions).
« DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w pointing from v.

24

Depth-first search demo

To visit a vertex v :

e Mark vertex v as visited.

e Recursively visit all unmarked vertices pointing from v.

a directed graph

25

Depth-first search demo

To visit a vertex v:
« Mark vertex v as visited.
e Recursively visit all unmarked vertices pointing from v.

\Y; marked[] edgeTol]
\ - -

‘ a reachable
/ from vertex 0

reachable from O

@OO\I@U‘I-PUUII\J—'O
o u1 M W O

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked;

public DepthFirstSearch(Graph G, int s)

{

marked = new boolean[G.V()];

dfs(G, s);
}
private void dfs(Graph G, int v)
{

marked[v] = true;

for (Aint w : G.adj(v))

if (!marked[w]) dfs(G, w);

}

public boolean visited(int v)
{ return marked[v]; }

true if path to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

27

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]

public class DirectedDFS
{
private boolean[] marked; <«——+— true if path from s
public DirectedDFS(Digraph G, int s)
{ _ | constructor marks
r;'?:rlzzd =)new boolean[G.V()1; vertices reachable from s
s(G, s);
}
private void dfs(Digraph G, int v) <«———F— recursive DFS does the work
{
marked[v] = true;
for (Aint w : G.adj(v))
if (!marked[w]) dfs(G, w);
}
. .. . lient k wheth
public boolean visited(int v) — quaskrbfffrany
{ return mar‘ked [V]] } vertex IS reachable Trom s
}

Reachability application: program control-flow analysis

Every program is a digraph.

« Vertex = basic block of instructions (straight-line program).

« Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

40: <= 1114

TR

42 <=

11121314110

1121314110

16: t5<= 1214
30:13<=13

11121314110

1112131516 110 t11 fLzB1 60

18: t8<=15

32: 7<= 16
111213141518 110

1112131517110 111
11213156 110111 20: 19<= 18

'
34: <= 17 _I—

1 t2!314t5l9!10

1 IZK3!5[10H1
22 <= 19
t1 t2131415no
t1 2135110 11 l

28 t6<= 15 24 M<=1t4

e

11121315110 ll

t11213t5110 M
t12t3t10t11 I

11121314110\ ‘}1213\10111
38: 4<= t11

6:t1<=10
13dn
\J
8:<=1114
t1t3t4n
\J
10: 2<=r1
I1!2[3(4
12: l10<=

N

il 12t3t4110

14 <=
t3t10

NI

44 0 <= 110

29

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
e Vertex = object.
« Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

Ay W

(starting at a root and following a chain of pointers).

30

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
« Mark: mark all reachable objects.
« Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

1 L

17

% Jﬂ_ﬁ
|

SlOOJ

31

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
v« Reachability.
« Path finding.
« Topological sort.
e Directed cycle detection.

Basis for solving difficult digraph problems.
o 2-satisfiability.
e Directed Euler path.
« Strongly-connected components.

S1AM 1. Comrur,
Val 1. No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANt

Abstraet, The value of depth-first search or “backtracking™ as a technigue lor solving problems is
illustrated by two examples. An improved version of an algorithm flor finding the stirongly connected
components of a directed graph and an algorithm for finding the biconnected compeonents of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
kV + k3 E + £y lTor some constants &, , k5, and &4, where Vis the nwmber of vertices and £ is the number
of edges of the graph being examined.

32

Breadth-first search in digraphs

Same method as for undirected graphs.
« Every undirected graph is a digraph (with edges in both directions).
« BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to £ + 7.

33

Directed breadth-first search demo

Repeat until queue is empty: @
« Remove vertex v from queue.
« Add to queue all unmarked vertices pointing from v and mark them.

tinyDG2. txt
Vv

0 . 6 E
g«

5

o wWw O K WN
N U1 W R NN B O

graph G

Directed breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.

« Add to queue all unmarked vertices pointing from v and mark them.

<O> ' v edgeTo[] distTol]

0 - 0

1 0 1

2 0 1

3 4 3

4 2 2

) S5

done

35

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source

vertices, find shortest path from any vertex in the set to each other vertex.

