4.4 **SHORTEST PATHS**

- APIs
- *shortest-paths properties*
- *Dijkstra's algorithm*
- *edge-weighted DAGs*
- *negative weights*
Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

- $4 \rightarrow 5$: 0.35
- $5 \rightarrow 4$: 0.35
- $4 \rightarrow 7$: 0.37
- $5 \rightarrow 7$: 0.28
- $7 \rightarrow 5$: 0.28
- $5 \rightarrow 1$: 0.32
- $0 \rightarrow 4$: 0.38
- $0 \rightarrow 2$: 0.26
- $7 \rightarrow 3$: 0.39
- $1 \rightarrow 3$: 0.29
- $2 \rightarrow 7$: 0.34
- $6 \rightarrow 2$: 0.40
- $3 \rightarrow 6$: 0.52
- $6 \rightarrow 0$: 0.58
- $6 \rightarrow 4$: 0.93

shortest path from 0 to 6

- $0 \rightarrow 2$: 0.26
- $2 \rightarrow 7$: 0.34
- $7 \rightarrow 3$: 0.39
- $3 \rightarrow 6$: 0.52
Google maps
Car navigation
Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?
- **Single source**: from one vertex \(s \) to every other vertex.
- **Source-sink**: from one vertex \(s \) to another \(t \).
- **All pairs**: between all pairs of vertices.

Restrictions on edge weights?
- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?
- No directed cycles.
- No "negative cycles."

Simplifying assumption. Shortest paths from \(s \) to each vertex \(v \) exist.
4.4 Shortest Paths

- APIs
- Shortest-paths properties
- Dijkstra's algorithm
- Edge-weighted DAGs
- Negative weights
Weighted directed edge API

Public class `DirectedEdge`

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DirectedEdge(int v, int w, double weight)</code></td>
<td><code>weighted edge v→w</code></td>
</tr>
<tr>
<td><code>int from()</code></td>
<td><code>vertex v</code></td>
</tr>
<tr>
<td><code>int to()</code></td>
<td><code>vertex w</code></td>
</tr>
<tr>
<td><code>double weight()</code></td>
<td><code>weight of this edge</code></td>
</tr>
<tr>
<td><code>String toString()</code></td>
<td><code>string representation</code></td>
</tr>
</tbody>
</table>

Idiom for processing an edge e:

```java
int v = e.from(), w = e.to();
```
Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge {
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from() { return v; }
    public int to() { return w; }
    public int weight() { return weight; }
}
```

from() and to() replace either() and other()
Edge-weighted digraph API

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public class <code>EdgeWeightedDigraph</code></td>
<td></td>
</tr>
<tr>
<td><code>EdgeWeightedDigraph(int V)</code></td>
<td>edge-weighted digraph with V vertices</td>
</tr>
<tr>
<td><code>EdgeWeightedDigraph(In in)</code></td>
<td>edge-weighted digraph from input stream</td>
</tr>
<tr>
<td>void <code>addEdge(DirectedEdge e)</code></td>
<td>add weighted directed edge e</td>
</tr>
<tr>
<td><code>Iterable<DirectedEdge> adj(int v)</code></td>
<td>edges pointing from v</td>
</tr>
<tr>
<td><code>int V()</code></td>
<td>number of vertices</td>
</tr>
<tr>
<td><code>int E()</code></td>
<td>number of edges</td>
</tr>
<tr>
<td><code>Iterable<DirectedEdge> edges()</code></td>
<td>all edges</td>
</tr>
<tr>
<td><code>String toString()</code></td>
<td>string representation</td>
</tr>
</tbody>
</table>

Conventions. Allow self-loops and parallel edges.
Edge-weighted digraph: adjacency-lists representation

tinyEWD.txt

V → 8
 15
 4 5 0.35
 5 4 0.35
 4 7 0.37
 5 7 0.28
 7 5 0.28
 5 1 0.32
 0 4 0.38
 0 2 0.26
 7 3 0.39
 1 3 0.29
 2 7 0.34
 6 2 0.40
 3 6 0.52
 6 0 0.58
 6 4 0.93

adj

0 2 0.26 → 0 4 0.38
1 3 0.29
2 7 0.34
3 6 0.52
4 7 0.37 → 4 5 0.35
5 1 0.32
5 7 0.28 → 5 4 0.35
6 4 0.93 → 6 0 0.58 → 6 2 0.40
7 3 0.39 → 7 5 0.28

Bag objects

reference to a DirectedEdge object
Edge-weighted digraph: adjacency-lists implementation in Java

Same as `EdgeWeightedGraph` except replace `Graph` with `Digraph`.

