
2023 ESA Test-of-Time Award

LogLog Counting of Large Cardinalities

presented by
Robert Sedgewick

Princeton University

Marianne Durand and Philippe Flajolet

Passing the test of time

2

It solves a fundamental problem in data science.

It is a simple, elegant and efficient solution.

It is a poster child for analytic combinatorics.

It is a poster child for algorithm science.

It is broadly applicable and widely used.

Why does log-log counting pass the test of time?

OF

LogLog Counting of Large Cardinalities

•A fundamental problem in data science
•A simple, elegant and efficient solution
•A poster child for algorithm science
•A poster child for analytic combinatorics
•Widely applicable and still relevant

109.108.229.102
pool-71-104-94-246.lsanca.dsl-w.verizon.net
117.222.48.163
pool-71-104-94-246.lsanca.dsl-w.verizon.net
1.23.193.58
188.134.45.71
1.23.193.58
gsearch.CS.Princeton.EDU
pool-71-104-94-246.lsanca.dsl-w.verizon.net
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.lnse3.cht.bigpond.net.au
117.211.88.36
msnbot-131-253-46-251.search.msn.com
msnbot-131-253-46-251.search.msn.com
pool-71-104-94-246.lsanca.dsl-w.verizon.net
gsearch.CS.Princeton.EDU
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
118-171-27-8.dynamic.hinet.net
cpe-76-170-182-222.socal.res.rr.com
203-88-22-144.live.vodafone.in

4

Cardinality counting

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log ?

State of the art in the wild for decades. Sort, then count.

SELECT
DATE_TRUNC(‘day’,event_time),
COUNT(DISTINCT user_id),
COUNT(DISTINCT url)
FROM weblog

SQL (1970s-present)

log.07.f3.txt

6 million strings

% sort -u log.07.f3.txt | wc -l
1112365

UNIX (1970s-present)

“unique”

"Optimal" solution. Use a hash table. order of magnitude faster than sort-based solution

Q. I can’t use a hash table. The stream is much too big to fit all values in memory. Now what?

typical applications
where exact count is
not really necessary

5

Cardinality estimation

Practical cardinality estimation problem

• Make one pass through the stream.

• Use as few operations per value as possible

• Use as little memory as possible.

• Produce as accurate an estimate as possible.

How many unique
visitors to my website?

How many different IP
addresses hit this node?

How many different values
for a database join?

To fix ideas on scope (202x): Think of billions of streams each having trillions of values.

How many different cars
passed here this year?

A. Look for a way to estimate the value of N, the number of distinct values in the stream.

Q. How much memory is needed to estimate N to within, say, 10% accuracy?

A. Much less than you might think!

6

Timeline of milestones in cardinality estimation

2003

Log-Log Counting
(Durand-Flajolet)

2024

HyperBit
(Lumbroso-Janson-Sedgewick)

2007

HyperLogLog
(Flajolet-Fusy-

Gandouet-Meunier)

1999

Complexity of Approximating
Frequency Moments

(Alon, Matias, Szegedy)

numerous complexity results
little impact on practical computing

various approaches, more
operations, different statistics

For details, see "The Story of HyperLogLog: How Flajolet Processed Streams with Coin Flips" J. Lumbroso, 2013.

Probabilistic Counting
(Flajolet-Martin)

1983

Adaptive
Sampling
(Wegman)

1985

introduction of
the idea of

data streaming

OF

LogLog Counting of Large Cardinalities

•A fundamental problem in data science
•A simple, elegant and efficient solution
•A poster child for algorithm science
•A poster child for analytic combinatorics
•Widely applicable and still relevant

deserves a
test-of-time award

8

Simple, elegant, and efficient solutions

Key steps

• Hash each item so as to work with "random" values.

• Develop a sketch that enables cardinality estimation.

• Split stream into M substreams and average their estimates.

• Precisely analyze the bias.

Flajolet-Martin (probabilistic counting) uses M 32-bit sketches.

Durand-Flajolet (loglog counting) uses M 5-bit sketches.

Flajolet and Martin
Probabilistic Counting Algorithms

for Data Base Applications

1983 2003

Durand and Flajolet
LogLog Counting of Large Cardinalities

both deserve test-of-time awards

64-bit

6-bit
21st century values

00011000011010111100111111110010
00110100010001111100010100111010
01101001001000011100110100110011
01101001001000011100110100110011
01101001001000011100110100110011
01001110111100011000011101001101
01101001001000011100110100110011
01110101010110110000000011011010
01101001001000011100110100110011
01101001001000011100110100110011
01100001000111001001110010100000
00110100010001111100010100111010
01000011110111111101010110110001
01111000100111110111000111001000
01111000100111110111000111001000
01110101010110110000000011011010
00110100010001111100010100111010
00010000111001101000111010010011
00001001011011100000010010010111
00001001011011100000010010010111
00111000101001001011010101001100
00111000101001001011010101001100
01101001001000011100110100110011
00001000011101100110110010100101
00001001011011100000010010010111
00001001001011010110111101111110

9

First step: Hash the values

Transform value to a “random” computer word.