Ex. S={1,7,10}. @
« Shortest path to 4 is 7—6—4. @

o Shortest path to 5 is 7—=6—0—5. @

(2)
« Shortest path to 12 is 10—12. 9
Oz ®

Q. How to implement multi-source shortest paths algorithm?

A. Use BFS, but initialize by enqueuing all source vertices.

36

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
 Choose root web page as source s.
e Maintain a Queue of websites to explore.
« Maintain a SET of discovered websites.
« Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

37

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>();
SET<String> marked = new SET<String>();

String root = "http://www.princeton.edu";
queue.enqueue(root);
marked.add(root) ;

while (!'queue.isEmpty())

{

String v = queue.dequeue();
StdOut.printin(v);
In in = new In(v);
String input = in.readAl11(Q);

String regexp = "http://O\\w+\\.)*(\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);
while (matcher.find())

{
String w = matcher.group();
if (!marked.contains(w))
{
marked.add(w) ;
queue.enqueue(w) ;
3
}

queue of websites to crawl
set of marked websites

start crawling from root website

read in raw html from next
website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz
[crude pattern misses relative URLSs]

if unmarked, mark it and put
on the queue

38

4.2 DIRECTED GRAPHS

Algori thms » digraph search

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

Algorithms

» topological sort

http://algs4.cs.princeton.edu

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

S vl bW N — O

. Algorithms

Complexity Theory
Artificial Intelligence
Intro to CS
Cryptography

Scientific Computing
Advanced Programming

tasks

1/

e

®

%

precedence constraint graph

© O-®

feasible schedule

4]

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

directed edges DAG

Solution. DFS. What else?

© O-®

topological order

42

Topological sort demo

« Run depth-first search.

« Return vertices in reverse postorder. @

a directed acyclic graph

43

Topological sort demo

« Run depth-first search.
« Return vertices in reverse postorder.

0
A
postorder
4 1 25 0 6 3
topological order
36 05 2 1 4
6

done

44

Depth-first search order

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder(Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.VQ; v++)
if (!'marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w]) dfs(G, w);
reversePost.push(v);

}

public Iterable<Integer> reversePost()
{ return reversePost; }

returns all vertices in
“reverse DFS postorder”

45

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs(v) is called:
dfs(0)

dfs(1)
dfs(4)
« Case 1: dfs(w) has already been called and returned. 4 done

1 done
Thus, w was done before v. dfs(2)

2 done
dfs(5)

« Case 2: dfs(w) has not yet been called. |
one
dfs(w) will get called directly or indirectly 0 done
by dfs(v) and will finish before dfs(v).

Thus, w will be done before v. v=3 ——> dfs(3)

case 1 é

o Case 3: dfs(w) has already been called, case 2 dfs(6)
but has not yet returned.
: . . . 6 d
Can’t happen in a DAG: function call stack contains e

3 done
path from w to v, so v—»w would complete a cycle. /

all vertices pointing from 3 are done before 3 is done, done
so they appear after 3 in topological order

46

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

 If directed cycle, topological order impossible.

« If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

47

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PAGE 3

DEPARTMENT COURSE DESCRIPTON PREREQS
COMPUTER CPSC Y32 | INTERMEDIATE COMPILER CPSC 432
SCIENCE

DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

e dd

o

http:/ /xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B

{

}

public class B extends C

{

}

% javac A.java

A.java:1: cyclic inheritance

involving A

public class A extends B { }
A

1 error

public class C extends A

{
}

49

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Workbook1
| A B C | D
("=B1+1" ["=CL+1" ["=A1%1"

result, creating a circular reference. Try one of the
following:

Microsoft Excel cannot calculate a formula.
M Cell references in the formula refer to the formula's

nooo\:mm.th»-aQ:

-
o

« If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
help for using it to correct your formula.

« To continue leaving the formula as it is, click Cancel.

[
-

b
N

fCanceI\, (OK \

[
w

bk | ek | ok | ek |
0~NSYWUVH D

[l Sheetl |Sheet2 Sheet3 J

4.2 DIRECTED GRAPHS

Algorithms

» topological sort

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

Algorithms

» sfrong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
e vis strongly connected to v.
e If vis strongly connected to w, then w is strongly connected to v.

e If vis strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

@

53

Connected components vs. strongly-connected components

v and w are connected if there is
a path between v and w

3 connected components

connected component id (easy to compute with DFS)

0O 1 2 3 4 5 6 7 8 91011 12
cc[] 0o 000 OO 1 11 2 2 2 2

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

A

l

constant-time client connectivity query

v and w are strongly connected if there is both a directed

path from v to w and a directed path from w to v

o e@@
ke
(1)=(2

5 strongly-connected components

strongly-connected component id (how to compute?)