```java
public class EdgeWeightedDigraph {
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```

add edge `e = v→w` to only `v`'s adjacency list
Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```java
public class SP {
    SP(EdgeWeightedDigraph G, int s) // shortest paths from s in graph G
    double distTo(int v) // length of shortest path from s to v
    Iterable<DirectedEdge> pathTo(int v) // shortest path from s to v
    boolean hasPathTo(int v) // is there a path from s to v?
}

SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + "  ");
    StdOut.println();
}
```
Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```java
public class SP

SP(EdgeWeightedDigraph G, int s)  // shortest paths from s in graph G
  double distTo(int v)  // length of shortest path from s to v
  Iterable<DirectedEdge> pathTo(int v)  // shortest path from s to v
  boolean hasPathTo(int v)  // is there a path from s to v?

% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38  4->5 0.35  5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26  2->7 0.34  7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38  4->5 0.35
0 to 6 (1.51): 0->2 0.26  2->7 0.34  7->3 0.39  3->6 0.52
0 to 7 (0.60): 0->2 0.26  2->7 0.34
```
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra’s algorithm
- edge-weighted DAGs
- negative weights
Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
- $\text{distTo}[v]$ is length of shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on shortest path from s to v.

<table>
<thead>
<tr>
<th></th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>null</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5->1</td>
<td>0.32</td>
</tr>
<tr>
<td>2</td>
<td>0->2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>7->3</td>
<td>0.37</td>
</tr>
<tr>
<td>4</td>
<td>0->4</td>
<td>0.38</td>
</tr>
<tr>
<td>5</td>
<td>4->5</td>
<td>0.35</td>
</tr>
<tr>
<td>6</td>
<td>3->6</td>
<td>0.52</td>
</tr>
<tr>
<td>7</td>
<td>2->7</td>
<td>0.34</td>
</tr>
</tbody>
</table>

shortest-paths tree from 0

parent-link representation
Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- $\text{distTo}[v]$ is length of shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on shortest path from s to v.

```java
class ShortestPathsTree {  // ...  
    public double distTo(int v) {  return distTo[v];  }
    public Iterable<DirectedEdge> pathTo(int v) {
        Stack<DirectedEdge> path = new Stack<DirectedEdge>();
        for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
            path.push(e);
        return path;
    }
}
```
Edge relaxation

Relax edge \(e = v \rightarrow w \).

- \(\text{distTo}[v] \) is length of shortest known path from \(s \) to \(v \).
- \(\text{distTo}[w] \) is length of shortest known path from \(s \) to \(w \).
- \(\text{edgeTo}[w] \) is last edge on shortest known path from \(s \) to \(w \).
- If \(e = v \rightarrow w \) gives shorter path to \(w \) through \(v \), update both \(\text{distTo}[w] \) and \(\text{edgeTo}[w] \).

\[19 \]
Edge relaxation

Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update both $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```
Proposition. Let G be an edge-weighted digraph. Then $\text{distTo}[]$ are the shortest path distances from s iff:

- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf. \Leftarrow [necessary]

- Suppose that $\text{distTo}[w] > \text{distTo}[v] + e.\text{weight}()$ for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than $\text{distTo}[w]$.

![Diagram](image-url)
Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph. Then $d_{\text{to}}[]$ are the shortest path distances from s iff:

- $d_{\text{to}}[s] = 0$.
- For each vertex v, $d_{\text{to}}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $d_{\text{to}}[w] \leq d_{\text{to}}[v] + e$.weight().