• Compute a hash function that transforms
data value into a 32- or 64-bit value.

• Cardinality count is unaffected (with high probability).

• Built-in capability in modern systems.

• Allows use of fast machine-code operations.

21st century: use 64 bits (quintillions of values)
20th century: use 32 bits (millions of values)

Bottom line: Do cardinality estimation on streams of (binary) integers, not arbitrary value types.

“Random” except for the fact
that some values are equal.

State-of-the-art-"Mersenne twister" uses only a few machine-code instruictions.

111100111111110010...
111100010100111010...
011100110100110011...
011100110100110011...
011100110100110011...
011000011101001101...
011100110100110011 ..
110000000011011010...
011100110100110011...
011100110100110011...
001001110010100000...
111100010100111010...
111101010110110001...
000111000111001000...
000111000111001000...
110000000011011010...
111100010100111010...
011000111010010011...
100000010010010111...
100000010010010111...
001011010101001100...

10

S

Pr { no value has k leading 0s } = Pr { X <= k }

Pr { X > k }

= (1 −
1
2k)N ∼ e−N/2k

∼ 1 − e−N/2k

Takeaway. E(X) is slightly larger than lg N

lgN 1 − e−N/2k

N = 1024

~1 when k is small
~ 0 when k is large

E(X) ∼ ∑
k≥0

(1 − e−N/2k)

~lg N terms are ~1
a few are not close

to 0 or 1

the rest are all ~0

Second step: Focus on the leading 0s

1+1+1+1+1+1+1+1+1+1+1 + . . . + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + . . .∑
k≥0

(1 − e−N/2k) =

Let X be the max number of leading 0s in a random stream of random distinct binary values.

11

Third step: split the stream into substreams and average results

Goal: Perform M independent experiments and average results.

Alternative 3: Stochastic averaging

• Use second hash to divide stream into M independent streams
• Compute max number of leading 0 bits in each stream,
• Average these values.

key point: equal values
all go to the same stream

Alternative 1: M independent hash functions? No, too expensive.

Alternative 2: M-way alternation? No, bad results for certain inputs.

01 02 03 04 01 02 03 04

01 01

02 02

03 03

04 04

01 02 03 04

01

02

03

04

10 11 39 21

09 07 07

11

23 22 22

31

11 09 07 23 31 07 22 22
21

39

10 11

12

Memory use for cardinality estimation algorithms with M-way stochastic averaging

Probabilistic Counting (1983)
M 64-bit words

LogLog Counting (2003)
M 6-bit bytes

Pictured: M = 128

Cardinality N is less than 264

lg N < 64 so 64-bit hash values suffice

lg lg N < 6 so 6-bit counters suffice

PC uses a 64-bit sketch

13

LogLog counting Java implementation: simple, elegant, and effective

public static long estimate(Iterable<Long> stream, int M)

{

 byte[] sketch = new byte[M];

 for (String s : stream)

 {

 int x = hash1(s);

 int k = hash2(s, M);

 if Bits.r(x) > sketch[k]) sketch[k] = Bits.r(x);

 }

 double sum = 0.0;

 for (int i = 0; i < M; i++)

 sum += sketch[i];

 double mean = sum / M;

 return (int) (.794 * M * Math.pow(2, mean);

}

Ideas.

• Use M sketches (6 bits each).

• Hash each item.

• Use second hash to split into
M independent streams.

• Compute max # leading 0 bits
in each stream (Bits.r()
computes # leading 0s)

• Compute mean = average of
the sketch values.

• Return .794 * 2mean

Critical questions

• Formula for the "magic constant"?

• How does the accuracy improve as M increases?
"Without the analysis there is no algorithm"

—-attributed to Flajolet (folklore)

magic constant

code to maintain
6-bit bytes omitted

OF

LogLog Counting of Large Cardinalities

•A fundamental problem in data science
•A simple, elegant and practical solution
•A poster child for analytic combinatorics
•A poster child for algorithm science
•Broadly applicable and widely used

Analytic combinatorics

15

Basic ideas

• Generating functions (GFs) are the central object of study.

• Formal methods transfer specifications into equations on GFs.

• Analysis of properties of GFs as complex functions gives asymptotic estimates of coefficients.