0O 1 2 3 4 5 6 7 8 91011 12
scc[]1 0 1 1 1 1 3 4 3 2 2 2 2

public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }

A

I

constant-time client strong-connectivity query

54

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong

| g]
m o~ vole \ greategret
fox g ~ &
[
, blue-gill fish
T northern copperbelly
L Ribbtt water snake
£
|

leopard fmg

algae (magnified)

http:/ /www.twingroves.district96.k12.il.us /Wetlands/Salamander/SalGraphics/salfoodweb.gif

component. Subset of species with common energy flow.

55

Strong component application: software modules

Software module dependency graph.
« Vertex = software module.
« Edge: from module to dependency.

Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

56

Strong components algorithms: brief history

1960s: Core OR problem.
« Widely studied; some practical algorithms.
« Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
« Classic algorithm.
o Level of difficulty: Algs4++.
« Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
« Forgot notes for lecture; developed algorithm in order to teach it!
« Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
« Gabow: fixed old OR algorithm.
« Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

57

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G-,

Kernel DAG. Contract each strong component into a single vertex.

how to compute?
ldea.
Compute topological order (reverse postorder) in kernel DAG.

« Run DFS, considering vertices in reverse topological order.

first vertex is a sink

G (has no edges pointing from it)

@ (2 ’6 O

digraph G and its strong components kernel DAG of G (in reverse topological order)

58

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G-.
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G~.

e

' :@

digraph G

0

59

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G-.
1 02 453 11 9 12 10 6 7 8

reverse digraph GR

60

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G~.

\% sccl]
0]
1 0
2]
3 1
4 |
5 1
6 3
V4 4
8 3
9 2
10 2
11 2
12 2

done

61

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
 Phase 1: run DFS on G® to compute reverse postorder.
 Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G*

@bv

check unmarked vertices in the order reverse postorder for use in second dfs ()
0123456789 1011 12 102453119 1210678

dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
« Phase 1: run DFS on G® to compute reverse postorder.
« Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

check unmarked vertices in the order
10245311912 106 7 8

dfs(1) dfs(0) dfs(11) dfs(6) dfs(7)
1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 check 9
dfs(3) dfs(9) dfs(8) 7 done
check 5 check 11 check 6
dfs(2) dfs(10) 8 done
check 0 check 12 check 0
check 3 10 done 6 done
2 done 9 done
3 done 12 done
check 2 11 done
4 done
5 done
check 1
0 done

63

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of
a digraph in time proportional to E + V.

Pf.
« Running time: bottleneck is running DFS twice (and computing GR).
o Correctness: tricky, see textbook (2nd printing).
« Implementation: easy!

64

Connected components in an undirected graph (with DFS)

public class CC

{
private boolean marked[];
private int[] 1id;
private int count;
public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.VO];
for (int v = 0; v < G.VQ; v++)
{
if (!marked[v])
{
dfs(G, v);
count++;
}
ks
}
private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);
}
public boolean connected(int v, int w)
{ return id[v] == id[w]; }
}

65

Strong components in a digraph (with two DFSs)

public class KosarajuSharirSCC

{

}

private boolean marked[];
private int[] 1id;
private int count;

public KosarajuSharirSCC(Digraph G)

{
marked = new boolean[G.V()];
id = new int[G.VQ];
DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
for (int v : dfs.reversePost())
{
if (!'marked[v])
{
dfs(G, v);
count++;
}
}
}
private void dfs(Digraph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!'marked[w])
dfs(G, w);
}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

66

Digraph-processing summary: algorithms of the day

single-source
reachability
in a digraph

topological sort
in a DAG

strong
components
in a digraph

DFS

DFS

Kosaraju-Sharir
DFS (twice)

67

4.2 DIRECTED GRAPHS

Algorithms

» sfrong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

A 1 g() I 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED GRAPHS

» introduction
» digraph API
» digraph search

Algorithms

» topological sort

» sfrong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