Pf. \Rightarrow [sufficient]

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, $d_{\text{to}}[v_1] \leq d_{\text{to}}[v_0] + e_1$.weight()

 $d_{\text{to}}[v_2] \leq d_{\text{to}}[v_1] + e_2$.weight()

 \ldots

 $d_{\text{to}}[v_k] \leq d_{\text{to}}[v_{k-1}] + e_k$.weight()

- Add inequalities; simplify; and substitute $d_{\text{to}}[v_0] = d_{\text{to}}[s] = 0$:

 $d_{\text{to}}[w] = d_{\text{to}}[v_k] \leq e_1$.weight() + e_2.weight() + $\ldots + e_k$.weight()

- Thus, $d_{\text{to}}[w]$ is the weight of shortest path to w. \blacksquare
Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

1. Initialize $\text{distTo}[s] = 0$ and $\text{distTo}[v] = \infty$ for all other vertices.
2. Repeat until optimality conditions are satisfied:
 - Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.

- Throughout algorithm, $\text{distTo}[v]$ is the length of a simple path from s to v (and $\text{edgeTo}[v]$ is last edge on path).
- Each successful relaxation decreases $\text{distTo}[v]$ for some v.
- The entry $\text{distTo}[v]$ can decrease at most a finite number of times. ■
Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

- Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
- Repeat until optimality conditions are satisfied:
 - Relax any edge.

Efficient implementations. How to choose which edge to relax?

Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).
4.4 Shortest Paths

- APIs
- shortest-paths properties
 - Dijkstra's algorithm
 - edge-weighted DAGs
 - negative weights
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
“Do only what only you can do.”

“In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.”

“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”

“It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”

“APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”
Edsger W. Dijkstra: select quotes

"Object-oriented programming is an exceptionally bad idea which could only have originated in California."
-- Edsger Dijkstra
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

an edge-weighted digraph
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

shortest-paths tree from vertex s
Dijkstra's algorithm visualization
Dijkstra's algorithm visualization
Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

• Each edge $e = v \rightarrow w$ is relaxed exactly once (when v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

• Inequality holds until algorithm terminates because:
 – $\text{distTo}[w]$ cannot increase $\quad \leftarrow \text{distTo[] values are monotone decreasing}$
 – $\text{distTo}[v]$ will not change $\quad \leftarrow \text{we choose lowest distTo[] value at each step}$
 (and edge weights are nonnegative)

• Thus, upon termination, shortest-paths optimality conditions hold. ■
Dijkstra's algorithm: Java implementation

public class DijkstraSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;
 private IndexMinPQ<Double> pq;

 public DijkstraSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];
 pq = new IndexMinPQ<Double>(G.V());

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 pq.insert(s, 0.0);
 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
}

relax vertices in order of distance from s
Dijkstra's algorithm: Java implementation

private void relax(DirectedEdge e)
{
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert (w, distTo[w]);
 }
}
Computing spanning trees in graphs

Dijkstra’s algorithm seem familiar?
- Prim’s algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a graph’s spanning tree.

Main distinction: Rule used to choose next vertex for the tree.
- Prim’s: Closest vertex to the tree (via an undirected edge).
- Dijkstra’s: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.
Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: \(V \) insert, \(V \) delete-min, \(E \) decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>(V)</td>
<td>1</td>
<td>(V^2)</td>
</tr>
<tr>
<td>binary heap</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(E \log V)</td>
</tr>
<tr>
<td>d-way heap (Johnson 1975)</td>
<td>(\log_d V)</td>
<td>(d \log_d V)</td>
<td>(\log_d V)</td>
<td>(E \log_{E/V} V)</td>
</tr>
<tr>
<td>Fibonacci heap (Fredman–Tarjan 1984)</td>
<td>1 (\dagger)</td>
<td>(\log V) (\dagger)</td>
<td>1 (\dagger)</td>
<td>(E + V \log V)</td>
</tr>
</tbody>
</table>

\(\dagger \) amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
4.4 **Shortest Paths**

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

shortest-paths tree from vertex s
Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to $E + V$.

Pf.

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + \text{e.weight}()$.