• Universal laws that suppress detail in the analysis are often available.

is a calculus enabling precise analysis of properties of discrete structures

Short history
• Foundations in classical mathematics, dating back to 18th century.
• Several "classical" examples found in Knuth's books.
• Developed by Flajolet and many coauthors in 1980s and 1990s.
• Defined in 2008 book by Flajolet and Sedgewick.
• Applies to many sciences, not just computer science.

16

Analysis of loglog counting: overview

Theorem. (Durand and Flajolet) When loglog counting is used to process a stream of

N distinct values using M substreams, the mean of the max # 0s in the streams has

(ignoring small oscillating functions of magnitude).< 10−6

Proof sketch (standard analytic combinatorics, now).
Generating-function formulation
Poisson approximation
Mellin transform
Depoissonize

expected value: (so the magic constant is)lg N +
γ

ln 2
+

1
2

e−γ 2 ≐ .794028

standard error: where ∼ cM / M cM ∼ (ln 2)2/12 + π2/6 ≈ 1.30

Initial stipulations
about randomness

omitted (stay tuned)

Fact: To know the magic constant, one must study the Gamma function in the complex plane (!).

17

Analysis of loglog counting: the magic constant

Γ(s) = ∫
∞

0
exxs−1dx

Q. For M=1, what is the mean of the max # leading 0s in a stream with N distinct values?

A. The sum of the residues of at the poles ().
Γ(z)N−z

1 − 2−z
z =

2πik
ln 2

k = 0, ± 1, ± 2, …

A. where lg N +
γ

ln 2
+

1
2

+ δN δN =
2

ln 2 ∑
k≥1

Γ(−
2kπi
ln 2

)e2kπi lg N

 near .Γ(z) =
1
z

− γ + O(z) z = 0

A. , ignoring small oscillating functions of magnitude). lg N +
γ

ln 2
+

1
2

< 10−6

"Without the Gamma function
 there is no analysis"

—-RS

Euler's constant ≐ .57721

news flash: it's not a constant

18

Analysis of loglog counting: the distribution

Q. What are the essential characteristics of the the distribution?

A. It is approximately normal with standard error about .1.30/ M

In 1973, Knuth and deBruijn developed the 𝛤-function method to analyze tries.

1973

In 1985, Flajolet, Sedgewick, and Regnier generalized the method and identified applications.

1985

In 1998, Jacquet and Szpankowski introduced "poissonization"
• a quintessential result in analytic combinatorics.
• suppresses details in calculations for a broad class of problems.
• allows approximation of the full distribution.

1998

In 2003, Durand and Flajolet analyzed the loglog counting distribution,

a necessary step to properly characterize memory-accuracy trade-offs

2003

identified as the Mellin transform by
Sedgewick in 1978

OF

LogLog Counting of Large Cardinalities

•A fundamental problem
•A simple, elegant and practical solution
•A poster child for analytic combinatorics
•A poster child for algorithm science
•Broadly applicable and widely used

Algorithm science

20

Basic ideas

• Start with real programs and real data.

• Develop a precise mathematical model of critical characteristics.

• Use model to formulate hypotheses about performance and tune parameter settings.

• Test hypthotheses with real-world experiments.

• Refine and iterate.

is an approach to studying algorithms that embraces the scientific method.

Short history
• Practiced by Turing, von Neumann, Hoare, and many others.
• Developed by Knuth in the 1970s and 1980s.
• Popularized by Sedgewick in the in 1990s and 2000s.
• Enabled development of our computational infrastructure.
• Renewed focus likely as Moore's Law wanes.

21

Initial hypothesis

No problem!

• We always validate hypotheses in algorithm science.

• End goal is development of algorithms that are useful in practice.

• It is the responsibility of the designer to validate utility before claiming it.

• After decades of experience, discovering a performance problem due to
a bad hash function would be a significant research result.

Fact. Hash values are not random.

Implication. Need to run experiments to validate any hypotheses about performance.

Unspoken bedrock principle of algorithm science.
 Experimenting to validate hypotheses is WHAT WE DO!

Hypothesis. Hash values are "sufficiently" random.

22

LogLog performance hypotheses

σ = 1.30/32 ≐ .04
M = 1024

Hypothesis. (Durand and Flajolet) When loglog counting is used to process a stream

of N distinct values using M substreams, the mean of the max # 0s in the streams has

(ignoring small oscillating functions of magnitude).< 10−6

expected value: where ∼ lg N/αM αM ∼ e−γ 2 ≈ .794

standard error: where ∼ cM / M cM ∼ (ln 2)2/12 + π2/6 ≈ 1.30

Example. Estimate N to within 10% accuracy 95% of the time using thousands of bits of memory.

Hypothesis. Loglog counting does so with 6144 bits.

Also, the distribution is approximately normal .