- Inequality holds until algorithm terminates because:
 - $\text{distTo}[w]$ cannot increase
 - $\text{distTo}[v]$ will not change

- Thus, upon termination, shortest-paths optimality conditions hold. ■

edge weights can be negative!
Shortest paths in edge-weighted DAGs

```java
public class AcyclicSP {
    private DirectedEdge[] edgeTo;
    private double[] distTo;

    public AcyclicSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        Topological topological = new Topological(G);
        for (int v : topological.order())
            for (DirectedEdge e : G.adj(v))
                relax(e);
    }
}
```
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

http://www.youtube.com/watch?v=vIFCV2spKtg
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...
To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).
Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).
Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

Key point. Topological sort algorithm works even with negative weights.
Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>

![Parallel job scheduling solution](image)
Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

```plaintext
<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td>2 8</td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td>2 8</td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>
```

![Graph representation of job scheduling](image)
Critical path method

CPM. Use **longest path** from the source to schedule each job.
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

![Dijkstra example diagram]

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is 0→1→2→3.

Re-weighting. Add a constant to every edge weight doesn’t work.

![Re-weighting example diagram]

Adding 9 to each edge weight changes the shortest path from 0→1→2→3 to 0→3.

Conclusion. Need a different algorithm.
Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.

assuming all vertices reachable from \(s \)
Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = \infty for all other vertices.

Repeat V times:
- Relax each edge.

```java
for (int i = 0; i < G.V(); i++)
   for (int v = 0; v < G.V(); v++)
      for (DirectedEdge e : G.adj(v))
         relax(e);
```
Bellman-Ford algorithm demo

Repeat V times: relax all E edges.
Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

shortest-paths tree from vertex s
Bellman-Ford algorithm visualization

passes
4

7

10

13

SPT
Proposition. Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found shortest path containing at most i edges.
Bellman-Ford algorithm: practical improvement

Observation. If $\text{distTo}[v]$ does not change during pass i, no need to relax any edge pointing from v in pass $i+1$.

FIFO implementation. Maintain queue of vertices whose $\text{distTo}[]$ changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

• The running time is still proportional to $E \times V$ in worst case.
• But much faster than that in practice.
Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>algorithm</th>
<th>restriction</th>
<th>typical case</th>
<th>worst case</th>
<th>extra space</th>
</tr>
</thead>
<tbody>
<tr>
<td>topological sort</td>
<td>no directed cycles</td>
<td>$E + V$</td>
<td>$E + V$</td>
<td>V</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>no negative weights</td>
<td>$E \log V$</td>
<td>$E \log V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford</td>
<td>no negative cycles</td>
<td>$E \cdot V$</td>
<td>$E \cdot V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford (queue–based)</td>
<td></td>
<td>$E + V$</td>
<td>$E \cdot V$</td>
<td>V</td>
</tr>
</tbody>
</table>

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.
Finding a negative cycle

Negative cycle. Add two methods to the API for SP.

```java
boolean hasNegativeCycle()  // is there a negative cycle?
Iterable <DirectedEdge> negativeCycle()  // negative cycle reachable from s
```

digraph

```
4->5  0.35
5->4 -0.66
4->7  0.37
5->7  0.28
7->5  0.28
5->1  0.32
0->4  0.38
0->2  0.26
7->3  0.39
1->3  0.29
2->7  0.34
6->2  0.40
3->6  0.52
6->0  0.58
6->4  0.93
```

```
5->4->7->5
negative cycle  (-0.66 + 0.37 + 0.28)
0->4->7->5->4->7->5...->1->3->6
shortest path from 0 to 6
```
Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating `distTo[]` and `edgeTo[]` entries of vertices in the cycle.

Proposition. If any vertex `v` is updated in phase `v`, there exists a negative cycle (and can trace back `edgeTo[v]` entries to find it).

In practice. Check for negative cycles more frequently.
Problem. Given table of exchange rates, is there an arbitrage opportunity?

Ex. $1,000 ⇒ 741 Euros ⇒ 1,012.206 Canadian dollars ⇒ $1,007.14497.

\[1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497\]
Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

Challenge. Express as a negative cycle detection problem.
Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be $-\ln$ (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!
Shortest paths summary

Dijkstra’s algorithm.

- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

- Arise in applications.
- Faster than Dijkstra’s algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.

- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
4.4 **Shortest Paths**

- APIs
- *shortest-paths properties*
- *Dijkstra's algorithm*
- *edge-weighted DAGs*
- *negative weights*