Not a Theorem because it rests on unproven assumptions about the existence of truly random hash functions
(as do all programs that use hashing)

within 2 95% of the time in a normal distributionσ

23

LogLog validation I (RS, 2023)

Experiment. 100 trials for x*10000 inputs for x from 1 to 100 (10000 trials) with M = 1024

one experiment
average of 100 trials

exact cardinality

24

LogLog validation II (RS, 2023)

Histogram of number of estimates between x*2000 and (x+1)*2000

hypothesized
distribution

Experiment. 10000 trials for 1 million inputs with M = 1024

hypothesized
distribution

25

Refine and iterate!

Q. How can loglog counting be improved?

A. SuperLogLog: Ignore large counts

• Reduces storage requirement to 5 bits per counter

• Achieves relative accuracy 1.05/ M

A. HyperLogLog: Use harmonic mean

• Requires new analysis

• Achieves relative accuracy 1.02/ M

A poster child for algorithm science

• Precise mathematical models guide study of improvements

• Testing infrastructure enables experimental validation

LogLog

SuperLogLog

HyperLogLog

magic constant: Obviously.

26

Comparing algorithms and predicting performance: the constants matter

standard error: Precisely characterizes memory-accuracy tradeoff.

Algorithm A has standard error
0.78

M
Algorithm B has standard error

1.103

M

B needs twice as many substreams to achieve the same accuracy as A !
1.103

2
≐ 0.78

Example 1.

Algorithm A uses MA total bits
with 4 bits per substream

Algorithm B uses MB total bits
with 256 bits per substream

Example 2.

B is eight times less accurate if using the same memory as A !

1
MA/4

=
2

M

1
MB/256

=
16

M

27

Algorithm comparisons: memory

memory needed variant b c # bits for
2% accuracy

bits for
20% accuracy

Adaptive Sampling M records 64 1.20 166464 1664

Probabilistic Counting M words 64 0.78 97344 973

basic 6 1.30 25350 253

LogLog M bytes super 5 1.05 13871 139

hyper 5 1.02 13005 130

Q. How many bits are needed to expect accuracy within ?1 ± x

A. Using bits with b bits per item, the number of streams is . Therefore,M0 M0/b

 when the relative error is , solve for to get
c

M0/b
M0 M0 = b(c

x)
2

28

Algorithm comparisons: accuracy

memory needed variant b c relative error
with 128 bits

relative error
with 8K bits

Adaptive Sampling M records 64 1.20 84% 10%

Probabilistic Counting M words 64 0.78 55% 7%

basic 6 1.30 28% 3.5%

LogLog M bytes super 5 1.05 21% 2.6%

hyper 5 1.02 20% 2.1%

Q.What accuracy can be expected with a given number of bits?

A. For b bits per item and bits, relative error is .Mb
c

M

OF

LogLog Counting of Large Cardinalities

•A fundamental problem in data science
•A simple, elegant and efficient solution
•A poster child for algorithm science
•A poster child for analytic combinatorics
•Broadly applicable and widely used

30

Posted on Facebook, 2018

"Computing the count of distinct elements in massive data sets is often necessary but

computationally intensive. Say you need to determine the number of distinct people visiting

Facebook in the past week using a single machine. With a traditional SQL query on the data sets

we use at Facebook this would take days and terabytes of memory.

31

Posted on Facebook, 2018 (continued)

Computing the count of distinct elements in massive data sets is often necessary but

computationally intensive. Say you need to determine the number of distinct people visiting

Facebook in the past week using a single machine. With a traditional SQL query on the data sets

we use at Facebook this would take days and terabytes of memory.

To speed up these queries, we implemented HyperLogLog (HLL) in Presto, a distributed SQL query

engine. HLL works by providing an approximate count of distinct elements. With HLL, we can

perform the same calculation in 12 hours with less than 1 MB of memory. We have seen great

improvements, with some queries being run within minutes.

Note: 1 terabyte = 1 million MB

Improving things by a factor of 1 million = a good day for an algorithm scientist!

32

Hyperloglog validation in the Real World

S. Heule, M. Nunkesser and A. Hall

HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm.

Extending Database Technology/International Conference on Database Theory 2013.

Passing the test of time

33

It solves a fundamental problem in data science.

It is a simple, elegant and efficient solution.

It is a poster child for algorithm science.

It is a poster child for analytic combinatorics.

It is broadly applicable and widely used.

Why does log-log counting pass the test of time?

Philippe Flajolet 1948-2011

Marianne Maurel (recent)

2023 ESA Test-of-Time Award

LogLog Counting of Large Cardinalities

presented by
Robert Sedgewick

Princeton University

Marianne Durand and Philippe Flajolet

